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PREFACE

The rapid technological progress of the 1960s is characterized by the
advanced systems produced during this period. The Apollo spacecraft, the
metroliner, jet aircraft capable of carrying several hundred passengers,
commercial nuclear power plants, and high-speed data processing facilities
stand out as examples. These systems are highly visible and have had a
marked effect on the American public. They represent what we accept as
milestones of "progress."

Advances made in the life sciences during the 1960s are not as visible
and only now are being accepted by the public as comparable in
importance to progress in the physical and engineering sciences. It now is
becoming very clear that a body of life sciences information is needed not
only to determine the best way in which to utilize man in complex
systems, but also to assess the impact of system operation on man. In this
latter sense, we refer to impact on all mankind and not just to effects on
humans working within a system.

As the problems of living in a technological age become more obvious,
work must be accelerated towards solutions for human-oriented issues.

Fortunately, there is a substantial body of life sciences data upon which
one may draw. Although not generally recognized, basic research in the life
sciences has kept pace with that in the physical sciences during recent
years. In 1970, Federal expenditures in this field approached 700 million
dollars, a fourfold increase over those of 1960. Data collected by the
National Science Foundation indicate that, in 1969, basic research in the life

sciences, social sciences, and psychology received 52 percent of tile total
Federal basic research funds, as opposed to 47 percent for the physical
sciences, engineering sciences and mathematics.

This revision of the Bioastronautics Data Book was prepared in order to

bring together the essentials of the large body of human research
information generated in recent years and to present it in a form suitable
for engineers and others concerned with tile development and evaluation of
modern "systems. This effort represents an updating and expansion of an
earlier document prepared for the National Aeronautics and Space
Administration in 1964by Webb Associates. The revision was prepared

under the guidance of Working Group 5 of the Committee on Hearing,
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The revised Bioastronautics Data Book was prepared by BioTechnology, Inc.
under contract to the Office of Naval Research with support from the
National Aeronautics and Space Administration. It deals with a substantial
array of content areas within the broad domain of life sciences and presents
primarily that information deemed of value for system design and
evaluation. We in NASA trust that it will prove as useful as the earlier Data
Book and that it will contribute to solutions for some of the pressing
problems in human ecology now faced by man.
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CHAPTER 1

BAROMETRIC PRESSURE

by

Charles E. Billings, M.D.

The Ohio State University

Physiological studies of pressure effects have been conducted for over a
century. Still, many facets of the problem have been incompletely explored. It is
known that if man is supplied with an appropriate gas mixture, he can survive
considerable periods of exposure to a wide range of barometric pressures

(figure 1-1). Man's ultimate tolerance limits for high and low harometric
pressures are not known, however. Likewise, it is not known whether the gas

mixtures required for such exposures are in themselves toxic.

This chapter describes the effects of alterations in barometric pressure on
human beings. The subject is of considerable importance in both aerospace and
underwater exploration, although the former area is given primary emphasis
here. The effects of barometric pressure as such must be differentiated from the

effects of changes in pressure. In the latter case, our knowledge is more
complete. Abrupt and controlled changes in pressure can be produced in
compression and decompression chambers, shock tubes, wind tunnels, and the
like.

Increases in barometric pressure are experienced most commonly during
descents through the atmosphere and underwater diving. High dynamic
(unbalanced) pressures are encountered during escape from aircraft. Still higher
pressures occur in the vicinity of explosions. Decreases in pres,_ure are
encountered during ascents through water or the atmosphere or during
depressurization of an aircraft or space vehicle. The physical effects of these

changes arc considcred in this chapter. Exposure through'out the tolerable range
of pressurcs is discussed first, followed by descriptions of the effects of
increases, and then decreases, in barometric pressure.

In view of the multiplicity of systems for dcscribing pressure, the following
tables have been included as an aid to the reader wishing to convert p_ssure

Reviewed by the late Wing Commander D. I. Fryer, O.B.E., RAF, MC, Institute of Aviation

Medicine, Farnborough, England.



Bioastronautics Data Book

terms from one notational system to another. Tables 1-1 and 1-2 shown here

contain many, though not all, the units of pressure measurement in common
use. The preferred units for scientific use are those of the new International
System (Systeme Internationale), which recommends Newtons per square meter
but accepts tile bar and millibar for common usage. The inch of mercury and
millibar are widely used in aviation. Millimeters of mercury are in common
biomedical use in the United States and elsewhere. In diving medicine, the
atmosphere is commonly used. Note in table 1-1 that zero feet of water equals
1 atmosphere. The increase of pressure with increasing depth in _a water is
roughly 1 atm for each 33 feet. Since air is compressible, the altitude scale is
logarithmic. The data for altitude arc from tile U.S. Standard Atmosphere
(i9,54).
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Figure 1-1. Approximate range of barometric pressure (above and below sea level)
tolerated by humans breathing gas mixtures containing the indicated concentrations of 0 2.
Heavy curve indicates gas mixture which will maintain sea level equiv',dent PO 2 in the lungs
at the indicated barometric pressures. (U.S. House of Representatives Select Committee on
Astronautics and Space Exploration, 1959)

Survival Under Near-Vacuum Conditions

The vapor pre_ure of water at a body temperature of 37°C is 47 mm Hg
(0.9 psia). Since the human body is largely composed of water, exposure to
barometric pressures much below 47ram Hg absolute leads rapidly to
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vaporization of body fluids, a proce_ known as ebullism. That this phenomenon

does not occur precisely at 47 mm tlg is due to some degree of eounterpressure

exerted by tilt skin and connective tissues and blood vessels.

'Fable 1-1

Equivalent Pressures, Altitudes and 1)epths
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Recent studies of dogs, squirrel monkeys, and baboons decompressed in
2 seconds from 250 to 1 to 2 mm Hg absolute (Bancroft & Dunn, 1965; Cooke

et at., 1967; Cooke et at., 1968) have demonstrated remarkable similarity among
these species in responses to exposure to a near vacuum. Chimpanzees respond in
the same way, though at a slower rate, to this stress. It is reasonable to assume
that similar responses would occur in humans exposed to very low pressures by
puncture of a space vehicle or suit or failure of a pressure seal under
space-equivalent conditions.

Some degree of consciousness will probably be retained for 9 to 11 seconds

(see chapter2 under the heading Hypoxia). In rapid sequence thereafter,
paralysis will be followed by generalized convulsions and paralysis once again.
During this time, water vapor will form rapidly in the soft tissues and somewhat
less rapidly in the venous blood. This evolution of vapor will cause marked
swelling of the body to perhaps as much as twice its normal volume unless it is
restrained by a pressure suit. (It has been demonstrated that a properly fitted
elastic garment can entirely prevent ebullism at pressures as low as 15 mm Hg
absolute lWebb, 1969, 1970].) Heart rate may rise initially but will fall rapidly
thereafter. Arterial blood pressure will also fall over a period of 30 to
60 seconds, while venous pressure rises due to distension of the venous systcm
by gas and vapor. Venous pressure will meet or exceed arterial pressure within
1 minute. There will be virtually no effective circulation of blood. After an
initial rush of gas from the lungs during decompression, g_ and water vapor will
continue to flow outward through the airways. This continual ewporation of
water will cool the mouth and nose to near-freezing temperatures; the remainder
of the body will also become cooled, but more slowly.

Cooke and Bancroft (1966) reported occasional deaths in animals due to
fibrillation of the heart during the first minute of exposure to near-vacuum
conditions. Ordinarily, however, survival was the rule if recompression occurred
within about 90 seconds. The hearts in these studies tolerated even repeated
decompression well (Cooke & Bancroft, 1966), although it is by no means
certain that the human heart will be as tolerant. Once heart action ceased, death

was inevitable, despite attempts at resuscitation. During recompression, as the
absolute pressure exceeded about 50 mm tlg (1 psia), a 3ramatic reduction in
swelling was demonstrated. Breathing usually began spontmwously, the time
being dependent on the duration of exposure at minimum pressure. Heart rate
and blood pressure rose to fairly high levels, then gradually returned toward
normal. Therc was suggestive evidence in the Cooke and Bancroft studies that
denitrogenation prior to exposure, and recompression with 100 percent oxygen,

both improvcd recovery time and decreased mortality. Neurological problems,
including blindness and other defects in vision, were common after exposures
(see problems due to evolved gas), but usually disappeared fairly rapidly.

It is very unlikely that a human suddenly exposed to a vacuum will have
more than 5 to 10seconds to help himself. If immediate help is at hand,
although one's appearance and condition will be grave, it is reasonable to
assume that recompression to a tolerable pressure (200 mm Hg, 3.8psia)
within 60 to 90 seconds could result in survival, and possibly in rather rapid
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recovery. There is, of course, no guarantee of a successful outcome; some
animals have died within seconds of decompression and a few others have

had severe, lasting central nervous system damage (Casey, Bancroft, &
Cooke, 1966).

Barometric pressures below those at which adequate blood and tissue
oxygenation can be maintained (about 190 mm Hg, 3.7 psia) must be considered
hostile for more than brief exposures without proper protective equipment (see
chapter 2); those below about 100 mm Hg (1.9 psia) must be considered hostile
for any exposure. Pressures much below 50 mm Hg cause almost immediate
failure of the circulation and total anoxia and must be considered lethal if
sustained for more than 60 to 90 seconds.

Human Tolerance for Low Barometric Pressures

As indicated previously, the partial pressure of water vapor in the lungs is

about 47 mm Hg (0.9 psia). The normal partial pressure of carbon dioxide in the
lungs ranges from 35 to 45 mm Hg (0.7 to 0.9 psia). A partial pressure of oxygen
in the lungs of about 100 mm Hg (1.94 psia) will maintain essentially complete
oxygen saturation of arterial blood. A total barometric pressure of 190 mm Hg
(3.66 psia), then, will support a human being if his environment consists of pure

oxygen. It should he noted, however, that this figure leaves little room for
further reductions such as would occur in the face of space cabin or pressure suit
leaks, temporary failures of gas supply, dilution of the atmosphere by nitrogen
or other inert gases, or carbon dioxide buildup due to inefficient absorption or
scrubbing.

Although this pressure environment will support life for long periods of
time, it has certain inherent disadvantages. Even after virtually complete removal
of inert gases from the body, there is a finite, though minimal, risk of
decompression sickness due to evolved gas. Because oxygen and carbon dioxide
are physiologically active gases, they are absorbed rather rapidly from

gas-containing cavities in the body. This can result in symptoms, especially in the
ears, sinuses, and lungs (Hyde, Pines, & Saito, 1963).

The low density of a pure oxygen environment at 190mm Hg
(0.357 gin/liter, 28 percent of air at sea level) attenuates sound transmission and
also alters, to some extent, the mechanics of the lung-chest system. The

maximum pressure which can be developed by the system is lowered
substantially. This inhibits the effectiveness of coughing and may make it
difficult to rid the lungs of secretions or foreign matter. Breath holding time is
also markedly reduced. On the other hand, the work of breathing at high flow
rates is decreased due to reduction in the proportion of turbulent flow at low gas
density. Thus, it is easier to sustain high ventilation volumes during the
performance of muscular work (Boothby, 1964). Also, respiratory water loss
may be decreased somewhat at low total pressures 0Vortz et al., 1966).

It is not known whether man can tolerate an environment free of "inert"

gases indefmitely. The 14-day Gemini flight and a few altitude chamber tests for
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up to 30 days represent the only available data, and it is noteworthy that these
exposures have been at 258 to 282 mm Hg (5 to 5.5 psia), in the main, rather
than at the minimum tolerable pressures. When much longer exposures arc

contemplated, a number of more subtle factors must be considered. These
include the possible dependence of man himself, or of his normal and essential
saprophytic bacteria, on trace amounts of nitrogen or other "inert" gases. One
study has also indicated that cell wall fragility may be increased at low total
pressures (Bomadini, 1966). Such questions as these can only be answered by
much longer experiments than those which have been conducted to date.

Man has successfully tolerated exposures of 56 days to environments
containing physiological pressures of oxygen, with helium as the diluent, at a

total pressure of 258 mm Hg (5.0 psia). Very careful medical, biochemical,
physiological, and psychological studies disclosed no adverse effects during this
period of exposure other than those which are inevitable under reduced pressure
and which have been mentioned (Welch et al., 1966).

In summary, low barometric pressures, in and of themselves, do not appear
to be harmful to man, insofar as they have been studied critically. There are
disadvantages at pressures so low that pure oxygen must be used as the sole
atmospheric constituent; many of these are minimized or alleviated by the
addition of a small proportion of a diluent gas. Pressures as low as 5 psia appear
to be innocuous for fairly long exposures.

Human Tolerance for Gaseous Environments Composed of Air

Man has been successfully adapting to a wide range of barometric pressures
for many centuries. A skeleton roughly 9000 years old was recently found in
Peru at an elevation of 13 800 feet, equivalent to a pressure of 450 mm Hg
(8.65 psia). Extensive studies have been carried out on acclimatized natives at
elevations of 15000feet in the Andes and on partially acclimatized
mountaineers at 19 000 feet and above in the Himalayas. These environments
are not optimal, and they exert a considerable physiological toll (see chapter 2
under the heading Hypoxia), but they are survivable for substantial periods of
time. There is little evidence that long-term inhabitants at elevations above
10 000 feet differ substantially from their sea level counterparts except for
decreased work tolerance and the presence of certain body adjustments to the

lower partial pressure of oxygen at that altitude.

The usual range of barometric pressure at sea level in the United States is
from about 29 to 31 inches of mercury (14.25 to 15.25 psia). Changes occur
relatively slowly except under very unusual meterological conditions. While
certain psychological and physiological disorders have been attributed to such
changes in pressure, there is no proof of a causal relationship.

There are mines on earth in which maximum depths exceed 10 000 feet
below sea level, equivalent to a barometric pressure of at least 20 psia. There is
no evidence that men working at these depths have been harmed by the pressure.
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Increasing interest in undersea exploration during recent years has led to a
number of long-term human studies at pressures substantially higher than those
normally encountered by man. While excessive pressures of both nitrogen and
oxygen are toxic to man and animals (see chapter 2), some of the earlier studies
in which air was used as the gaseous medium (Conshelf I, two men, 7 days,
2.05 arm absolute; Conshelf II, six men, 30 days, 1.95 alan absolute; Tektite,
four men, 60 days, 2.27 atm absolute) have shown that man can tolerate at least
2 months of exposure to these environments without apparent harm (Aquadro &
Chouteau, 1967).

Human Tolerance for High Barometric Pressures

Bert, in 1876 (translated by Hitchcoek & Hitchcoek, 1943), described
oxygen toxicity. While this problem is discussed in chapter 2, it should be noted
here that as man has extended his technological capability under the seas, he has
found that if oxygen poisoning and nitrogen narcosis can be avoided, his
tolerance for high barometric pressures is considerable.

If the partial pressure of oxygen in the lungs is maintained at physiological
levels, and if the partial pressure of nitrogen is kept below toxic limits, other
inert gases may be added to man's environment in large amounts. The majority
of work in this area has used helium as the inert pressurizing gas, though some
research has been conducted with other noble gases, notably argon and neon.
Hydrogen has not been popular because of its flammability when mixed with
oxygen, though it also is physiologically inert and has some theoretical
advantages for work at extremely high pressure (see chapter 2).

Leaving aside problems due to changing pressures, the physiological
problems encountered in a high pressure environment are due almost entirely to

the physical characteristics of the gas mixture used to create flaat environment.

At rest, man's instantaneous respiratory flow rate rarely exceeds 1 liter per
second. Under these circumstances, most flow in the airway system is laminar;

turbulent flow occurs only at branchings and in the smallest terminal bronchial
tubes. When physical work is performed, however, ventilation volume and flow
rates increase in proportion to the power output. Under these circumstances,
volumes of 60 to 120 liters per minute and peak flow rates of 5 liters per second
are not uncommon. The proportion of turbulent flow increases substantially and
with it, the metabolic work required to move the air.

Otis, Fenn, and Rahn (1950) derived equations which describe the work of
breathing at various barometric pressures. They showed that the work required
to produce laminar flow is linearly related to the instantaneous velocity of air
movement and is essentially independent of barometric pressure, whereas the
work required for turbulent flow is a function of the second power of velocity
and is directly related to density or pressure. (In calculating the work of
breathing at "altitude, the compressibility of alveolar air must be taken into
account [Jaeger & Otis, 1964]; this factor is relatively unimportant at high
haronletric pressures.) Figures 1-2 and 1-3 illustrate some effects of high
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pressures on ventilation. Wood, Bryan, and Koch (1969) have recently

demonstrated some of the limiting factors in respiratory mechanics at very high

pressures. The theoretical limit for steady-state breathing at depth is the point at

which the work to move a given quantity of gas requires all the oxygen which

can be extracted by the blood from that increment of gas while it is in the lungs.
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It is possible, by using combinations of oxygen, nitrogen, and helium, to

maintain a gaseous environment whose partial pressure of oxygen and density

remain at sea level values up to a total pressure of 5.74 atm absolute (84.4 psia),

at which pressure the mixture contains 3.7 percent oxygen and 96.3 percent

helium (figure 1-4). At greater pressures, the density of an appropriate

oxygen-helium mixture increases almost in proportion to the total pressure

(figure 1-5). Using oxygen-helium mixtures, brief habitability studies have been

carried out at pressures as great as 684 psia (equivalent to 1500 feet of water)

and much longer experiments have been conducted to lesser depths (Aquadro &

Chouteau, 1967). These are discussed in more detail in chapter 2, since it

appears that most of the physiological changes observed are due to the gases in

the breathing mixtures, rather than to the pressure per se.

Other problems must be considered when man lives in a gaseous environment

composed mostly of helium. The thermal conductivity of tl|is gas is high; as a

result, higher environmental temperatures are required to maintain man in the

,;_;7 ;;-,_; _) 72 2
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zone of thermal neutrality (see chapter 3, Temperature). Very recent studies

indicate that during work at depths greater than 600 feet, respiratory heat losses

are considerable and can threaten man's ability to maintain thermal equilibrium

even in the face of increased heat production (Rawlins, 1970). Speech is also a

problem; the low density of helium produces a rise in the fundamental pitch of

the human voice (Cooke, 1964; Cooke & Beard, 1965; Wather-Dunn, 1967).

While this is partially compensated for over a period of time, intelligibility is

appreciably decreased.

Man's ultimate tolerance limits for high barometric pressure are not known.

It is possible that the work of breathing at rest will set a practical limit, although

there may well be other factors yet-undetected, which will limit longer stays

at lesser pressures (see chapter 2). In an effort to extend very considerably

the tolerance limits, Kylstra (1967) has conducted experiments in which

water instead of air is used as the carrier of oxygen and carbon dioxide.

This technique, radical though it seems, may well be feasible at a later

point in time. Extremely high static pressures may curtail or interfere with

biochemical reactions which involve changes in tissue or molecular volume

(Fenn, 1967).
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Changes in Barometric Pressure

It has been indicated that human tolerance for barometric pressure extends
from less than four to at least several hundred psia. Changes in barometric
pressure in themselves, however, also exert profound physical and physiological
effects on man. This section deals with increases and decreases in pressure.

Effects of Increases in Barometric Pressure

Increases in barometric pressure are encountered during descents through the
atmosphere (whether in space vehicles, aircraft, or elevators), during repres-
surization of a space vehicle following extravehicular activity, and during dives in
water. Local increases in pressure within the body, sometimes of considerable
magnitude, occur with coughing, sneezing, blowing the nose, and with
mechanical straining in the act of defecation. Exposure to high dynamic
pre_ures, as well as high rates of change of pressure, occur when the body is

suddenly subjected to windblast during ejection from aircraft. Still higher
pressures are encountered in the vicinity of an explosion.

Problems Due to Trapped Gas Within the Body. If the human body were
composed entirely of fluids, it would tolerate quite sudden changes in pressure
well. The body has several cavities, however, which normally contain gas. The
most important during increases in pressure are the ears, the paranasal sinuses,
and the lungs. When rates of compression are relatively slow (no more than 1 to
2 psi/second), the primary concern is the ear. Such rates of change can occur
during the dive of a fighter aircraft, during emergency recompression of an
altitude chamber, or during a diver's descent through water.

The Ear. The eardrum is a slightly flexible partition between the external
ear canal and the middle ear, a small air fdled cavity which communicates with
the environment only through the Eustachian tube, which opens into the back
of the nose (figure 1-6). Air leaves the middle ear passively during decompression
or ascent, but the mucous membrane lining the tube tends to prevent air from
reentering the Eustachian tube without voluntary muscular effort during
recompression.

Rapid recompressions from 28 000 feet to sea level, an increase of 10 psia,
were performed by Raeke and Freedman (1961). The rates of change are shown
in figure 1-7. None of the subjects sustained serious ear damage during the tests.
In three of 28 tests, however, it was necessary to initiate reascent of the chamber

to aid the subjects in equalizing pressure across the eardrum.

Table 1-3 summarizes the symptoms which result from a differential pressure
across the eardrum. Once high differentials exist, it is difficult or impossible to
force air into the middle ear voluntarily; avoidance of such differentials requires
frequent attention during rapid descents. Descents of less than 500 feet per
minute in the lower atmosphere (0.25 psia/minute) are usually tolerated by
inexperienced air passengers without difficulty, though modern pressurization
controllers arc usually operated at perhaps half this rate.
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Table 1-3

Type of Ear Complaints Encountered During

Change in Barometric Pressure

Ascent

(mm Hg)

0

+3-5

+10 - 15

+15 - 30

+30 plus

Complaint Descent

(mrn Hg)

No sensation; hearing is normal (level flight) 0

Feeling of fullness in ears - 3 - 5

More fullness, lessenedsound intensity -- 10 -- 15

Fullness, discomfort, tinnitus in ears: - 15 - 30

Ears usually "pop" as air leavesmiddle ear

Desire to clear ears; if this is done, symptoms
stop

Increasing pain, tinnitus, and dizziness - 30 - 60

Severe and radiating pain, dizziness, and nausea -- 60 -- 80

Voluntary clearing becomes difficult or
impossible - 100

Eardrum ruptures 200+

tModifiecl trom Adler, 1964)

NOTE: During ascent pressure in middle ear is higher than ambient pressure; during
descent, middle ear pressure is lower than ambient.

The likelihood of difficulty in "clearing the ears," and thus the likelihood of

barotitis, as ear trouble due to pressure change is called, is much greater in an

individual in whom the nasal mucous membranes are swollen, with resultant

constriction of the Eustachian tube orifice. This occurs with upper respiratory

infections such as the common cold, nasal allergies (hay fever), and the like.

Barotitis is the most common medical problem in the flying population, largely

because the conditions which cause it are so common in temperate climates.

The Sinuses. The paranasal sinuses are small, rigid air filled cavities in dae

skull. They communicate with the nose through small ducts. Unlike the

Eustachian tube, these ducts show no particular predisposition to blockage

during descent. Inflammation or swelling of the mucous membranes of the

sinuses oF nose, however, can cause partial or complete obstruction of these

ducts, and thus a differential pressure between the sinus and the environment

during changes of environmental pressure. Severe or incapacitating pain may

result, a condition known as barosinnsitis.

The Teeth. Occasionally, toothaches are reported during changes in

barometric pressure; this is called barodontalgia. The condition usually

occurs in teeth which have been filled, or in which cavities are present. The

explanation usually given is that a small air bubble is trapped below a
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restoration or in the decayed tooth substance. There is, however, evidence that

loose fillings may allow saliva to penetrate into the interior of these teeth during

changes of pressure (Restarski, quoted by Adler, 1964).

In summary, symptoms due to trapped gas are relatively common in altitude

chamber flights, where the changes in pressure are fairly large. It should be

noted, however, that the rate of pressure change with changes in altitude is

greatest near sea level. The three problems cited, therefore, commonly occur at

comparatively low altitudes and in diving. Barotitis, in particular, often occurs

below 5000 feet altitude. The incidence of such problems in a large number of

routine altitude indoctrination "flights" is shown in table 14.

Table 1-4

Incidence of Symptoms Due to Trapped Gas

in 51 580 Altitude Indoctrination Flights*

Severity (Grade)
Symptoms Total

I I! Ill IV

Ear pain 6650 2437 514 - 9601

Abdominal pain 2738 1187 322 12 4259

Sinus pain 1516 723 176 -- 2415

Toothache 285 142 118 - 545

TOTAL 11 189 4489 1130 12 16820

Numbers shown are rates per 100 000 man-flights.

(From data ot Berry, 1958)

The Lungs. Unlike the middle ear, sinuses, and teeth, the lung-chest

system is'capable of wide variations in volume. Its minimum, or residual, volume

in an adult male is commonly less than 1.5 liters; its maximum volume during

full inspiration may exceed 8liters. When barometric pressure increases,

therefore, the volume of gas in the lungs is free to contract. If the lungs are in

communication with the environment, air flows into them. During breath-

holding diving, however, the volume of air in the lungs contracts in accordance

with Boyle's law (allowing for the constant pressure of water vapor).

If the pressure ratio (ratio of final to initial pressure) is such as to compress

the air in the lungs to less than the residual volume of the system, a phenomenon

known commonly as "squeeze" occurs. The relative vacuum in the lungs causes

an increase in the blood volume in the chest. The lungs are pulled toward a

position of greater collapse than they can attain within the closed chest; the

result is pain and hemorrhage into the lung tissue and airways. This condition is

of practical importance only in underwater work, where large changes in
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pressure can occur rapidly. It is the hmiting factor in brcath-holding diving
(Schaefer et al., 1968). Squeeze can also occur in face masks used in diving if air
is not introduced into the mask during descent.

Problems Due to High Dynamic Pressures on the Body. During ejection or
manual escape from aircraft, a pilot is suddenly thrust from a cockpit in which
the air around him is moving at the same velocity he is into an environment in
which he is a projectile. The dynamic pressure Q exerted on the frontal surface
of his body (if he is facing forward) is a function of the air density and his
airspeed.

Pv2

2

Pressures of 1000 psf (7 psig) are not uncommon during high speed, low
altitude ejections. Figure 1-8 shows data collected during human exposures to
high dynamic pressure produced on an underwater centrifuge. The figure shows
injuries produced by the more severe exposures. Figure 1-9 shows the separation
forces developed on the arms and legs plotted against overall dynamic pressures
(Fryer, 1962). It should be noted that ejection in the rearward facing position
offers a substantial degree of protection against Q forces, by interposing the seat
between the subject and the source of pressure (see chapter 4, Sustained Linear
Acceleration).

Problems Due to Blast. A pressure wave, moving outward from the source of
an explosion, may act as do high dynamic pressures on people and objects in its
path. Many injuries caused by explosives are due to bodies being thrown about.
If a body is restrained, however, the overpressure will cause different
displacements of the compressible and incompressible portions of the body.
These overpressures, and tile following underpressures, involve very rapid
changes of pressure and thus of local force fields within the body. The chest, and
other air filled cavities, not being entirely elastic, cannot respond instanta-

neously. As a result, substantial shear forces are produced, with tearing of
tissues.

No data are available on fatal shock pressures in man. Figure 1-10 shows
50 percent lethal shock pressures for animals restrained in a shock tube, with an

estimate of the median lethal overpressure for man. Figure 1-11 shows calculated
curves of equal maximum strain in the human lung.

The pulse signature of sonic booms involves an almost instantaneous rise in
pressure, a ranrp decay, and a very rapid return to atulospheric pressure
following the passage of the wave (N wave). Sonic booms, however, rarely
involve peak pressures of more than 10 psf; pressure changes of this magnitude
are annoying, but not physically harmful, to humans. Most booms encountered

on the ground have peak pressures no higher than 1 to 2 psf.
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Effects of Decreases in Barometric Pressure

Decreases in barometric pressure occur when a diver ascends through water,
or when an aircraft or space vehicle ascends through the atmosphere. More
sudden decreases in pressure are encountered during depressurization of an
aircraft, space cabin or pressure suit, whether accidental or intentional.

Effect of Decompression on Trapped Gases.

The Ears, Sinuses, and Teeth. It was mentioned previously that the ear
rarely poses a problem during ascent because the structure of the Eustachian
tube allows air to escape from the middle ear passively. Pain in the sinuses is

more likely to occur if an obstruction to airflow exists. Tooth pain is probably
more common during ascent than descent.

The Stomach and Intestines. The human gut contains a variable amount
of gas, some of it swallowed with food and saliva, the rest arising from the
metabohc activity of gas-forming bacteria in the intestinal tract. The volume of
intestinal gas at sea level usually varies from about 0.05 to 0.10 liters. Ingestion
of gas-forming foods, such as baked beans, can, however, elevate this value by an
order of magnitude (Allen & Chinn, cited by Greenwald, Allen, & Bancroft,
1967). In one series of experiments, Greenwald and coworkers (1967) observed

increases in intestinal gas volume in subjects decompressed to high altitude
(figure 1-12), together with a roughly predictable increase in the incidence of
abdominal symptoms (figure 1-13). In these studies, however, subjects
attempted to retain intestinal gas throughout the exposures.

Normally, an increase in the volume of a gas bubble in the gut causes
stretching of the walls of the tube, which reflexly causes propulsive muscular
contraction of the walls, together with tbe feeling known as "cramps." These
propulsive contractions usually move rite gas to the lower bowel, from which it
is expelled. If the gas is in the stomach, it is expelled by belching. Such gas
bubbles have, however, been known to cause vomiting in divers during ascent.
Adler (1964) reported a lower incidence of symptoms due to intestinal gas
during routine altitude chamber flights.

Bryan (1961) has hypothesized that whereas relatively slow expansions of
intestinal gas leads to muscular contractions, cramps, and, usually, to expulsion
of gas, very rapid expansion during a rapid decompression may simply result in
extreme stretching of a relaxed gut wall, which, by reflex action, can cause
marked slowing of the heart and unconsciousness without warning. It may be
difficult to differentiate fainting due to this from that due to lack of oxygen or
to decompression sickness.

The Lungs. Although tbe air in the lungs and airways is normally in free
communication with the environment, the outward flow of air during a very rapid
decrease in barometric pressure is limited by aerodynamic considerations. The

physical damage that may occur in the lungs is generally considered to be
the critical limiting factor in human tolerance for very rapid
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decompressions. Haber and Clamann (1953) have defined pressure transients
during rapid decompression in terms of the two principal parameters. The

time characteristic, tc, has the general form:

V
tC-Ao C

Where V is the volume of the container being compressed, A is the effective
area of the orifice (A is always somewhat smaller than the geometric

orifice, for aerodynamic reasons), and C is the velocity of sound.
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tube was connected to pressure transducer; open circles represent experiments without tube.
X's show lower trunk volumes after decompression and return to original pressure. (Adapted
from Greenwald, Allen, & Bancroft, 1967)
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Figure 1-13. Incidence of symptoms of abdominal fullness or pain (circles) during
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pressures. Curves for initial gas volumes were derived from equation shown, in which
P1 = ambient ground level pressure, P2 = pressure at any point during ascent,
Pla=intraabdominal pressure (gauge), and Pw=water vapor pressure at body
temperature. (Adapted from Greenwald, Allen, & Bancroft, ]967)

The pressure factor P" is a function of the initial pressure Pi and the final

pressure Pf in the container (figure 1-14).

The total decompression time, or duration of the transient td is the

product of the time characteristic of the system te and the pressure
factor P':

td = tc • p'

If the time characteristic of the human lungs and airways is greater than

the time characteristic of the pressure suit or cabin in which a subject is

confined during a decompression, a transient differential pressure buildup

must occur within the lungs. This is illustrated diagrammatically in

figure 1-15.

Figure 1-16 shows experimental data demonstrating the differential

pressures observed during various decompressions. Points have been derived
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from the data of Luft and Bancroft (1956) and Luft, Bancroft, and Carter
(1953). Though Adams and Polak (1933) have shown that the mammalian

lung may rupture, when distended by a differential pressure above about
80mm Hg, tile subjects for whom data are shown in the figure were
apparently uninjured. Figure 1-17 shows the time characteristic as a function
of container volume V and effective orifice area A. The time characteristic

for one of tile subjects whose data are plotted in figure 1-16 is shown.
Since the volume of the lungs varies with respiration, it is obvious that the

time characteristic of the lungs may vary considerably, depending on the
phase of respiration during which a rapid decompression occurs. The time
characteristic increases to infinity during swallowing or straining, when the
airway is closed by the glottis. Severe lung injury or death can result from
a rapid decompression while the glottis is closed.
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Figure 1-14. Pres_re factor P°related to fractional pressure differential.
(Drawn from data of Haber & Clamann, 1953)

Experiments on dogs rapidly decompressed from 180 to less than
2 mm Hg (a fractional pressure differential of 0.99) in 1.0 or 0.2 seconds demon-

strated lung damage in all cases. Changes in the lungs after a 1 second decompres-
sion, however, were reversible in animals who stayed at the low pressure for short
periods of time; they became more severe and lasting as exposure time at 2 mm Hg
increased (figure 1-18). If total exposure time was less than 90 seconds, only mild
residual findings were observed. Faster decompressions produced more severe and

lasting damage (Dunn, 1965). Estimates of the probable danger zone for explosive
decompressions are shown in figure 1-19.
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Problems I)ue to Evolved Gas Within the Body. During prolonged exposure
to atmospheres that contain physiologically inert gases (nitrogen, hyttrog¢'n,
helium, argon, xenon, anti krypton), the body fluids (water and fat) contain
amounts of these gases in solution proportional to the partial pressure of the gas
in inspired air and the solubility of the gas in water an(t fat at body temperature.
if the body is subsequently exposed to a much lower barometric pressure, inert
gases tend to eome out of solution (the phenomenon of efferw_sccnce). Oxygen,
carhon dioxide, and water vapor diffuse rapidly into cvolw_d bulddcs of inert
gas. Such huld)les, if they fornl in tissues, may produce pain, especially around
the joints. Bubbles within fat cells may cause rupture of the cell walls, allowing
fat to enter the circulation. If l.dd)les form within blo.d w_ssels, they are carried
to the small terminal W_s_rls of the body (especially the hmgs) where they lodge,
cutting off the blood supply of the tissu,'s l._hind them. The symptoms caused
by evolved gas are known collectively as (tecon}pressi,)n sickness.

This (lisordcr is a potential probh'ni in diw_rs who ascend to the surface of
the water after minutes or hours at depth, in caisson workers who are
decompressed at the end of each working day, an(I in aviators or astronauts who
arc exposed to h)w barometric pressures after reaching equilibrimu at higher
pressures.

l)ecomprcssion Sickness. I)ecompression sickness in its various forlns is
much nii)re ,:(;,_no_mi-n dlvi.rs_ind caisson workers than in aviation personnel. In
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the latter context, it ha_ been reported at altitudes as low as 8000 hn_'t

(10.9 psia) in pih_ts who took off shortly after a peri<,d of scuba diving at
modest ,h,pths. 1'his problem and its prevention are discus_'d by Edcl and
coworkers (1969). I)ccompr,'ssion sickness has been n'ported at altitudes of
17 1)00 f,'et (7.64 psia) without previous underwater exposure; one fatality has
occurred after exposure to 18 000 feet (7.3 psia). I)espitc lhe_' isolated ea_s.
lhe disorder is uncomm,m helow about 30 000 feet (4.4 psia).

Thc symptoms of decompression sickne_ are rarely oh_:'r_:ed during the first
few minutes of exposure to low pressun_. Thereafter, the rate of appearance of
symptoms is a function of exposure time (figure 1-20). Several factors influence

the incidencc of decompression sickness at high altitude. Among the most
important is exercise (figure 1-21). Other factors which are strongly positiw'ly
correlated arc age and body weight (especially body fat mass) (figure 1-22).
There is ,widcnce that cold also increases the incidence of decompression
sickness.
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Figure 1-20. Rate of appearance of symploms of decompression sickness as a function of
exposure time under standard conditions, tlistogram represents ob_rved data; curve
overlying it is derived from a fornmla for bubble formation. (Redrawn from Nims, 1951,
cited by Fulton, 1951)

While joint pains (bends) are by far the most common manifestation of the
disorder, olher more serious symptoms arc also observed. The relative incidence
of these manifestations in two large series of ob_-rvations is shown in table: 1-5.

There is little doubt that Ihc cau_ of decompression sickness is bubbles of
gas evolw_d from solution in the body fluids. There are probably other related

factors, however, having to do with the circulation of blood to various regions of
the body. Useful general references which treat fln_ subject in detail arc Nims
(1951), Anderson (1965), and Fryer (1969).

Protection Against Dccomprcssion Sicknesg. Since the appearance of
decompression sicknc_][g}J__ed--wl_i]_ tTiequantilies of inert ga_cs in
the body in relation to their solubility in body fluids, one effective means of
decreasing the incidence of this disorder is Io affect partial elimination of these
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Figure 1-22. Proportional incidence of bends as a function of body weight in 44 181

trainees undergoing altitude chamber training during World War !I. (Data of Motley et al.,
summarized by Adler, 1964)
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inert gases prior to or during ascent. The quantity of inert gas in solution in the

human body at equilibrium is a function of the partial pressure of that gas in the

inspired air and the solubility of the gas in water and in fat. When the inert gas is

removed from the inspired gas mixture, the gas will be cleared from the body

(washed out) at a rate which depends on a number of factors. Among these are

the ventilation volume and the cardiac output, both of which are elevated during

exercise. Inert gas in the lungs is diluted and washed out very quickly. Blood

coming to the lungs is also cleared relatively rapidly. The clearance of gas from

the various tissues of thc body proceeds at a rate proportional to the blood flow

through the tissues, the solubility of the gas in water versus that in oil, and

tissue-blood vessel geometry.

Table 1-5

Incidence of Decompression Sickness in High Pressure

Environments and at High Altitude

Type
Incidence (%)

Caisson Workers* Altitude Workers**

Bends (alone or with
other symptoms) 33.34 2.4

CNS symptoms 2.98 0.03

Chokes 0.60 0.07

*Data of Keays, in Adler (1964) for 557 000 work shifts in 10 000
caissonworkers.

**Data of Berry (1958) for 51 580 man-exposures in altitude chamber
training flights. Number of subjects is not specified, but the number
of exposures per man was probably one in nearly all cases.

Nitrogen is very soluble in fat and less soluble in water. In contrast, helium is

only slightly soluble in body fluids. Nitrogen is cleared from the body rather

slowly, helium much more rapidly. Elimination of either gas is facilitated by

exercise. This is illustrated in figure 1-23.

As noted above, inert gas may be eliminated from the body by breathing air

free of that gas. Most studies of decompression sickness have utilized 100 percent

oxygen as the inspired gas during the nitrogen washout period. The effect of such

preoxygenation (actually preexposure denitrogenation) is illustrated in

figure 1-24. In all cases, after a control period at ground level, subjects were taken

to 38 000 feet breathing oxygen, at which altitude they performed five knee bends

every 3 minutes until the appearance of joint pains, presumably caused by

extravascular bubble formation. The protective effect of nitrogen washout is in

part a function of the duration of preoxygenation prior to exposure to altitude, but

protection is not entirely proportional to the extent to which body nitrogen stores

are depleted. Occasional cases of decompression sickness an; seen even after many

hours of preexposure denitrogenation.
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The washout rates of nitrogen and helium were illustrated in figure 1-23.

Since both of these gases (as well as neon) have been suggested as atmospheric

constituents for long-term space missions, it is well to mention that there are

appreciable differences between the two as regards the decompression sickness

which can occur when they are used. Figures 1-25 and 1-26 indicate that

following decompression from 7.0 to 3.5 psia, bends symptoms appeared earlier

with helium than with nitrogen, and required greater increases in pressure before

relief of symptoms occurred (Beard et al., 1967). This is similar to the

experience in diving, in which both gases have been used extensively. Even

though the blood and tissue fluids contain less helium than nitrogen after

saturation at any pressure, exposure to a lower pressure where bends can occur is

more likely to lead to symptoms, and the symptoms are likely to be more severe,

with helium. This is presumably because of helium's relative insolubility in body
fluids as compared with nitrogen.
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Figure 1-25. Time of onset of bends during standard work at 3.5 psia following prolonged
exposure to ltc-O 2 at 7 psia (24 cases of bends in 106 flights) or N2-O 2 at 7 psia (21 cases
of bends ill 119 flights). Subjects breathed 100% 0 2 while al 3.5 psia. (Taken from Beard et
•,d.,1967)

Treatment of Decomprcs_ioq SicknessL The treatment of decompression
sickness consists prlnlarily of measures desigued to decrea_ the size of bubbles

as much as possiblc and to hasten their dissolution. The first is accomplished by
recompression or overcompression (a bubble, once formed, will behave
according to Boyle% law as the pressure on it is increased; it will not disappear
upon return to the pressure from which the experiment began), l)issolution of
the bubbles is thought to be enhanced by treatment with 100 percent oxygen, if
the treatment is carried out at 3 atm absolute, or less, or with the highest safe
oxygen tension when higher total pressures are u_.'d (Mciver, 1966).
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Mclver and coworkers (1%7) have pointed out in this regard that by using
both maximum space cabin pressure and maximum differential suit pressure, it is
possible to provide a limited degree of ow',rcompression in 100 percent oxygen
for treatment of decompression sickness occurring during space flight. Their
studies indicate the shortcomings of this approach, but they also indicate that it
would bc at least partially effective.
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CHAPTER 2

ATMOSPHERE

by

Charles E. Billings, M.D.

The Ol_io State University

The composition and pre_ure of the gaseous environment in which man Jives
are critical in life processes. Chapter 1 described the effects of barometric
pressure per se. In this companion chapter, consideration is given to the
properties of elements and compounds which make up or may be added to a
gaseous environment suitable for the human. Both abundant and rare gases are
discussed, since virtually all the inorganic gases found in earth's atmospheric
envelope have been used or considered for use in life support systems. Oxygen is
considered first since it is the one atmospheric constituent whose presence is
absolutely necessary for survival. Carbon dioxide is considered next. Although
its presence in the environment is not necessary for human life, it, too, is
involved in human metabolism and is produced in considerable quantities by
man. The remainder of the chapter is devoted to nitrogen, the noble gases, and a
brief consideration of other gaseous compounds.

General Considerations

Nearly all the oxygen and carbon dioxide in the human body are present as
loosely-bound chemical compounds. These gases enter and leave the body

(mostly through the lungs) by diffusion in response to gradients between their
partial pressures in the body fluids and in alveolar gas. In the absence of a
pressure gradient either in the lungs or in the body tissues, no net flow of either
gas can occur. Carbon dioxide is an extremely diffusible gas in tissues made up
largely of water; oxygen is less easily diffused.

Figalre 2-I shows the partial pressures (tensions) of oxygen in the environ-
ment, in the airways during inspiration, in alveolar gas, in the arterial blood as it
leaves the lungs, and in the tissues, where the gas is transferred to its ultimate
utilization sites. Similarly, carbon dioxide tensions are shown in the tissues,
where carbon dioxide is produced by the combustion of foodstuffs, in the

Reviewed by Christian J. Lambertsen, M.D., University of Pennsylvania Medical Center.
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ve,ous blood which carries it to the lungs, and in the alveolar air a,d arterial
blood.
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Figure 2-1. Partial pressures of 02 (above) and CO 2 (below) in air at sea level and at various
points within the body. Drop in PO 2 at (I) is due to saturation of incoming air with water
vapor; at (2) to presence of CO2 in alveolar gas; at (3) to limitations in diffusing capacity
of 02; at (4) to extraction of 02 from arterial blood. The value shown for capillary blood is
a mean. Venous blood in man at rest has a PO 2 about half that of arterial blood. AH values
are approximate. CO 2 is 20 times as diffusible as 02. Venous blood is in virtual equilibrium
with tissue; arterial blood is in equilibrium with alveolar air.

Since all gases in the body are saturated with water vapor, the sum of partial

pressures of components of the gas mixture must always be less than the

ambient environmental pressure by roughly 47 mm Hg (the partial pressure of

water vapor at 37°C mean body temperature). To re-expre_ Dalton's law in

the_ terms,

PB - PH 2 = PO 2 + PCO 2 + PN 2 + PA + "'"

where PB is barometric pressure and PA, etc., the partial pressures of the

various gases.

The effect of saturation can be seen in figure 2-1: as air enters the upper airways,

the partial pressures of oxygen and nitrogen drop slightly due to the addition of

water vapor to the gas mixture.
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It is important to keep in mind that it is tire partialpressures, rather than the
concentrations, of the_ substances which govern their movement in the body.
As all example, the concentration of carbon dioxide in alveolar air at _a level is
roughly 5.3 percent (40 mm ttg partial pressure at a barometric pressure of
760mm fig). At a pressure altitude of 39 000 b_et (PB 147.5 mm llg), its

concentration at the same partial pressure is 27. I percent.

All gases present in thc atmosphere are also hmnd in solution in the body
fluids. The quantity of any gas in the body at equilibrium with its environment
is a function of the partial pre_ure of that gas in the lungs and its solubility in
water and fat. Roth (1967) provides a detailed discussion of this topic.

The human body utilizes oxygen in the combustion of fats, sugars, and
proteins in the process known as metabolism. The end products of its metabolic
processes arc carbon dioxide, water, and nitrogenous compounds, principally
amm<mia and urea. The molar ratio of carbon dioxide produced to oxygen
consumed varies from 0.7, whcn fat is burned, to 1.0 for sugar. Since other ga_s
in the environment are not known to participate ill metabolic reactions, they are
often called inert. There is some doubt whether this appellation is appropriate,
but it is commonly encountered in medical and biological literature. It should be
noted that this usc of the term refers only to the role of these gases within the
body. llydrogen, for instance, is said to be a physiologically inert gas, despite its
chemical reactivity.

Oxygen

The presence of molecular oxygen in the environment is absolutely essential
for survival. The stores of molecular oxygen in the human body are extremely
limited, amounting to little more than a liter of gas at _a level. The brain and
associated _nsory apparatus (especially the retina of the eye) have the highest
oxygen uptake per unit mass of an), system of the body; this _'stem amounts to
only 2 percent of the body's mass, yet u_'s 20 percent of the oxygen consumed
at rest. Since there is no means whereby the brain can store oxygen or glucose,
its only energy source., it is totally dependent on the continuous delivery of
adequately oxygenated arterial blood. Deprivation of blood, oxygen, or glucose
for more than a few _:conds leads to uncon_:iousness, conwdsions, and,
thereafter, death of nervous tissue. This is dramatically demonstrated in rapid

decompression to a virtual vacuum, de_:ribed in chapter 1.

Since file partial pressure of oxygen in alveolar air determines its partial
pressure in the blood, and, therefore, the quantity of the clement carried by
hemoglobin, this variable has bccn studied in some detail. Blockley and llanifan

(1961), in an extensiw: review of hypoxia foUowing rapid decompressions, have
estimated that acute impairment of brain function occurs within about
13 scconds whenever the alveolar oxygen tension drops below a eritical level.
Tile _verity of impairment and the extent of change in brain electrical activity
are proportional to the integral of oxygen tension depression below 30 mm llg
with respect to time (Ernsting, 1961 b, i 969). This is illustrated in figure 2-2.
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Figure 2 2. Top: time course of alveolar 0 2 tension when subject breathing air at 8000 ft is
rapidly decompressed to 44 000 ft. 0 2 was provided either 2 sec or 8 see after Ihe onset of
decompression. 0 2 desaturation integrals for the two conditions are crosshatched. Bottom:

performance decrements resulting from decompression. (Redrawn from data of Ernsting,
1969)

When no oxygen is available for metabolism, as following decompression to a

vacuum, the term anoxia is used. Anoxia always results in near-immediate

unconsciousness, convulsions, and paralysis. If prolonged for more than 90 to

180 _conds, anoxia is almost invariably fatal. The condition caused by a relative

laek of oxygen in the body is called hypoxia. Depending on its severity, the

effects of hypoxia can range front symptoms as severe as those of anoxia to very

subtle effects, detcctabh; only by searching examination of the highest functions

of the central nervous system. This is illustrated in figure 2-3. As arterial oxygen

tension falls, progressive central nervous system impairment occurs. This is

indicaled on the chart by zones of increasing density. These changes occur in

resting subjects who are not fatigued or otherwise stres:_d. The oxygen

saturation of the arterial blood is shown as a function of oxygen tension (the

oxyhemoglobin dissociation curve). A range of saturations is sbown because

temperature and acidity also influence the saturation values.

The lowest barometric pres.smc at which any sort of purpo_ful activity can

be carried on was discussed in chapter 1. It was defined as a pressure sufficient

to permit a reasonable partial pressure of oxygen in the alveolar air, with regard
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to the obligatory water vapor pressure at that site of about 47 mm Hg, and the

inevitability of a certain partial pressure of carbon dioxide, which is discussed

below. The optimal carbon dioxide tension is about 40 mm Hg. At barometric

pressures greater than about 87 mm llg (an altitude equivalent of 50 000 feet),

thcn, at least some oxygen can be made available. Extensive studies of hypoxia

at altitudes between 18 000 feet (PB 380 mm llg) and 50 000 feet have been

related primarily to maintenance of consciousncss in acutely exposed subjects. It

has been found that healthy individuals at rest rarely lose conscioumess below

about 18 000 feet. Above that altitude, as indicated in figure 2-3, thc duration

of expos, re before consciousness is lost is related to altita]de and thus to the

severity of the hypoxia produced.

APPROXIMATE ALTITUDE BREATHING AIR

(THOUSANDS OF FEET)

22 18 15 12 9 6 3

I-1- / " / : !. 7srlSG,_y

..]d ,o o-, "'/ l

<_ 20]_" ;_ _ .,_./_,o--=/ '_._,,;_"_-/ v. / _<=

0 10 20 30 40 50 60 70 80 90

ARTERIAL OXYGEN TENSION (ram Hg)

Figure 2-3. O 2 saturalionin arterial blood as a function of alveolar O 2 tension in relation to
altitude and to some reported symptoms of hypoxia. (Sources: USAF Flight Surgeon's
Manual, 1968; Boothby, 1954; from Human factors in air transportation, McFarland.
Copyright 1953 by McGraw-tlill Book Company. Used by pcrmission of McGraw.ttill Book
Company)

Sincc it is often difficult to assess exactly whtm total eonseiousncss is lost,

the concept of "time of useful con_iousness" has evolved. Useful consciousness,

as it is usually evaluated, represents the ability of a test subject to continue

performing some purposefnl act. The time of useful con_iousm;ss during an

acute exposure to an hypoxie environment represents, therefore, an approxima-

tion of the time during which a subject may be expected to be sufficiently alert

to ascertain the cause of the hypoxia and take eff_etive action to protect him,_lf
or remove himself from the environment.

The time of u_'ful consciousness varies according to the way in which the

hypoxic euvironme, nt is produced and a_cording to the circumstances prevailing

before the hypoxic exposure. Ira subject breathing oxygen at "altitude remow,s
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his oxygen mask or becomes disconnected from his oxygen supply, the partial

pressure of oxygen in the lungs drops with each succeeding breath of air, the

decrease being dependent oll the lung volume, the dilution of that volume by

each breath's volume, and the altitude. In contrast, if a subject breathing air at

low altitude is suddenly decompressed, the partial pressure of oxygen in his

lungs drops immediately to a level which is dependent only on the final altitude.

Venous blood is immediately exposed to low oxygen tension in the alveoli; the

effects of hypoxia become evident as soon as inadequately oxygenated blood

reaches the brain. Times of useful consciousness are much "shorter than following

oxygen mask removal at altitude. These times are shown in figure 2-4 for rapid

decompressions to various altitudes of subjects breathing either air or oxygen

prior to decompression.

uJ
c_

I-

C-
..J

<

_J

<

Z

ul.

55 000

50 000

45000 ---

40000

35 000--,

30 000

25 000

20 30 40 50 60 70 80 90 100

TIME OF USEFUL CONSCIOUSNESS (sec)

Figure 2-4. Minimum and average duration of effective consciousness in subjects following
rapid decompression breathing air (lower curve) and 0 2 (upper curve). At altitudes above
20 000 to 23 000 ft, unacclimatized subjects breathing air lose. consciou_ess after a variable
period of time. (Source: Blockley & tlanifan, 1961)

The appropriate protective action following a decompression in an aircraft is

to don an oxygen mask. The ranges of times required to perform this action are

shown in figure 2-5 for airline pilots studied in flight and for naive subjects

studied in an altitude chamber. The rate of dcc(mlpression h)r the airline pilots

was 500 feet per seeond (tlps) to a final allitude of 30 000 fe_q. The pilots had

had traininl._ in d,'comprcssiou emergency procedures within a year prior to the

,,xt,o_-ur,'s (lI,'nnctl, Iq61). In /In' naive subj,'ct zro.p, 60 y-,,n_ mah.s w,'re

_'Xl.)Xc,I I_ lt)-_..r_,nd drromprcs_.sons from t{()IiI) to 3()0()l)tk'cl (Ihffllcr &

,,,_,,rkt'r_ I_)_i}l), aml -It} mah! .!_d female stll,.IC, t. _t'r," ,'.:I.,,.,_l I,_ Slit}0- U_

L!,.i !_Iit't''''i tl,',,*mpn'.._imt.. ((hi.ohn & cowork, _- lU_U) ..,.,,, ,.i m ,_:,iv,.
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Figure 2-5. Mask-donning behavior related to time of useful consciousness. Subjects
compri_;d 42 airline pilots (----) and tO0 naive subjects (--). Exponential curve (see
figure 2-4) repre_'nts average times of useful consciousness for subjects breathing air prior
to decompression. (Data of Bennett, 1961; Hoffler & coworkers, 1968; Chisolm &
coworkers, 1969, calculated by Blockley & Hanifan, 1961 )

Any diluent gas which is pre_'nt in a breathing system will influence the

immediate usefulness of that system following a rapid dccompression. This is
silown in figure 2-6, which demonstratcs the effect of oxygen hose volumc on
trachcal (upper airway) oxygcn tension following rapid (1 second and 9 second)

decon|pressions from 8000 to 40 000 feet. In the case illustrated a diluter-

demand regulator deliw'red 38 percent oxygen at 8000 feet and l(}0percent

oxygen at 40 000 feet. Pure oxygeu is delayed in reaching tile subject's lungs
because of the volume of air.oxygen mixture in the h(,_ at the time of

dccompression.

Ew'n the very _were decompres4ons discussed in chapter ! may not produce

irreversible brain damage, th)wew'r, the degree of brain dysfunction acecptabh_

for pih)ts is considcral4y less than for pas_mgcrs. AI._), variations in individual

toh'raucc for hyp()xia make it risky tt_ allow more than an unavoidable minimum

of s*'_,'r,' h_poxia to occur. Ilecenl ..tudie.s r+4aled h) the deveh>i)ment of a

SUl),'r:-_,.ic h'an.-i)orl aircraft Ilavc r,-.ulh'd in the elucidation of criteria for "safe

[.'ri,,J,; of u.c().scious.(,::_" f,,r pa.._'.g,:rs itl such aircraft. It re.st 1."

r,,c(,t,i_i/,'J,]l,,_,._, v _hat i,, rs_m. with impair,'d hrain circulation, the ,4derly,

' ' ' : t__ i; :' I : i .... * Ih r;_' 'h :''_' U' f' _''" S :I :m,! 2-I T._kin,s i.l. a,'c_.nnl

1% ;_,;_ (.)
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the behavioral variation shown in figure 2-5, it would appear essential to attempt
to prevent the untoward hypoxic effects of decompression.
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Figure 2-6. Effect of 0 2 hose volume on tracheal 0 2 tension following rapid decompres-
sion (Drawn from data of Ernstirrg, 1961 a; rcprintcd by permission of Her Britannic

Majesty's Stationery Office)

At very high altitudes, even immediate mask donning will not prevent mental
impairment following decompression of a subject who breathed air before the
event. Ernsting, Mcllardy, and Roxburgh (1960) and Blockley and llanifan
(1961) have estimated the concentrations of oxygen which must be breathed
prior to decompression if such impairment is to be avoided. These are shown in
figure 2-7. In a cabin pressurized to 8000 feet (565 mm Hg), it is estimated that
the critical alveolar oxygen partial pressure is 33 mm ttg. This calculation
assumes that lOOpercent oxygen is immediatcly supplied (under positive
pressure at final altitudes above 45 000 feet). It should be noted in this context
that studies by Barron (1965) of decompressions to 45 000 fcet suggest that no
combination of mmleuvers aside from prcbreathiug oxygen-enriched air will
prevent at least _me transient hypoxic effects at that altitude. This is also
suggested in fi_lre 24.

Examination of the oxygen saturation eurw_s in figalre 2-3 indicates thai near-
normal blood oxygen lew_Is, and thus essentially normal function, can be main-

rained with alveolar oxygen tensions as low as 50 to 60 mm ttg. It follows from this
that a barometric pressun_ of 140 to 150 mm Ilg will be sufficient to allow proper
alveolar oxygen and carbon dioxide tensions to be maintained if no other gases are
pre_mt in the respiratory tract. These barometric pressures are encountered at
39 000 to 40 000 fi_et. Iluman subjects, however, are, capable of t_r_athing against a
limited degree of continuous positive pressure, although this is not accomplished
without a physiological penalty (Ernsling, 1965, 1966). The elevation of total pres-

sure within the chest causes a diminution in the volume of blood returning to the
heart and thus a decrea,_ in the heart's output.
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Figure 2-7. 02 enrichment of air in pressurized cabin estimated to be required to prevent
critical fall in alveolar 02 tension during rapid decompression to various final altitudes.
( Source: Blockley & Hanifan, 1961 )

Despite the limitations of the technique, it is possible to maintain total lung
pressure, and therefore alveolar oxygen tension, at minimal adequate levels up to
altitudes of roughly 50 0OO fi_et by" provision of continuous positive pressure
oxygen. At this altitude (PB 87 mm |}g), a pressure of 60 mm ltg is required to

maintain a PO_ in the luJtgs of 60 mm fig, It has been found, howcw;r, that a
continuous positive pressure of 30 mm ttg is about the maximum which can be
tolerated by trained subjects for even a "short period of time without the
application of counterpressure on the chest (which increases stagnation of blood
in the "abdomen and the extremities). The u_ of positive pressure at thc_:
altitudes, therefore, is clearly a _,)rt-tcrm cmcrgency measure. It is for this
reason that overall pressure garments become mandato_' at altitudes much
abow" 50 000 feet.

At altitu&_s below abo, t 20 000 feet (PB 350 mm IIg), human sun'iv',d auld
function at some mcaningful level is possible without added oxygen. This is pos-
sible because higher life forms have a considerable ability to adapt them_lves, or
become acclimatized, to hypoxia. Consideration of this topic is beyond the scope
of this chapter. It should be said, however, that people vary" considerably in their

tolerance for chronic, or long-term, hypoxia, as they do for acute exposures. Some
persons will bccomc acutely ill after _w_,ral hours at ahitudes as low as 12 000 fcct

(PB 480 mm llg), whereas others encounter less difficulty at altitudes as high as
18 000 feet (PB 380 mm llg).
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Virtuallyeveryoncwill developsomesymptomsof acutealtitudesickness
(shortnessof breath,headaches,irisomnia,impairedabilityto concentrateor
performcomplextasks,andsometimesnauseaandvomiting)afterexposureto
airataltitudesof 11000to 12000feetforperiodslongerthan8to 24hours.In
mostpeople,thesesymptomsdeclinein frequencyandseverityoveraperiodof
2 to 5days(figure2-8).Abilityto performmuscularworkismoderatelyor
severelyimpaired, and this imt_airment persists for long periods of time
(figure 2-9).
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Figure 2 8. Proportion of subjects reporting symptoms of acute altitude sickness (headache,
nausea, lightheadedncss, fatigue, shortness of breath, or insomnia) during each of 20 days of
continuous exposure at an elevation of 12 500 ft (3800 m, 475 mm Hg). (After Billings &
coworkers, 1969; reprinted by permission of the Archives of Environmental Health, 1969,
18, 987-995)

llypoxic symptoms arc less pronounced at lower altitudes or for shorter
periods of exposure. They exist, nonetheless, and may be important under
certain circumstances (figure 2-3). Visual thresholds have been shown to increase

at altitudes above 4000 feet, probably because of the very high oxygen
requirements of the light-sensing cells in the eye. Impairment of ability to learn
new complex tasks has been demonstrated at 8000 feet (PB 565 mm Hg)
(Ledwith & Denison, 1964); impairment of recent memory, judgment and
ability to perform complex calculations arc seen at altitudes in the neighborhood
of I0 000 feet (PB 520 mm tlg) (McFarland, 1953).

Man at sea iew.'l is rarely exposed to partial pressures of oxygen greater than
170 mm llg. Oxygen has been used as a therapeutic agent almost since its
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discovery, however, and it was thought for a considerable time that gas mixtures

containing several times the usual sea level concentration of 20.9 percent were

entirely without harmful effects. It is now known that this is not the case,

although it is not certain that 160 mm ltg is the optimal partial pressure under

all circumstances.
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Figure 2-9. Impairment of capacity for muscular work by acute and chronic hypoxia. (Data
from various sources, collated by CerreteUi, 1967, whose graph has been adapted for use
here)

Too high a partial pressure of oxygen is not well tolerated by man, though

our species is more tolerant than many species of experimental animals. The

toxicity of oxygen at above-normal partial pressures is a time-dependent

function whose characteristics are shown in figure 2-10. At pressures above

1 arm, central nervous system signs predominate (nausea, dizziness, faintness,

and convulsions). At around 1 arm, respiratory symptoms are common. These

symptoms are seen with longer periods of exposure at pressures as low as

200mmttg, although they are uncommon below about 250mm Hg. At

pressures of oxygen only slightly higher (253 mm Hg or 5 psia) than normal sea

level Po2 changes in red blood cell fragility and cell wall permeability have been

reported (Berry, 1967). Whether oxygen per se is toxic at pressures in the range

of 180 to 250 mm ttg, or whether the absence of a diluent gas is responsible for

toxic manifestations, is not certain.

At higher oxygen tensions (250 to 750 mm IIg), signs of lung irritation are

noticed after 12 to 72 hours of exposure. It is also known that oxygen tensions

in this range can cause blindness in newborn and premature infants (the
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conditioncalledrctrolentalfibroplasia).Onthe other hand, many thousands of

adult patients have been given oxygen in this pressure range for relatively long

periods of time without apparent harm. While some patients have had diffusion

defects such that elevated alveolar oxygen tensions mcrely maintained normal

blood gas tensions, others have not. Ernsting (1961a) has demonstrated

si_lificant defects in diffusing capacity in man after 3 hours of exposure to
99 percent oxygen at _a level.
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Figure 2-10. Approximate time of appearance of signs and symptoms of 02 toxicity as a
function of PO 2. (Adapted from Welch & coworkers, 1963; Bean, 1945; Roth, 1964)

During exercise, supplemental oxygen causes a perceptible decrease in

ventilation volume (Nielsen & Ilansen, 1937); this may be considered a

beneficial effect. Many pilots have described alleviation of fatigue when they

placed themselves on supplemental oxygen for a &ort time before landing,

especially at night. This is difficult to quantitate or even to verify, but the effect

may be a real one (Roth, 1964).

Oxygen at partial pressures greater than 760 mm Hg (14.7 psia, 1.0 atm) has

been used sporadically as a therapeutic agent. Only in recent years, however,

have controlled studies been performed to evaluate its effects. The usefulness of

oxygen in the treatment of carbon monoxide poisoning is beyond question; it is

helpful in the treatment of gas gangrene, caused by a bacterium which cannot

survive in the presence of high oxygen tensions. Its usefulness in treating tetanus

(lockjaw), caused by a similar organism, is less certain, ttigh oxygen tensions

potentiate the effects of ionizing radiation; hyperbaric oxygen in combination

with radiation therapy is used in treating certain advanced cancers. Its beneficial
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effeets in most of tile other conditions in which it has been tried are

questionable (Bocrema, 1964).

Pure oxygen is u_d by Navy divers breathing from closed-circuit oxygen
equipment when they wish to avoid leaving a trail of expired gas bubbles on the
surface. Since oxygen at pres,_ures greater than about 2 atm absolute can cause
convulsions, however, the depths attd times at which divers can u_ such
equipment are very limited. As with hypoxia, individual susceptibility to
hyperoxia varies widely. Performing physical work while breathing oxygen at
high pre,_ures decreases tolerance markedly, The risk of oxygen convulsions
appears to be minimal in resting men exposed in a dry chamber to as much as
3.0 arm oxygen for I hour; oxygen pressures higher than this increase the risk
considerably (Bennett, 1969). The risk is substantially greater under water in
working subjects, especially if the water is cold. Figalre 2-11 shows the limits
currently impo_',d by the U.S. Navy (1971)).
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Figure 2-11. Navy published limits for divcrs using 0 2 under water. Symptoms restdting
from excessive exposure are shown. Limits _ssume moderate activity and minimal CO 2
tensions in the diver's breathing apparatus. (Redrawn from U.S. Navy Diving Manual, 1970)

Carbon Dioxide

Carbon dioxide is neither a neces, ary nor a desirable constitucnt of man's gas-
eous environment. Though matt is normally exposed to low concentrations of this
gas at _a level (on the order of 0.03 percent), it is quite certain that he can live
indefinitely in an atmosphere entirely free of the gas, for he produces and excretes
more than enough to meet his phydological needs.
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Most of the 400 to 800 liters (15 to 30 ft3) of carbon dioxide produced by an
active man each day is excreted ti,rollgil th,, hlugs as gaseous carbon dioxide; tile
remainder appears in tile urine as bicarbollate ion, combined witil i_asic elcnlents,
primarily sodium. Carbon dioxide is very s(,luble in water, with which it combines

to form a weakly dissociated acid. Tile carbonic acid -bicarbonate buffer systeln is
a major factor in the maintenance of the body's acid-base balance.

At and near sea level, nlan's brcattling is controlled primarily hy tt._ ;,ntouut
of carbon dioxide he produces. Rcspiratory centers in the brain arc exquisitely
_nsitive to very small changes in carbon dioxide tension and hydrogen i,m
concentration in tile arterial blood. (iarbtm dioxide added to inspired air is a
powerfl, I respiratory stimulant; in higher doses, it stimulates heart rate as well
(figure 2-12). Increases in arterial blood earhon dioxide tension also cause
marked relaxation of tile blood vessels in the brain; brain blood t]ow increases

considerably. Figure 2-13 indicates the effects of both acute and prolonged
expos,rcs it, carbon dioxide-air luixturcs at 1 arm. in ac.ute exposures, the
houndary between "no effect" and "distracting discomfort" is narrow. In the
area marked Zone 11 in the graph at the left side of lib,nile 2-13, symptoms
!,,chide small thrcshohl bearing losses and a perceptible doubling in depth of
respiration, hi Zone I11, mental depression, headache, dizziness, nausea "air
hunger," and decreased visuJ discrimination are experienced. Zone IV
represe,tts marked deterioration leading to dizziness and stupor, with inability to

take steps for self-preservation. The final statc is unconsciousness. The bar graph
at the right of the figure shows that for prolonged exposures of 40 days,
concentrations of carbon dioxide in air less tllan 0.5 percent (Zone A) cause no

known biochemical or other effect; concentrations between 0.5 and 3.0 percent
(Zone D) cause adaptive biochemical changes which may be considered a mild
physiological strain; and concentrations above 3.0 percent (Zone C) cause
pathoh)gical changes in basic physiological functions.

At partial pressures above about 60 mlll fig, tile gas is a potent narcotic; it de-
presses brain function, elevates convulsion tllresholds and causes respirator" de-
pression. Very high partial pressun, s of this metabolite are fatal, probably because
of the profoundly acidic blood and body fluids which are produced (Marshall,
1961).

Since man produces carbon continually at rat_ which vary from 0.2 to as
high as 5 liters per minute (0.007 to 0.18 cubic feet per minute), this gas must

IM_ remow'd promptly from a closed environment, either by venting and
replacement (as is done in pressurized aircraft) or by chemical or physical
scrubbing (the methods used in spacecraft and certain submarines). Thc changes
in g'as composition in a scaled space containing a man are illustrated in
figure 2-14. In tile top part of this figure, the long straight lille indicates oxygen
depletion and carbon dioxide accumulation when no corrcctiw" measures are

used. At 3.1 hours, when P()9 has decreased to 108 mnl ilgand t'Co,_ has
increased t() 30 mm tlg (4 p(_ccnt), respiratory volume has doubled. (:urvcs

emanating from this point indicate effects of adding pure oxygen, ab_rbing
carbon dioxide, and ventilating with air and clearing carbon dioxide with
absorber handling (12 liters of air/min/man). The dotted curve shows effects of
using the _me carbon dioxide absorber from the outset.
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The bottom part of figure 2-14 presents a series of lines indicating
uncontrolled change for several cabin volumes. (ltere too, RQ = 0.8 and oxygen
consumption rate equals300 cm2/min.) The dots on the lines indicate rite time in
hours to reach a critical oxygen level of 100 mm ttg. Lower values for carbon
dioxide for smaller free volumes, when oxygen is 100mm tlg, result from
relatively greater tissue storage of carbon dioxide. This effect is ies_ned in
longer exposures in larger free volumes.

A number of studies have _lown that psyehomolor performance is impaired by
moderate increases in arterial carbon dioxide tension. This is indicated in

figure 2-15. In tiffs figure, the zones abow' the line marked "normal "alveolar CO2"
indicate increasing hypercapnea, limited by a zone of carbon dioxide narcosis. Be-
low lifts dashed line, marked as zones of increasing hypocapnea, are lower levels of
alveolar carbon dioxide, which commonly result from excessive respiratory ventila-

tion. Low h,vels of "alveolar t'0 2 (severe hypoxia and hypoxie collapse) combine
with hyper- and hypoeapnea to afflict performance as indicated.
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WI,ile a carbon dioxide tension of 22 mm tlg in the inspired air has been

considered to be tire maximum safe (though not inuocuous)level for exposures

lasting up to a month, comparatively few such tests have been conducted. It is

not certain thai such levels will be safi_ for flJe much longer scaled cabin

exposures now being contemplated; thi_ is an area which needs further re,arch.

Recent data suggest that tensions of I I mm Itg (I.5 percent carbon dioxide at

750 mm Ilg barometric pressure) for 42 days induce physiological changes which

may b,' harmful under conditions of prolonged weightlessness (Ellingson, 1970).

It is also po_il)lc for bh)od carbon dioxide tensions to reach dangerously low
values, usually as the resuh of ventilation in cxec._< of need. llyperventilation, as

it is calh'd, results in a dccr,'a_ in alveolar carbon dioxide tension. The increased

pressure gradient between alveolar air and the incoming venous blood leads to

the nmJoval from the blood of more c_,rbon dioxide than is being produced in
the tissues.

Otis (I946), Balkc ([956), and others have shown that moderate, induced

hyperventilation is associated with impaired performance of psychomotor tasks

(figure 2-15). Balke (1957) has also d,'mo,straled moderate to severe hypcr-

ventilation in pilots during transition to complex jet fighter aircraft. Aircraft

accidents arc thought to have resulted from _werc hypcrvcutilation, which not

infrequently accompanies fear or panic.
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Severe ilypervcntilation results in lighthcadedness, feelings of numbness,
tingling, markedly impaired performance, involuntary tctanic contractions of
the -skeletal muscles and, uhimately, in impaired consciousness. Un-
fortunately, the person who begins to llypcrvcntilate as the resuh of fear

tends to become more and more frightened by the._ bizarre symptoms; his
h:ar, in turn, may increase his hypervcntilation. It may also be difficult for
even an experienced person to diffcrcntiate the symptoms of hyper-
ventilation from those of hypoxia (Wayne, 1958), and it should be noted
that moderate degrees of hypoxia in thcm._:lves provoke a degree of
hypcrventilation.

The Inert Gases

In this section are discussed the various gases generally considered to be
physiologically inert: nitrogen, helium, neon, argon, krypton, and xenon. An
introduction which describes their common attributes is followed by brief
discussions of their individual characteristics. Table 2-1 summarizes certain

important physical and biochemical properties of these elements.

Metabolic Role of Inert Gases

Perhaps the first serious doubts as to whether this group of elements
was truly inert were cast by Cook, who pcrformcd studies on a variety of
species to cvaluate possible effects of helium. These arc: summarized in
reviews by Cook and Leon (1959) and by Cook (1961). While massy of the

rcsuhs reported in carly studies could bc accounted for by the high thermal
conductivity of helium, producing high rates of heat loss in the organisms
under study, others could not. It has be_'n found that both oxidative and

nonoxidative mctabolic reactions an: affccted, though the cxact biochemical
sites of the effects have not been determined.

Schrciner and coworkcrs (1962) i)avc also prcscnted data suggesting that
growth rates of certain molds arc affected prcdietably by the "in,'rt" gases
in which they are cultured. Figulre 2-16 summarizes their findings.

AIIcn (1963) attempted Io grow chicken embD:os in the ahscncc ol
nitrogen, to determine whether nitrogen gas was requir_'d for the develop-
mcnt of mammals. He found profound retardation of _mbD_onic develop-
mcnt in fertile eggs incubated in a number of cnvironn._nts deficient in
nitrogen (figure 2-17). Thc_ results have been confirmed in part by others,
tt,ough some workers fi:cl ttwy can hc explained by factors other than an
absence of nitrogen. The question remains an open one at this time. The
few human studies which have bccn performed thus far have shown no

effccts which can be attribnt,_d to a metabolic cffl_ct of these gases, though
the experiments have been of short duration.
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Figure 2-16. Relation of growth rates of Neurospora crassa molds to molecular weights

of gases of the helium group in the environment. Significant effects (P<0.01) were

associated with different inert gases. (Schreiner, 1962; copyright 1962 by the American
Association for the Advancement of Science)
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from data of Allen, 1963)
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Toxic Effects of Inert Gases

It has been known for many years that divers breathing air at
etmsiderabJe depths were pronc to a disorder commonly called "raptures of

the dcep." The symptoms (elation, euphoria, deficient judgment, impaired
motor coordination, diminished perception of pain and discomfi)rt) are
rather similar to tho_ cau_'d by alcohol. They have l_:en variously
attributed to high oxygen tensions, to carbon dioxide retention caused by
inadequate ventilation of the lungs, and to nitrogen. It _'ems very probable
that nitrogen is in fact the causative agent, though carbon dioxide retention
may occur during work at depth and this gas is a potent narcotic, as noted
earlier (Roth, 1967).

Later studies have indicated that xenon, krypton , argon, and, probably,
helium all have narcotic potential in man and other mammals. Xenon at

partial pressures of 0.Satm (600mm Ilg, 11.75 psia) has been uscd as an
anesthetic agent in human surgery (Cnllen, 1951). Argon has been shown to
be a potent narcotic at a tension of 3.2atm (1950mmllg, 47psia)
(Behnke, 1939). Though the nitrogen in air exerts minor effects on human
performance at barometric pressures as low as 2.5 arm absolute, the usual
threshold is considered to be 4atm, and ,,_rious sTmptoms are not

ordinarily seen at pressures less than 7 arm (200-foot depth in ,_:a water).

Recent studies by Bennett and Elliott (1969) ilave suggested that

although the narcotic potential of helium is much less than that of any
other inert gas, it does Itaw_ some degree of potency at pressures in the
range of 25 arm absolute. It thus appears that all of the inert gases are
capable of exerting narcotic effects, though the mechanisms are not well
understood. These narcotic effects, together with possible metabolic effects,
may well be limiting factors in man's ability to tolerate long exposures at
very high barometric pressures.

Role of the Inert Gases in Decompression Sickness

It was indicated in chapter 1 that the incidence of decompn_,ssion
sickness was materially reduced if inert gases, wbether nitrogen, helium, or
others, were washed out of the body prior to ascent. While this is often
possible prior to ascent in aviation and space operations, the toxicity of
oxygen prevents its u_ prior to ascent from depths greater than about
66 feet of water (3atm ah_Aute). Detailed discu_ion of the role of inert
gases in decompression ,sickness is Iwyoud the scope of this chapter: ,_w_ral
excellent reviews are available (Roth, 1967; Bennett & Eiliott, 1969).

Considcrablc research is in progress to define morc clearly the limits of

decompression tolerance in man aftcr saturation exposures to various
environments. This work will find applications both in space operations in
which multiple-gas environments are tt_d and in the brag-term underwater
habitability studies being carried out by ._vcral nations. The three gases
which have been _riously considered as diluents for oxygcn in such
applications are helium, nitrogen, and neon. With respect to deeompression
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sickne_,_, helium Inas certain thc,_n'lic;d adsavflag,'s ov<'r nilr,_g,!rl, t+',mpirieal
data, however, arc far from clear as Io its praclical advantages, parlicularly

for space operations. In <living, the l,'obh'm of nitrogcrl narcosis forces its

replacement at d,'pths below 200 to 251)fin+l. t_rclitnina_ ' studies suggest

that neon may have advanlages over either nitrogen or heliuvn; confirmati<m
of this awaits further re_mreh.

Ilydrogen has bee, u_'d in ore' s,.rics ,_f dives at coIisid,'rabh' depths;

while it is not exph_sive whcu _,xygtm concewlrali(ms are h'ss than

4 percent tlwor,qical c<msid<'rutiows ._uggcsl lhat it may I.: no better than

helium or perhaps even nilrog,m wilh respecl Io <lccomprcssi<m sickness.

Space-Occupying Role of Inert Gases

If a dosed pocket of gas occurs or is created in Ihe hmnan body, the

oxygen and carbon dioxide in the pocket arc absorbed relatively rapidly;

inert gases arc also absorbed, I,,t much mot,' slowly because they are less

s<dublc in blood (Maklcy & Billings, 1968). This has important i,nplications

_dwn pure oxygen is brcath,'d. I)uring dc_:<'nt in an airc,'aft, it is necessary

Io venlilale the middle ear to rclicvt: pn_ssure diffenmtials across the

eardrum (_e chapter I). If the bwalhing gas is oxygen, the middle car

contains a high concentration of that gas after deseenl. 'Hw rapid absorp-

tion of oxygen over the next _w_ral hours can lead to symptoms identical

to those which occur when a pr<._,mrc differential arises during descent. 'Finis

condition, called "delayed" or oxygen barotitis, is a c<,nmon problem in

military pilots.

It Itas also been fou,ld thai during high-(; maneuvers in fighter aircraft,

snudl segments of lhe hmgs can act like closed pockets of trapped gas. l[

oxygen and carbon dioxide are the only gases pre_'nt in the_ _'gments,

tt,ey are absorbed rapidly, causing collap_ of small portions of the hmg,

and often <:hest pain and coughing. This condition, oxygen ateleetasis, was

descrilwd by l'_rnsling (1960)and has been studied in detail by (,rcen an<l

Burgess (1962).

Prewmtion of both the_ conditiot,s is simlde under conditions whie.h

permit the additio,, of an ivwrl gas to the br,_alhing mixture. The inert gas

occupies space, and, si,,ce it is absorbed slowly, eollap_" is less likel_ to

OCcIIr.

Other Considerations

If man ,nust pcrfor,n hard physical work, with attendant high ventilation

rates, tile density of the gas mixture will be important, particularly at high

barometric pressures. The usefulnen_ of helium in this regard has already been

discussed. Another factor related to the physical characteristics of the breathing

gas, however, is speech intelligibility. This is not an important problem at

subatmospheric pressures, though it has been demo,lslrated thai sound pressure,

levels are attenuated differentially by different gases at pressures below 1 atm

(Cooke, 1964; Cooke & Beard, 1965).
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At pressures encountered in diving operations, speech in helium-oxygen gas
mixtures may become quite unintelligible. In some circumstances, it has been
found necessary to add small amounts of nitrogen or neon to the breathing
(Wathen-Dunn, 1967). Electronic processing has also been attempted in an
effort to improve communications.

Thermal control is another area in which the inert gas plays a role. Since this
appears to bca problem only when helium is used, it is discussed under that
heading.

Finally, mention should be made of the last member of the family of noble
gases, radon. Since it is intensely radioactive, it has been excluded from
discussion here and from consideration for any role in life support systems.

Nitrogen

The work of Allen (1963) has raised the possibility that nitrogen in its
elemental form may be necessary for manlmalian growth and development. If
this is true (and there are no other data which unequivocally support his
contention), it is certainly true also that only small amounts of gaseous nitrogen
arc necessary for unimpaired functioning of adult human subjects. The
helium-oxygen studies of Adams and coworkers, cited in chapter 1, involved
nitrogen partial pressures as low as practicable, averaging 2 mm ttg for 56 days
of exposure; other studies have been conducted for shorter periods at even lower

nitrogen tensions without symptoms referable to the absence of the gas.

It also seems clear that partial pre_ures of nitrogen of at least 1200 mm Hg

(found in air at 2 atm absolute) are not harmful for prolonged exposure. As
noted previously, substantially higher pressures are required before frank
symptoms of nitrogen intoxication appear, and there is evidence that some
degree of adaptation to nitrogen narcosis is possible. Nonetheless, the partial
pressures of nitrogen encountered at 200 feet depth, 4200 mm Hg, are clearly
toxic to human subjects.

Helium

Studies of molds grown in helium-oxygen at a total pressure of 120 atm
'absolute (1764 psia) have shown that growth and metabolic activity are
impeded. Interestingly, it appears that at this high pressure, helium depresses
growth more than nitrogen, a reversal of the situation encountered at sea level
(figure 2-16). Mice demonstrate narcotic effects of helium at 54 atm (794 psia),
and the work of Bennett (1969) suggests that the threshold for narcotic effects

in man may approximate 34 atm (500psia). Nonethele_, with the possible
exception of hydrogen, helium is the diluent gas best tolerated by man at very
great depths.

The thermal conductivity of helium, six times that of nitrogen, does pose
substantial problems. Figure 2-18 shows this parameter for various proportions
of several inert gases with oxygen. Soviet and U.S. studies, among others,

487 858 0 - 7:t 5
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have demonstrated that air temperatures must be 4 to 5°F higher for comfort of

resting subjects in helium-oxygen environments; zones of thermal comfort are

somewhat narrower (table 2-2). This may be a particular problem in undersea

work; work temperatures are usually well below comfort levels and the gas

mixture in underwater habitats is almost invariably saturated with water vapor.

Substantial increases in environmental temperatures may be required for

comfort (Raymond, 1967).
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Figure 2-18. Thermal conductivity of binary gas mixtures containing 02 at 30°C.
(After Srivastava & Barua, 1960)

Table 2-2

Temperature Indicated to be Comfortable by Subjects

in Space Cabin Simulator Experiments

Barometric Gas Tension Selected

Pressure (mm Hg) Temperature

psia mm Hg 0 2 He N2 oF

3.7 191 191 -- -- 69.3

5.0 258 258 -- -- 70.9

5.0 258 175 74 -- 74.7

7.3 380 150 230 -- 75.4

7.3 380 165 -- 206 72.7

(From date of Welch, cited by Roth, 1968)
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The problem of speech intelligibility has been studied intensively. Soviet
workers have found an increase of about 0.7 octave in the fundamental

frequency of tile human voice at 1 atm in 80 percent helium-20 percent oxygen
(Dianov, 1964). Similar findings are reported by U.S. groups (Sergeant,

1963).

Neon

Roth (1967), in his extensive review of inert gases for use in space vehicle
atmospheres, concluded that "neon appears to offer some advantages over
helium and nitrogen as an inert gas diluent..." This conclusion was reached on
theoretical grounds, primarily because of the potential problem of decompres-
sion sickness, though it was pointed out that in all other areas as well, neon

appears to be as good as or slightly better than nitrogen or helium.

There is, unfortunately, a shortage of data on human exposures to
neon-oxygen mixtures. Bennett (1967) and Bennett and Elliott (1969)report
the conduct of many short studies with the gas, some on humans; Weiss and
coworkers (1968) have conducted longer studies on other mammals. On the
basis of very incomplete data, it does not appear that the gas has toxic effects

which would preclude its use in either space operations or in underwater work at
moderate depths, where it can lessen problems in communications and heat loss
without appreciably increasing the risk of inert gas narcosis or decompression

sickness during reascent.

Argon, Krypton, and Xenon

It has been pointed out that argon is appreciably more narcotic than
nitrogen, which severely limits its usefulness in underwater work. In addition,
however, its use is associated with a substantially higher incidence of

decompression sickness than either helium or nitrogen in animals (Behnke,
1939). These two considerations make it unlikely that the element would be
seriously considered for use as the diluent gas in closed life support systems. It
should be mentioned, however, that it has been proposed, and used, in ascents
after very deep dives in an attempt to promote release of other inert gases from
the tissues. Such specialized uses arc beyond the seope of this discussion; a
description of the technique has been published by Keller (1965).

The narcotic potency of krypton and xenon, together with much more

severe potential for decompression sickness, precludes them from consideration
for life support systems. It has been mentioned that xenon has been used as an
anesthetic agent, and in this area it may have certain advantages if the problem
of its cost can be overcome. Radioactive isotopes of both gases are used in

studies of lmtg and circulatory physiology in animals and humans.

Other Gaseous Compounds

Carbon monoxide is generated in small amounts by most organisms. It
results from the incomplete oxidation of foodstuffs. This compound is
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discussed more fully in chapter 10, Toxicology; it is mentioned here only

because of its physiological occurrence in closed ecological systems containing
man or animals.

Methane and other gaseous products evolved in the course of digestion and

bacterial action in the gut have varying toxicities. However, few studies involving

long-term continuous exposure of man have been conducted.

Finally, sulfur hexafluofide, a physiologically inert gas with a molecular

weight of 146.1, has been used in combination with oxygen in studies of the

effects of high gas density on respiration. The density of a 79 percent sulfur

hexafluoride-21 percent oxygen mixture is 4.2 times that of air at the same

pressure. The toxicity of its breakdown products militates against the use of

sulfur hexafluoride in other than experimental situations, where it can be quite

useful.
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CHAPTER 3

TEMPERATURE

by

P.J. Berenson, Ph.D.

and

W.G. Robertson, Ph.D.

AiResearch Manufacturing Company

Human life can be maintained in environments ranging from Arctic cold,
where the problem is to minimize heat loss and maximize heat production, to
furnace-like heat, where the problem is to maximize heat loss. The spectrum of
human response to temperature is broad, ranging from complete thermal
comfort to the extremes of pain-limited exposures. The critical variable is
exposure time, which may range from seconds in pain-limited situations to a

lifetime. Thermal tolerance times can be increased by properly chosen clothing.

Within a period ranging from minutes (emergency situations) to days and
weeks, differences between individuals and groups in response to thermal
extremes are enormous, largely because of varying preceding experiences, or
"acclimitization." Synthesis of available experimental data is extremely difficult
in the absence of a reliable quantitative scale u'pon which to identify individual
differences. Consequently, variations are emphasized in this chapter to illustrate
how selection and training can influence response to any particular environment-
activity-clothing combination. The conservative solution to the use of these data
is the choice of the least resistant and least trained individuals.

The problems of comfort in heat stress are emphasized here, with less
emphasis placed upon those problems associated with cold exposures. The

chapter begins with a discussion of the physiological parameters related to
human thermal interactions and closes with some data concerning thermal
protective clothing. The terms and symbols used throughout this chapter are
defined in the Glossary which precedes the References section at the end of the
chapter.

Reviewed by A. Pharo Gagge, Ph.D., John B. Pierce Foundation. Appendix authored by the
reviewer.
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PhysiologicalParameters

The primary physiological parameters related to human thermal interactions

are sweat rate, skin surface temperature, and body internal temperature; only
small changes in the latter two can be tolerated without discomfort. Some latent

heat rejection by evaporation occurs due to respiratory water loss, but most

occurs at the skin surface, where water is deposited by the sweat glands and by
diffusion through the skin. The remaining energy, termed sensible heat, is
transferred to file atmosphere by a combination of convection and radiation

heat transfer. All heat rejected at the skin's surface is transported from the deep
body tissues by the flow of the blood.

Thermoregulatory Mechanimls

One of the heat-regulating mechanisms of the body involves control of the
flow of blood to the skin by the constriction and dilation of the peripheral
blood vessels. This vasoregulatory mechanism attempts to control sensible heat
rejection from the body to maintain internal body temperature at a nominal
value of 98.6°F (27°C). This mechanism, which is controlled by a combination
of internal and skin temperatures, is capable of providing a factor-of-ten variation

in sensible energy transfer between the body core and the surface (Robinson,
1963). Thus, under cold conditions, the body attempts to reduce the heat

dissipation rate by reducing the flow of blood to the cold skin by constriction of
the peripheral blood vessels. Under hot conditions, vasodilation, which occurs
with the onset of active sweating, takes place and the blood flow to the hot skin

is increased. Although the vasoregulatory mechanism is an important safeguard,
it has little effect on thermal comfort analysis. Experiments indicate that at the

limits of vasoregulation, the vasomotor system is capable of exerting a stabilizing
effect on rectal and skin temperatures for a finite period (Winslow, Herrington,
& Gagge, 1937). The period of stabilization is reduced as the severity of thermal
stress is increased.

For each individual, there is an internal set-point temperature at which he is

comfortable; the variation in the set point between individuals is approximately
+0.5°F (+0.3°C). At internal temperatures above the set point, vasodilation and

active sweating occur; at internal temperatures below the set point, vasocon-
striction and increased metabolism due to shivering occur. Because shivering and
sweating are a function of both internal and skin temperatures, it is desirable to

maintain the internal temperature below the set point to avoid sweating; at the
same time, it is necessary to avoid excessively low skin temperatures that will

produce shivering and a cold sensation. According to Kerslake (1962), a mean
skin temperature of approximately 91.4°F (33°C) is near optimum; mean skin
temperatures higher than 94°F (34.5°C) cause active sweating, and mean skin
temperatures lower than 86°F (30°C) are associated with metabolic heat
generation by shivering.

The eccrine sweat rate is dependent on the cranial internal temperature only
for skin temperatures above 91.4°F (33°C); it is suppressed by reduced skin
temperature at skin temperatures lower than 91.4°F (33°C) (Benzinger, 1961).
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Because the relationship between the body skin temperature and internal
temperature is determined by the external heat transfer characteristics, for

particular environmental conditions, the eccrine sweat rate can be given as a
function of skin temperature ",done.

Skin Properties

Relevant properties of the skin are listed in table 3-1. Skin temperature is an
important factor in body thcrmal control, although the heat rejection rate over
which it is effective is small relative to that exercised by the sweat mechanism. The

latter can generate water at a maximum rate corresponding approximately to
3000 BTU/hr (880 W or approximately 22gm/min for the average sized man). It
can be determined that the sensible (radiation plus convection) energy rejection
rate from the body will normally vary by approximately 20 BTU/hr (10 W) for
each °F (°C) change in skin temperature. Therefore, in going from a comfortably
cool skin temperature of 90°F to a comfortably warm skin temperature of 93°F,
the heat rejection rate is hacreased by only 60 BTU/hr (17.5 W).

Regional Requirements

As shown in figure 3-1, different areas of the body have varying thermal charac-
teristics and requirements. To be comfortable, the body must be maintained under

conditions producing no eccrine sweating. A certain amount of moisture, however,
will be removed from the body by insensible water loss, by diffusion through the
skin and by respiration. The data in figure 3-1 show that the insensible water loss
by diffusion varies greatly over the surface of the body and with the individual;
most of the loss is from portions of the body that are generally unclothed.

Insensible water loss is a continuing nonadaptive process and results in loss of
body heat under virtually all environmental conditions. The irreducible insensible
water loss from skin and lungs is 0.06 of 1 percent of body weight per hour. The
lower limit for insensibJe water loss from the skin alone at one atmosphere and
Ta=68°F (20°C) is approximately 10 gm/sq m-hr. At air temperatures above 68°F
(20°C) the rate of insensible water loss increases linearly to a value of about

25 gm/sq m-hr at T a : 79°F (26°C). Below the sweating threshold, about
40 percent of the mositure loss is from the palm, sole of the foot, and head
(about 13 percent of the total body surface.)

At air temperature between 79 ° (26°C) and 93 ° (34°C) on Earth, there is an
increase in water loss as additional regional areas of the body begin to sweat. The
progression of recruitment is generally from the extremities toward the central
regions of the body and headward, and is subject to effects of training. In this
temperature range and at rest, the onset of sweating produces water loss at rates
of 40 to 60 gm/sq m-hr for all regions of the body. At ambient temperatures
higher than 93°F (34°C), the increment in sweat rate increases linearly at the
rate of 12 to 15 gm/sq m-hr-°C in well-trained subjects at rest. With full sweating,
the trunk and lower limbs provide 70 to 80 percent of the total moisture perspired
0tertzman, Randall, Peis et al., 1951, 1952). Tables 3-2, 3-3 and 3-4 summarize
the order of recruitment, mean regional evaporative rates, and regional fractions of
total evaporation, respectively.
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Table 3-1

Properties of the Skin

Approximate values of the physical di_enslons of whole skin for the "average n_n'

154 Ib_ 5 ft g in.

Weight 8,8 Ib A kg

Surface area 20 sq ft 1.8 sq m

Volun_ 3.7 qt 3.6 liters

Water content 70 to 75 percent

Specific gravity I,i

Thickness 0.02 to 0.2 in. 0.S to S.0

Approximate values for ther_l properties of skin

Heat production 240 kcal/day

Conductance 9 to 30 kcal/sq m-hr-_C

ThermaJ conductivity (kl (I.5 0.3) _ I0 -3 cal/cm sec-_C, at 23 to 25°C ambient

Diffuslvlty !k/oc) 7 x 10 -4 sq cm/sec (surface layer 0.26 rr_n thick)

Therr_l inertia (kpc) 90 tO 400 x 10 -5 c_12/cm 4 sec (°E)2

Heat capacity _ 0.8 cal/gm

Skin temperature and thermal sensation:

Paln threshold for any area of skin

When mean weighted skin ternperature is:

When the hands reach:

68°F (200C)

59°p (IS°C)

50°r (IO°C)

Approximate optical properties of skin:

_13°F (45_C)

The typical sensation is:

above 95°F 135°C) Unpleasantly warm

93°F (34°C) comfortably warm

below 88°F (31°c) uncomfortably cold

86 °p (30°C) shivering cold

84°F (29°C) extremely cold

When the feet reach: They feel:

73.5°F I23_C) uncomfortably cold

64.50F (18°C) extremely cold

55.3°F (13°C_ painful and numb

Emissivity {infrared)

Reflectance (wavelength dependent)

Transmittance (wavelength dependent)

Solar reflectivity of surface

Very white skin

S "white" subjects

6 'colored" subjects

Very black skin

Solar penetratlon--very white skin

Solar penetration--very dark skin

0.99

Haximu_ 0.6 to I.l_

Minima < 0.3 and > 1.2_

Raxlma 1.2_ I, 7, 2.2, 61 I1_

Hinima 0.5, 1,4, I. 9_ 3, 7_ t2_

42 percent

28 to 40 percent, average 34 percent

19 to 24 percentj average 21 percent

I0 percent

45.5 percent passes 0.1 mm depth

39.6 percent passes 0,2 mm depth

32.0 percent passes 0.4 mm depth

19.0 percent passes 1.0 mm depth

10.2 percent passes 2.0 mm depth

75 percent passes 0.1 mm depth

40 percent absorbed in the melanin layer

33 percent passes 0.2 mm depth
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Figure 3-1. Regional cooling requirements of the human body in air
at sea level at rest. (After Berenson, 1965, from data of Kerslake, 1964)

Table 3-2

Recruitment of Sweating

Usual (But Not

Area Invariable) Order

of Recruitment

Dorsum foot

Lateral calf

Medial calf

Lateral thigh

Medial th igh
Abdomen
Dorsum hand

Chest
UI nat forearm

Radial forearm
Medial arm

Lateral arm

(After Randall and Hertzman, 1953)

1

2

3

4

5

6
7or8

8or7

9

10

11

12
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Table 3-3

Increments in Mean Regional Evaporative Rates

With Rise in Environmental Tern )erature

increment in

Evaporative Rate, °C Evaporative Rate

Region Ta29 34 38 29 to 34 34 to 38

Calf

Thigh

Abdomen

Chest

Forearm

Arm

Cheek

Forehead

18,0

14.4

12.0

9.6

12.0

10.8

24.0

24.0

gm/sq m/hr

169.0

144.0

156.0

120.0

96.0

65.0

108.0

240.0

gm/sq m/hr/°C

86.5

58.7

60.0

37.2

21.6

14.4

36.0

60.0

13.7

8.0

9.6

5.5

1.9

0.7

2.4

7.2

20.4

21.3

24.0

20.7

18.6

13.0

18.0

45.0

(After Hertzman et al., 1952)

Table 34

Regional Fractions of Total Cutaneous Evaporation

Expressed as Percentage of Total

Region

Head

Arm

Forearm

Trunk

Thigh

Calf

Palm

Sole

24

11.8

4.6

8.2

22,8

13.6

8.5

15.6

14.7

m

26

12.1

4.4

7.2

23.0

13.1

9.0

15.3

15.1

Air Temperature, °C

28 30 32 34

11.9 i _ 8.0 7.0
4.2 26 2.2

6.0 4.3 3.2 3.1

22.2 22.2 30.0 33.0

17.1 20.2 22.6 23.8

11.9 16.0 20.3 22.8

13.1 9.6 6.8 4.6

13.5 9.9 6.4 3.7

m

36

_.5

3.1

4.4

43.0

25.5

24.1

3.5

2.3

37

8.4

3.3

4.3

38,2

22.3

19.8

2.5

1.5

(After Hertzman et al., 1952)

The maximum attainable perspiration rate of the human body is

approximately 30gm/min for an average sized man, which could provide

maximum evaporative cooling rate of 1200 watts. At these rates, however, even

with adequate consumption of water and electrolytes, the sweating

mechanism fatigues in 3 to 4 hours and perspiration rates decrease
significantly. This fatigue is a function of skin wetness. The maximum

effective perspiration rate that can be sustained is extremely variable

depending on the individual and his degree of acclimatization.
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Energy Balance Equation

Heat is transfered between man and the environment through four avenues:

radiation, convection, conduction, and vaporization. The body also stores energy
in the tissues and body fluids. Thermal interactions between the human body
and the environment can be examined in terms of the energy balance equation.

This equation balances the normal energy gains and losses and can be expressed

as follows (Blockley, McCutchan, & Taylor, 1954):

0sr + 0m -- W = +0s +Or + Qc +0v + Qk + 0e (1)

For a steady-state thermal condition, the rate of heat storage rate is
zero (Qs = 0). The conductive heat transfer mode is usually quite small and
can be neglected in most instances (Ok = 0). Finally, if the body is shielded from
direct solar radiation, the term (Qsr) can be omitted from the expression.

With these simplifications, the energy equation can be expressed as:

E m - W = +Qr +Qc + Qe + Qv (2)

and the system can be analyzed quantitatively after these terms have been

adequately defined.

Metabolism ((_m) is the sum of the basal metabolic rate plus an incremental

increase in heat energy due to gravity and/or stress. Values of metabolism for
various activities are presented in chapter 18, Work, Heat and Oxygen Cost. The
most common activities require a metabolism between 300 and 1000 BTU/hr or
90 and 300 watts.

In the steady-state condition required for long-duration comfort, the

metabolic energy is dissipated by the work accomplished and by heat rejection
to the atmosphere. Because man is relatively inefficient in converting metabolic

energy into useful work (the maximum work output being approximately
20 percent of the metabolism)(Fahnestock et al., 1963), most of the metabolic
energy must be lost to the environment by heat rejection.

Radiation heat transfer (Qr) occurs as a result of the temperature difference
between the human body and the walls of the surroundings. Convection heat
transfer (Qe) occurs as a result of the temperature difference between the body

and the gas atmosphere. Evaporation heat transfer (Qe) results from the
vaporization of moisture at the surface of the skin. Respiratory heat transfer
(Qv) is the heat loss (including vaporization of water) from the lungs because of

respiration.

Determination of the thermal status of the human body in space operations
requires analysis of a large number of variables. The effect of many of these
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variables has no simple mathematical solution and must be derived from
experimental data. Even then, the results must he treated with caution when

applied to the small population represented by a flightcrew. Individual metabolic
rates, health variations, tolerances, and motivation can cause wide deviations
from predicted states and performance.

In general, all the variables can be collected under three major classifications:
environment, body state, and clothing, as shown in table 3-5.

Since many of the variables are interdependent, solution of the complete
energy balance equation becomes largely an iterative process modified by heavy
reliance on reasonable assumptions and experimental results. Maintaining a
thermal balance requires the regulation of environmental parameters to maintain
man in a state of thermal equilibrium (or compensable quasi-equilibrium) at all
anticipated levels of activity to ensure adequate performance and preclude
irreversible physiological effects.

Heat Transfer Equations

Heat Conduction Through Clothing

The dry heat transfer from the skin to the outer surface of the clothed body
is a complicated phenomenon involving internal convection and radiation

processes in intervening air spaces, and conduction through the cloth itself. To
simplify calculations, the following relationship between clothing surface
temperature, To, and skin temperature, Ts, considers a simple conduction
process through clothing of thickness, L:

L Q

Tc = Ts k A c (3)

The value L/k is known as the clothing or CIo value. The reference point for
the Clo value is taken as a man in a suit with no gloves, or light gloves, and
leather footgear with light socks. This is known as 1 Clo and corresponds to a
value for L/k of 0.88°F-sq ft-hr/BTU or 0.155°C'm2/W. The Clo value ranges
from four for artic equipment to zero for the unclothed subject, as shown in
table 3-6 (Fanger, Nevins, & McNall, 1968). A value of 0.6 Clo is often used
becuase it is typical of light indoor clothing.

The effective Clo value for a person seated in a padded chair (or lying down)
might be substantially larger than the Clo value for a standing person in the
same clothing ensemble. The 1 Clo value is as high as can be expected in a
shirt-sleeve environment. More typical values would be 0.25 C lo for the underwear

worn by project Gemini astronauts. The heat loss from the skin surface is inversely
proportional to (Ia+Icl) where I a is the insulation of the ambient air and Icl- il is the

intrinsic insulation of the clothing itself. The effect of helium in reducing the C lo
values of different garments has not been studied. Preliminary studies confirm that
Clo values tend to vary inversely with the thermal conductivity of the atmosphere.
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The effective Clo values (i.e., la_lcl ) in a 7 psia 50 percent oxygen: 50 percent
helium environment, therefore, would probably be 0.015: 0.017, or about
0.56 that of sea level air (Roth, 1967). The clothing surface area may be
50 percent greater than that of man (Nelson et al., 1947), although probably
not all of the increased area is available for heat transfer. Table 3-6 presents
typical ratios of the clothing surface area to the skirl area.

Radiation Heat Transfer

The analysis of radiation heat transfer between an astronaut and his

surroundings is complicated by a number of factors. These include:

1. Ability of the crew to move around and change position

2. Arrangement and surface temperatures of the various equipment
enclosures

3. Localized differences in temperature of the cabin walls and size and
location of windows.

The problem can be greatly simphfied by theoretically collecting all
equipment and structures into an equivalent enclosure at a mean radiation

temperature. The following equation applies to a man in an enclosure at a single
effective radiation temperature (McAdams, 1954). The man was assumed to be

radiating heat at a single mean temperature equal to the temperature of the
outer surface of the clothing.

(_r = OFew( T4 - T4)Ar (4)

_Lssuming that source and sink are gray bodies, the following equation,
which includes the effect of geometric configuration, can be used for the
radiation shape factor of a completely enclosed body _lcAdams, 1954):

1
Fcw - (5)

,)
ec Aw \ew

The emissivity of human skin in the infrared range is approximate.ly 0.99.
The emissivity of clothing and skin at body temperature generally is assumed to
be 0.95. The emissivity of surroundings (ew) will depend on the proportion of
high and low emission surfaces subtended by the body. The range of
emissivities will vary from 0.2 (for oxidized aluminum) through 0.9 (for
transparent plastics and oil painted surfaces) to 0.95 for an adjacent crew
member, also in shirtsleeves.
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The effective radiation area of the body, A r, will be less than the total
exposed surface area of skin and clothing because some portions of the

body are partially shielded from the surroundings. The measured ration
between the effective radiation area and the total surface area are given in

figure 3-2 for different positions (Guibert and Taylor, 1952).

<

08 [
CROUCHED SEATED SEMI-ERECT ERECT

POSITION

Figure 3-2. Body radiation area for various body positions.
(From data of Guibert, 1952)

If man is in an enclosure much larger than himself, the ratio Ar/Aw in
equation 5 is small, and Few = ec. Therefore, equation 4becomes

(_r : °ecAr( T4 - T4) (6)

The radiation heat transfer coefficient is defined by the following

equation :

Qr = hrAr(Tc- Tw) (7)
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Therefore, from Equation 4

or'ew(T4 -Tw4)
hr - (8)

Tc - T w

Values of the radiation heat transfer coefficient are pre_nted in figure 3-3
for Few : 0.9.

I

a_

t
.t:

1.05

1.00

.95

.9O

.85 -

F

NOTES:

1. FCW = 0.9

2. E = .9 --

3. T C = CLOTHING TEMPERATURE

4. T W = ENVIRONMENT TEMPERATURE

,,,,l,,,,J,,,,i,,,,i.80 "11 I I i I I I I I I I I I :
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T w °F
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9oOF
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80OF

75OF

70OF

65OF

Figure 3-3. Values of the radiation heat transfer c_fficient.

in addition to determining the mean radiant temperature of the
surroundings, it is important to consider local effects. A man located

between warm and cold surfaces at a neutral atmospheric temperature and
apparently comfortable may experience pain and stiffness in the muscles
expo_d to the cold surface 'after a prolonged period of time, especially
after sleep.

Forced Convection Heat Transfer

The rate of heat transfer by convection can be written:

0c = heA(Tc - Ta) (9)
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Theconvectiveheattransfercoefficient,he,isa complicatedfunctionof
fluid flow, thermal properties of the fluid, and the geometry of the body.
Because there has been some variance between the values used by different
groups in relating the hc of man to the atmospheric gas velocity, selecting the
appropriate heat transfer coefficient is a difficult problem. A discussion of the
implications of different coefficients used in the analysis of forced convection
about the human body was published by Kerslake, (1963).

Figure 3-4 represents a summary of several approaches to forced convective
heat transfer coefficients (convective f_m coefficients) for man in an

environment containing air at Yzatm. The first three curves represent the he
values obtained from empirical studies of humans. These are compared with four
theoretical curves: (1) a cylinder in longitudinal flow, (2) a cylinder 10 inches in
diameter in crossflow, (3) a flat plate with flow perpendicular to it, (4) a cylin-
drical model of man in crossflow (figure 3-5). The value of he for the cylindrical
model of man corresponds closely with those obtained by Nelson (1947) and are
equivalent to hc for crossflow about cylinders 5 inches in diameter.

VELOCITY OVER MAIN [fl rain}

Figure 3-4. Comparisonof forced convection film coefficients for man at 1/2 arm of air.
(After Parkeret al., 1965)

The following equation, derived from the heat transfer correlation for fluids
flowing perpendicular to cylinders, estimates the forced convection heat transfer
coefficient for all gas mixtures (Berenson, 1965):

he = 0.021k c _ (10)
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P : psia, V = ft/min, and

k c = a factor that depends on the transport properties of the gas mix-

ture. For 02 - N 2 mixtures, k c : 1 ; for other gases,

kmixIMmix /lair _0"5 (Prmix10.33kc r , xu  x/ (11)

For example, a 50-percent oxygen-helium atmosphere at 7 psia, k e = 1.6.
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Figure 3-5. Cylindrical model of man. (After Parker et al., 1965)

Figure 3-6 shows the effect of gas velocity on the convection heat transfer

coefficient based on the eyfindrical model of man for various helium- oxygen

and nitrogen-oxygen atmospheres. The partial pressure of oxygen at 170 mm Hg

is near the sea level equivalent and is held constant with the diluent gas ranging

from 0 to 400 mm Hg.

The values for neon mixtures will lie between those for helium and

nitrogen. It is clear from comparing the physical properties of the gases that
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for different mixtures of oxygen-nitrogen there is little sensitivity of he to
percent composition of gas.

pile or pN 2 (mmHgl

-- He-0 2 Atmosphere

...... N2-0 2 Atmosphere

40 60 80 100 110 140 160

VELOCITY OVER MAN (ft/min}

170 mm Hgof02

pkle = Partial Pressure (mm Hg) of He

in Atmosphere

pN 2 = Partial Pressure (turn H 9) of N 2

in Atmosphere

Based on Cylindrical Model of Man

Figure 3-6. Heat transfer coefficients of man in 0 2 - He and 0 2 - N 2

at different gas velocities. (After Parker et al., 1965)

All of the correlations for the forced-convection heat transfer coefficient are
consistent with the following general theoretical correlation:

heD_ const, tpVD)0"5 (-_)

0.33

(12)

The only difference between the equations is the value of the empirical

correlating constant. As shown in figure3-4, there is a variation of

+50 percent between the various correlations.
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Free Convective Heat Transfer

In the presence of a gravitational field such as on the Earth, planetary
surfaces, or rotating space stations, free convection is possible and is the
preferred mode of cooling because no additional fan energy need be
expended. General free-convection heat transfer equations yield the
following simplified equation for free-convection cooling in nitrogen-oxygen
mixtures (Berenson, 1965).

hc = 0.06 [p2g(T c - Ta)-]0"5 (13)

Mixed free and forced convection environments can be handled by
McAdams' rule, which states that both the free and forced convective heat
transfer coefficients are calculated and the higher of the two values used
(McAdams, 1954). The critical forced convection velocity (Vcrit), where the
forced convection heat transfer coefficient is equal to the free convection
coefficient, can be calculated for oxygen-nitrogen mixtures by equating
equations 10 and 13.

0.5
Vcrit : 8.3 [g(T c - Ta) ] ft/min (14)

If the forced convection velocity is less than the critical value, free
convection is the dominant heat transfer process.

Forced Convection Evaporation

The rate of heat transfer by evaporation can be written (Berenson, 1965):

/ Ps - Pa_

Qe : hDhfg AC_- R_ s _H20

(15)

The mass transfer coefficient, hD, is a complicated function of fluid flow,
fluid properties, and body geometry. The mass transfer coefficient can be
calculated from the heat transfer coefficient, hc, by using the heat-mass
transfer analogy with the following result (Eckert & Drake, 1959):

h c Pr2/3
: 06)

hD p% Sc2] 3
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The following equation for the evaporation heat loss results from combining
equations 10, 15, and 16 (Bercnson, 1965).

0.5

(17)

where V = ft/min

P = psia

ke = a fluid property parameter that depends on the diffusivity of
water vapor in the gas mixture and on the transport properties
of the gas mixture itself. For air, ke = 1. For other gases,

ke : (kD)0'67( Mmix_ X /'/mix//gair_0"17
(18)

The diffusion coefficient for water in helium is 3.5 times that for water in

air. For the case where the water is diffusing into a mixture of helium and

oxygen, diffusivity relative to air, kD , is found from

1

kD -- MOL FRACT. He MOL FRACT. 02 (19)
+

3.5

For example, for the 50 percent oxygen atmosphere in helium at 7 pisa,

kD = 1.554. Therefore, for the ke values calculated for the oxygen-helium
atmosphere containing 50 percent oxygen,

0.17

(___ 12.10_ke = (1.554) 0.67 X 13--3-_-) = 1.219

The exponent of V in equation 17 is 0.5. Some empirical data yielded an
exponent of 0.63 (Clifford et al., 1959). In view of the other assumptions that
must be made regarding clothing and body positions, the uncertainty introduced
by this difference is not serious. In fact, the calculated values of maximum
evaporative loss (C = 1) give predicted results only 10 percent higher than
actually measured (Clifford et al., 1959; Webb, 1967). Since the rate of

evaporation and the diffusion coefficient for water vapor are inversely
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proportional tO pressure, latent cooling capacity increases with decreasing

(total) pressure (Taylor & Buettner, 1953).

Curves illustrating the general magnitude of the pressure, dew point, and

gas stream velocity effects predicted by equation 17 are presented in

figure 3-7. In the temperature range under consideration for space cabins,

the temperature and the dew point have relatively little effect as compared

to gas stream velocity and ambient pressure.
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A = 19.5 SQ FI

14 7 psid - P

_ I I I I
50 100 150

V (ft/min)

Figu_ 3-7. Maximum evaporation rate atrestin oxygen-nitrogen mixtures.
(Be_nson, 1965)

It is likely that the body does not become fully wetted with sweat until

the sweat rate is about twice the maximum evaporative capacity. Loss of

sweat by dripping probably begins when the sweat rate is about 1/3 of the

maximum evaporative capacity (Kerslake, 1963). The effect of body

position and geometry on the constants of these equations cannot be

overemphasized. The effect of clothing also is an important factor in

determining evaporation rates (Blockley et al., 1954).

Free Convection Evaporation

A free convection evaporation cooling equation also can be developed

using the heat-mass transfer analogy. For example, combining equations 13,
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15, and 16 yields the following equation for the free convection evaporation
rate in oxygen-nitrogen mixtures (Berenson, 1965):

CTa {Qe = 1.3A_p (Ps-Pa) Pg(0"005P(Tc-Ta)+ l'02(Ps-Pa))t 0"2' (20)

Respiratory Heat Loss

Heat loss due to respiration varies directly with metabolic rate and is
influenced by atmospheric composition (including carbon dioxide and water
vapor content) and pressure. Because the respiratory tract is a very efficient
saturator of inspired air, heat gain to the body through respiration will not
occur until atmospheric temperature approximates 185°F (McCutchan &
Taylor, 1951).

Heat loss from the lungs approximates 10 percent of the metabolic rate
(7 to 8kcal/hr) in the neutral zone (Hardy, 1964). Definitive data are

available for determining respiratory heat loss for the atmospheric
compositions and pressures of interest in space flight environments,
especially those of the space suit (Bryan, 1964; Webb, 1955; Wortz et al.,
1966).

After determining the pulmonary ventilation rates corresponding to a
specific activity level and stress factors such as hypoxia, hypercapnia, or
anxiety, the heat loss due to respiration can be caluclated by determining
the sensible heat required to raise the inspired atmosphere to expiration

temperature and adding the heat of vaporization increment for the moisture
lost to the inspired air from the respiratory tract.

One expression for calculating respiratory heat loss is 0Vortz et al.,
1966):

Qv = _rpCp(Te - Ti) + 0.58 (We - Wi)(cal/hr) (21)

where = volume of atmosphere breathed per hour (liters/hr)

p = density of the atmosphere (gm/liter)

Cp = specific heat of atmosphere (kcal/Kg-°C)

T e = temperature-expired atmosphere (°C)

Ti = temperature-inspired atmosphere (°C)

0.58 = heat of vaporization H20 (kcal/gm)
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We : weight of water in expired atmosphere (gm)

Wi : weight of water in inspired atmosphere (gm)

A more simphfied approach is also available (McCutchan & Taylor,
195t).

Thermal Comfort

Comfort Criteria

Comfort zones have been defined in the literature in terms of skin

temperature, sweat rates, and various indexes that relate environmental
parameters to subjective impressions of comfort or measured values of
selected physiological variables. For the same conditions and individuals, the

established boundaries for thermal comfort, performance, and tolerance as
described by the various design indexes may be completely consistent.
Variations in activity, wearing apparel, individual health and acclimatization,
and thermal exposure immediately prior to making a determination of
comfort, however, will operate to shift the zones and introduce incon-
sistencies in results (Gagge, 1966).

A large amount of literature is available concerning human comfort and
physiology under a wide range of conditions in the Earth environment.
Examples of comfort indexes established in the past are the British Comfort

Index (Dunham et al., 1946), ASHRAE (American Society of Heating and
Air Conditioning Engineers) Effective Temperature, and Operative
Temperature (cited in Webb, 1964). Unfortunately, because of important
differences in gravity and pressure found in space environments, most of
these data are not directly applicable to the design of spacecraft thermal
control systems. The following comfort criterion is generally applicable.

Krantz (1964) describes a comfort design criterion developed by
Winslow et al. (1937), based on percentage utilization of the maximum
evaporative cooling capacity. It was found that on the hot side of
comfortable conditions, sweat production was definitely related to the
sensation of discomfort; on the cold side, skin temperature below 90°F
produced a cool feeling. As shown in table 3-7 the sensation of comfort was

related by Win_ow et al. (1937) to the percent of the body covered by
moisture.

The comfort design method described by Krantz (1964) involves analysis
of the environmental conditions to estimate the radiation and convection

heat transfer from the body. The metabolic rate necessary to sustain the
activity level is estimated. The difference between the metabolic rate and

the radiation and convection heat loss, therefore, is the required evaporative
cooling. The environmental design conditions are then evaluated with respect
to the maximum evaporative cooling capacity; if the required evaporative
cooling represents from 10 to 25 percent of the maximum, the environment

is in the comfortable range. If it is outside this range, some of the
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environmental design factors (gas temperature, ventilating gas velocity, or wall

temperature) should be changed to provide a comfortable environment.

Although this concept is simplified and has not been proven for all values of

total sweat output and atmospheric conditions, it is plausible and can be

generally applied.

Table 3-7

Evaporative Capacity Comfort Criterion

Percent of Maximum Skin Temperature
Comfort Level

Evaporative Capacity OF OC

0 to 10

10 to 25

25 to 70

70 to 100

Over 1O0

Cold

Comfortable

Tolerable

Hot

Dangerous

<89 31.7

90 to 92 32.2- 33.3

93 to 94 33.9- 34.4

>95 35

With resting, unclothed subjects, approximately 10 percent of the maximum

evaporative capacity is provided by in_'nsiblc moisture loss from the body by

respiration and by diffusion through tile skin. This moisture loss is not subject to

thermoregulatory control, and an indicated evaporative cooling requirement less

than this amount represents overeooling of the hody. With normally clothed

subjects the insensible moisture loss is 5 percent of the maximum evaporative

capacity. These losses arc, of course, a function of the metabolic output and

respiratory rate. Recent unpublished data from the NASA Manned Spacecraft

Center, Houston, suggest that the minimum latent heat loss by evaporation,

Qe min, is given by the following equation:

Qe rain = 0.125 E m + 50 (Btu/hr) (22)

This fact alters previous approaches to setting the cold-comfort boundary using
C = 0.1 as a criterion.

In summary, the thermal comfort design objectives arc that body storage be

zero, evaporative heat losses be limited to insensible evaporation of moisture

produced only by respiration and diffusion through the skin without the activity

of sweat glands, and that body and skin temperatures be maintained near normal

values of 37°C (98.6°F) and 33 ° to 34°C (91.5 ° to 93.5°F) for a resting

subject. During exercise, each multiple increase in resting metabolism decrease

the skin temperature for comfort by approximately I°C and the rectal

temperature rises by 0.2°C but the mean body temperature for comfort remains

essentially the same during rest and exercise.
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Comfort Zones

Because of the dearth of empirical data on comfort zones in uncommon gas

environments, several attempts have been made to predict these values.

Figures 3-8 and 3-9 represent typical results of one approach using equations 6,

10, 13, 17, and 20 to estimate the comfort zone in oxygen-nitrogen mixtures for

various combinations of forced vs free convection, Clo values, etc. (Berenson,

1965). Comfort was established from the ratio of required evaporative cooling to

predicted maximum evaporative capacity, C, using the criterion of table 3-7 with

the exception that equation 22 was used to calculate the lower boundary of the

comfort zone. In addition, the skin temperature was constant at 91.4°F instead

of varying with C in the manner shown in table 3-7.
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HOT

80 90 1 (3O

Figure 3-8. Forced-convection comfort zones during mild exercise.
(Modified from Beren_n, 1965)

Unfortunately, there are few empirical data to substantiate these curves.

Preliminary studies tend to corroborate some of these predictions for different

oxygen-nitrogen environments (Bonura & Nelson, 1967; Secord & Bonura, 1965;

Roth, 1968). In addition, the predictions of this approach agree with the

ASttRAE data (Berenson, 1965).
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Figure 3-9. Lunar free-convection comfort zones as related to exerck_e rate in the nude.
(Modified from Beren_n, 1965)

For cabins with oxygen-helium nuxtures, other hcat flow constants must be

used to determine comfort zones (see equations 10 and 17). Empirical comfort

tcmperatures in different gas mixtures have not been systematically obtained.

Comfort temperatures have been recorded only as the average cabin temperature

set over periods of several weeks by subjects who bad control over tile thermostat

within the cabins (Roth, 1968). These temperature settings for subjects in surgical

clothes, which have about 0.5 Clo in air, are presented in table 3-8. These data in-

clude varied numbers of different subjects being studicd under each gas mixture.

No windspeed measurements were taken during thcsc studies, however, the

velocity was probably negligible.

Other studies found comfort temperatures in lte-O2 at higher levcls (Bonura &

Nelson 1967; Secord & Bonura, 1965). In these studies, the average temperature

settings during a varied work-rest cycle with 0.7 Clo were 78 ° F for nitrogen-

oxygen at 7 pi_ mid 85°F for helium-oxygen at 5 psia.

Table 3-9 presents additional data on Earth comfort zone boundaries for men

at rest in reduced pressure N2-O2 and He-O2 atmosphere (Fangcr et al., 1968). Gas

velocity was varied from 20 to 80 ft/min with little effcct on the comfort zone

boundaries.
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Heat Stress

Space operations require an understanding of man's responses to thermal stress
and his capacity to tolerate heat. Extensive data are required in addition to those

presented previously on comfort zones to reach even an index of man's response to
thermal loads. The dependent variables that must be considered include body tem-
peratures, sweat response, pain and discomfort thresholds, body stress, and

psychomotor performance.

Body Temperatures

The body temperatures used in thermal analyses are body core temperature
(Tr) , skin temperature (Ts), and mean body temperature (Tb).

Body Core Temperature(Tr). Internal body or d_'cp body core temperature is

an important factor in the thermoregulation of the body. Rectal temperature
(Tr) is considered a reasonable measure of deep core temperature and is easily
obtained. Core temperature remains remarkably constant at a mean of 37°C or
98.6°F as long as the body is in thermal equilibrium. Internal body temperature
is to some extent a function of the external environment, but is less so than skin

temperature. Even under conditions where thermal adequacy is provided, there
is a tendency for increased core temperature at higher metabolic rates.

Changes in core temperature can affect the rate of reaction of the various bio-
chemical reactions that make up the metabolic processes of the body. This effect is
called the QI 0 effect and results from the temperature dependence of the chemical

reaction rates which provide metabolic energy. That is, at temperatures above
approximately 98 ° F, there will be approximately a 7 percent increase in metabolic
rate per °F increase in internal body temperature. Similarly, at temperatures less
than 98°F, there will be a corresponding decrease in metabolic rate due to a de-
crease in the chemical reaction rate. The Q10 effect is important in considering the
thermal tolerance limits for human endurance. If the body is unable to adjust suit-

ably to the environment and the internal temperature falls outside the control
range, the QIO effect results in a more severe condition, by decreasing metabolic
heat output under cold conditions, and by increasing metabolic heat output during
hot conditions.

Skin Temperature (Ts). Skin temperature is primarily a function of the ther-
mal environment of the body and the resulting heat exchange with the ambient.

Decreasing environmental temperatures result in reduced skin temperatures;
decreasing ambient pressure leads to increased skin temperatures. The following
expression (equation 23) is used to derive a mean skin temperature, which can then
be used in computing mean body temperature (equation 24) and energy balance

(equation 1).

T 8 = 0.I2 Tback + 0.12 Tches t + 0.12 Tabdome n

+ 0.14 Tar m + 0.19 Tthig h + 0.13 Tleg

+ 0.05 Thand + 0.07 Thead + 0.06 Tfoot (23)
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Mean Body Temperature (Tb). Mean body temperature is derived from
the weighted sum of the rectal and mean skin temperatures. The weighting
varies as a function of ambient temperature (Stolwijk & Hardy, 1966). For
ambient temperatures of less than 30°C (Burton, 1946):

Tb = 0.67T r + 0.33T s (24)

For zone of evaporative regulation temperatures (Ta>28°C, 85°F), the
weighting is l:4for Ts:Tror l:9for Ts: Tes(esophageal). Mean body
temperature is used primarily as a determinant of heat storage or vice versa.

Heat Stress and Water Loss from the Body

The response of body core (rectal) temperature to heat stress induced

by ambient conditions and metabolic loads is shown in figures 3-10 and
3-11. Note in figure 3-10 that for each level of work, there appears to be a
characteristic internal or core temperature at equilibrium which is unaffected
by the environment so long as the neutral boundary condition, is not
exceeded. As the figure shows, the characteristic internal (rectal)
temperature for a particular work load varies between groups; both physical
training and training for work in the heat (acclimatization) produce lower
values. Superficial differences between ethnic groups appear to he due to
habit patterns and experience relative to working under hot conditions.
Figure 3-11 clearly illustrates the effect of heat training (acclimatization) on
the equilibrium rectal temperature, and the small, probably insignificant,
effect of training on the location of the neutral boundary. Note that in the
neutral zone, heat-trained men working at 1600BTU/hr maintain body
temperatures as low as or lower than novice workers working at
700 BTU/hr. However, when both groups are in the stress zones for their

respective work levels, the difference between their mean body temperatures
is 1.5°F. For comparison, new men working at 1600BTU/hr have
temperatures 1.5°F higher than similar men working at 700 BTU/hr, when
both are in their neutral zone of environments. The figure plots mean
thermal rectal temperature against effective temperature, which has been

defined by the American Society of Heating, Refrigerating and Air
Conditioning Engineers, Inc. (ASHRAE) as "an arbitrary index which
combines into a single value the effect of temperature, humidity, and air
movement on the sensation of warmth or cold felt by the human body.
The numerical value is that of the temperature of still, saturated air which
would induce an identical sensation."

Man's responses in atmospheres other than air at sea level are under
evaluation (Epperson et al., 1966).
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Sweating and Respiratory Water Loss. In normal man, heat stress can be eval-

uated by the rate of water loss from the body. Analyses of evaporative heat ex-

change under various conditions were presented above. In addition to these data,

which are applicable to space operations, figures 3-12 to 3-14 represent the sweat

production rates to be expected under survival conditions on Earth. Figure 3-12

shows how loss of water through the skin by diffusion is influenced by the vapor

pressure gradient, the skin temperature, and the barometric pressure. A high skin

temperature is shown to be related to ahigh diffusion loss. Warm skin free of sweat

was produced in the experiment illustrated by a high dosage of atropine. The graph

also shows that diffusion is increased as barometric pressure is lowered. Figure 3-13

shows the effects of various environmental conditions on sweat production. Note

in figure 3-13(a) that the relationship of skin temperature to sweat production is

highly variable under various environmental conditions. In figure 3-14 data are

plotted for six experiments on one subject, who was "fully acclimatized," of

"better than average stamina," who marched at 3.5 mph up a 2.5 percent grade, at

IO0°F and 20 mm Hg, with a lO-minute rest every hour.The morewater he drank,

the lower was his rectal temperature. Other experiments with nude subjects resting

at 110 ° F and vapor pressure of 25 mm Hg have shown that they were able to main-

tain equilibrium only if they replaced water continuously. It may be concluded

that failure to replace completely the water lost in sweat, hour by hour, leads to

elevation of body temperature and excessive physiological strain. Thirst or the

desire to drink is unreliable as an indication of the requirement forwater intake to

make up for heavy sweating. Other work has shown that replacement of salt at

regular mealtimes is adequate in contrast to the situation illustrated in figure 3-14
for water.
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Figure 3-12. ln_nsible water loss from the skin as a function of absolute humidity, skin
temperature, and barometric preSSure. (After Blockley, 1964, drawn from data of Brebncr
et al., 1956; Hale et al., 1958; Webb et al., 1957; Zollner et al., 1955)

Figure 3-15 represents the sensitivity of water loss through respiration to a

metabolic rate and ambient pressure and dew point (Wortz, 1966). Rates of

nonthermal sweating are about 80 to 220 gm/hr from covered areas and 20 to

40 gm/hr from the rest of the skin (Webb, 1967). This can be increased by

psychogenic stimuli of many types (Webb, 1967).
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Heat Stress Indexes. In the noncompensable zones of thermal control,

performance and tolerance have an inverse exponential relationship with

exposure time. Figure 3-16 reflects the general time-tolerance _lationship for

extremes of ambient air temperature under sea level conditions.
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Figure 3-17 shows tile physiological impairment that may be anticipated due

to extremes of body temperature. The tolerance limits reflect the borders of physi-

ological collapse to be used for rough evaluation of situations.
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Under conditions of heat stress, the mode of evaporative heat loss cannot
completely compensate for the difference between total heat load and heat lost
through other modes. This lack may be attributable to failure to achieve a
sufficiently high perspiration rate or by failure to achieve a sufficiently high
evaporation rate. Even though the perspiration rate is adequate to maintain
thermal balance, conditions of high humidity and/or low ventilation may limit
evaporation rates to values below that required for adequate cooling.

Some environmental correlates of comfort and stress were discussed

previously. The more physiologically determined indexes will now be reviewed.
A more detailed critique of the physically and physiologically determined heat
stress indexes is available (MacPherson, 1962).

The BeMing-Hatch Heat Stress Index (HSI). The Belding-Hatch (1955)
heat stress index is defined as the ratio of evaporation rate required for energy
balance to maximum perspiration rate safely attainable for prolonged
periods-both expressed in liters (of sweat) per hours, or:

E
HSI- x 100 (25)

Emax

The criteria on which the heat stress index is based are:

a. Body heat storage will not exceed the limit represented by a mean skin
temperature of 95°F, and

b. Ema x will not exceed 1 liter/hr; equivalent to 2400 Btu/hr (400 kcal/hr).

Figure, 3-18 and table 3-10 can be used as indicated to estimatc the
physiological and general function impairment of an 8-hour exposure at sea level
to several stressful thermodynamic parameters.

The P4SR Index. The sweat rate can be used as a predictor of thermal
stress in another way. The predicted 4 hour sweat rate (P4SR) uses only the rate of
sweating as a criterion of heat stress in environments that are hot enough to cause
sweating (Wyndham, 1952). On the basis of British experimental work, empirical
nomograms have been developed for predicting the probable amount of sweat in
liters that would be secreted over a 4-hour period by fit, acclimatized men under
different environmental conditions (Smith, 1955). A P4SR nomogram is shown in
figure 3-19.

The group of curves marked SI and $2 in the center of the nomogram, running
downwards from right to left, constitute the scale from which the basic 4-hour
sweat rate (B4SR) is read. If the predicted 4-hour sweat rate (P4SR) is required for

men sitting in shorts, the calculation is very easy as the P4SR is the same as the
B4SR. An that is necessary is to join the appropriate point on the dry-bulb scale to
the wet-bulb temperature on the wet-bulb scale corresponding to the air
movement. The P4SR is given by the point where this line intersects the curve on
scales S1 and $2 corresponding with the air movement.
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9

&lR VELOCITY, fl/mm

Figure 3-19. Nomogram for _he prediction of 4-hour sweat rate (P4SR) at sea level. (Alter
MaePherson, 1960; reprinted by permission of the Con_'oller of Her Brittanie Majesty's
Stationery Offiee)

The P4SR also may be calculated by the following three stages: In the first
stage, the wet-bulb temperature may require modification depending on the
amount of radiation, the metabolic rate, or the character of clothing. In the
second stage, the nomogram is used to obtain the B4SR and in the third stage,
the P4SR is obtained by adding certain constants to the B4SR depending
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on the metabolic rate (see wet-bulb equivalent of metabolic rate in inset)
and clothing. A P4SR of 4.5 liters was provisionally adapted as the upper limit
of tolerance for physically fit mcn. Details regarding tile three-stage modification
are available (MacPhcrson 1960).

The P4SR, although derived under rather different conditions than expected
in space flight, offers some possibilities if suitably extended (Webb, 1964). It
was originally based on several types of experimental data taken on heat-
acclimatized young men in Singapore and in enviromnental chambers. It is
unsafe to use it as a means of predicting sweat rate, however, unless all the
conditions are similar to those originally used. When used with care, the P4SR
does allow prediction of thermal effect in a number of different situations
(Blockley, 1965). The hmitations are chiefly those of a narrow range of activity
(up to 250 kcal/sq m-hr or five times the sitting subject rate) limited clothing
combinations, and the fact that all the subjects were heat acclimatized. The
P4SR is not recommended for predicting sweat. It can be used, however, for

comparing environments in terms of thermal stress, to be followed by
experimental evaluation of the environments, with sweat production being taken
as one dependent variable (Gillies, 1965).

Human Performance During Heat Stres_

Tolerance Time in tteat. The maximum tolerance time (0 t) for heat gain
that represents an emergency maximum for thermal stress is inversely
proportional to the heat storage.

0 t = 3300/Q s min or 55/Q s hr (26)

where Qs is calculated usiltg equation 1.

The tolerance and general performance limits as a function of timc and body
heat storage are shown in figure 3-20. The heat storage at tolerance is inversely
related to the rate of heat storage (Goldman et al., 1965). Recent evidence
indicates that men actively exercising in space suits can store up to 1000 BTU in
actively working muscle (Wortz, 1967). This storage must be considered during
any analysis of tolerance times in exercising subjects.

Figure 3-21 indicates the conservative nature of earlier tolerancc limits. The
dashed lines in the figure and points 1, 2, 3, and 4 represent more recently estab-
lished tolerance time levels. The tolerance limit at high temperature is based on
faintness, dyspnea, nausea, and restlessness as an endpoint. Because these levels are
nearly double the limits established by earlier workers, engineers designing in terms
of earlicr tables probably were more restricted than necessary or enjoyed a wide
margin of safety even in the response of the most sensitive occupants. The ranges
represented by these tables also reflect individual differences between subjects _
well as differences in motivation. The dashed lines probably represent the capa-
bilities of highly motivated spacecrews in top physical condition.
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Figure 3-22 uses the reference operative temperature to determine per-

formance and tolerance limits. There are high correlations between the final skin

temperature, rate of rectal temperature rise, and rate of heart rate increase as

linear functions of the Oxford index (Goldman, 1965).

5

4

,,, 3

F-

DEGREES, C

30 35 40 45 50 55 60

8O

MINIMUM TOLERANCE
LIMIT-RESTING

MINIMUMTOLERANOE".-....
N %%_4

Q_

QQ_Q

Z_ 0 "o...°,°.°.

MINIMUM PERFORMANCE

- LIMIT-RESTING

OR LIGHT ACTIVITY "_

90 100 110 120 130 140

REFERENCE OPERATIVE TEMPERATURE,

TOR DEGREES, F

TOR = Operative temperature at 0.79 in. Hg

vapor pressure

• Heavy pursuitmeter test

• Mixed test battery

• Working men

A Wireless telegraphy test

O Visual vigilance test

[] Resting men

Figure 3-22. Performance and tolerance limits in the quasi-compensable zone
for lightly dressed men. (After Blockley et al., 1954)
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Performance Under tteat Stress. Performance begins to deteriorate in any

given condition at about 75 percent of the physiological tolerance limit.

Although highly motivated individuals may be capable of exceeding normally

established performance and tolerance limits (Teichner, 1961), excessive

penalties in recovery time may be required if normal limits are exceeded. Even

though no other stresses are anticipatcd or evident, it is suggested that

75 percent of the average tolerance limit level not be exceeded until the

significance of deconditioning that occurs during space flight is better

understood. Figures 3-23 and 3-24 reflect performance decrements as a function

of ambient and effective temperature.
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Figure 3- 23. Combined performance averages for l I wireless telegraph operators
under conditions of extreme heat. (Rotb, 1968)

Table 3-1 l summarizes the physiological respon_ increases and decreases in

environmental temperature (Spector, 1956). The debilitating effects of heat have

received much attention (Lind, 1963).

Table 3-12 classifies the symptoms to be expected from the debilitating
effects of heat.
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Figure 3-24. Effects of incentives, target speed, and environmental warmth on accuracy

of manual tracking. (After Teichner, 1961; adapted from Pepler, 1959)

Acclimatization to Heat. Acclimatization can alter the response of

humans to heat loads. Figures 3-25 and 3-26 represent the improvement in
function that is possible through heat acclimatization. Figure 3-25(a) shows
results obtained with the standard acclimatization procedure used in South

African gold mines to prepare laborers recruited from remote villages for
work in saturated environments underground. The duration of the daily
work period was 5 hours, azld the work, _oveling rock. For the first
6days, the effective temperature was 84°F; for the next 6 days, the E.T.
was 89.5°F and the amount of rock shoveled was increased. Note in the

graph file fall in rectal temperature. The curves are means for over
100 men, and the bar shows +1 S.D. during each of the 6-day work periods.

In figure 3-25(b) results are shown for a hcat acclimatization technique used
at the U.S. Army Laboratories at Natick. In this experiment, men marched

at 3.5 mph for I00 minutes each day in an environment of 120°F dry-bulb,
80°F wet-bulb, 20Oft/rain air velocity (E.T. 89°F, vapor pressure

15 mm Hg).
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Figure 3-25. Acclimatization to heat. A: results of standard procedure used to acclimatize

laborers for work in saturated environments underground; B: results of a U.S. Army Natick

Laboratories technique. (After Blockley, 1964, adapted from a. Wyndham et al., 1954;

b. Lind & Bass,1963)
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In figure 3-26(a), the results of a heat acclimatization experiment involving
two subjects are shown. Subjects walked at 3.5 mph on a 5.6 percent grade in a
room at a temperature of 104°F and a vapor pressure of 13 mm Hg (E.T. 84°F).

Subject S.R. was acclimatized by 23exposures between February 20 and
March 20. After March 20 his only exposures were on April 16 and 28. Subject
W.[l. was acclimatized by 11 exposures between March 24 and April 8. After
April 8, his only exposures were on April 22 and 29. On the first exposure, the
experiment was terminated by the collapse of the subjects at 90 min. After
acclimatization, the men were still maintaining equilibrium with ease after
4.5 hr. Acclimatization to heat is shown by the lowering of body temperatures
and heart rates. Figure 3-26(b) is a diagrammatic presentation of mean results
from two studies of the heat acclimatization phenomenon. Subjects ill both

groups were drawn from the same Army population at Fort Knox, Kentucky.
The two studies are related by means of a parameter combining the sweat rate
(expressed as its caloric value if evaporated) and metabolic rate. The slope of the
straight lines in the diagram represents an estimate of the sensitivity of the sweat

response to increases in temperature of the peripheral tissues or blood (expressed
as a function of surface temperature and metabolic heat output). It can bc seen
that when men are unclothed and the air is dry, sweat rate changes but little, but
the skin temperature needed to produce that amount of sweat becomes steadily
lower in successive exposures when the climate is humid, and evaporation is
impeded by clothing: the skin temperatures does not change much on successive
days, but the quantity of sweat produced at that temperature is enormously
incrca.,_'d as acclimatization progresses.

The value of the shorter exposure period technique in preparing men to
work for long periods such as 5 hours or more in the heat is the subject of

considerable controversy. Newer techniques pioneered by Fox (1964) in
England concentrate on raising core temperature to the same fixed level each

day, so that thermal strain, rather than the stress, remains constant throughout
the acclimatization process. Under these conditions, improvement continues for

longer periods and to greater levels than the standard exposure techniques. Heat
acclimatization may not be as important in hot, wet environments where
increased evaporative cooling cannot be produced even if there is an increased

sweat secretion, since no increase in the internal thermal gradient between core
and skirl temperature can be achieved (Goldman, 1965).

Skin Pain and Heat Pulses. Tables 3-1 and 3-13 and figure 3-27 show the
pain thresholds for the skin from conductive, radiant, and convective heating. In
general, the pain threshold is reached when the skin reaches a temperature of
45°C. A skin temperature of 46°C is intolerably painful. For small skin areas the
curve shown in figure 3-27 becomes asymptotic at about 18 BTU sq ft/min. At this
level and below, the blood supply to the skin is carrying off the heat as fast as it
arrives, and heat is stored in tile body. How long this can go on with the total body
exposed is not established. A rise in skin temperature of 0.008°C will evoke a

sensation of warmth in 3 _conds and a decrease in skin temperature of
0.0070°F will produce a cohl sensation. The faee and the neck are the
most sensitive to thermal stimuli and the backs of the hands arc next
(Hardy 1954).
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Table 3-13

Pain from Conductive Heating

113

Mural Surface gv, i,g,:

Tclupcrntul_, T_ h:r,lnC_ Tilnc,

Body Area Clothing Worn _f _c

Hand

Kneecap

Fingertip

Hand - pal,=,

Fore,_rm

Upper arm

Buttocks

Mid-thlgh

Kneecap flexed

Calf _uscle

Upper arm

forear=l

Pal_ of ha_d

Back of hand

Palm of hand

B,ire skin

B,_re skin

Bare skin

AF/B-3A leather gloves

AF/B-3A leather gloves

AF/B-3A leathcl gloves

AF/B-3A leather gloves

AF/B-SA leather gloves

SAC alert suit

SAC alert suit

K-2B light AF flight coverall

SAC alert suit

Alert suit plus Brynje net string

underwear

K-2B _uit

K-2B Suit plus Brynje underwear

SAC alert suit

AleFt suit plus Brynje underwear

K-2B suit

K-2B suit plus Brynje underwear

SAC alert suit

Alert suit plus Brynje underwear

K-2B suit

K-2B suit plus Srynje underwear

SAC alert suit

Alert suit plus Brynie underwear

K-2B suit

SAC alert suit

Alert sult plus Brynje underwear

K-2B suit

K-2B suit plu, Brynje underwear

MD-3A wool-nylon antiexposure suit

MD-3A wool-nylon antie×posure suit

MD-3A suit

Aluminized asbestos glove

AIuninized asbestos gloves

Arctic mitten

Arctic mitten plus B-_A glove

Arctic mitten plus B-3A glove

Pigskin 800°F heat glove

Pigskin 800°F heat glove

Pigskin 800°F heat glove

t20

II7

_20

t BO

60

IBO

17B

185

IBO

175

150

_BO

500

f $0

150

I BO

30O

IBO

150

150

30O

150

150

_50

t75

150

150

300

tBO

150

300

400

250

250

250

300

3O0

400

300

400

50O

I0 t(, Ib

54

B

t2.6

7.3

25.2

9.7

8,0

20.0

8.0

?,S

34 .3

7.2

18,1

61,9

70.3

2_.7

52.5

_90

55.6

i3.1

t5.6

.90

14.4

9.5

7.3

11.4

13.2

66. I

42.0

b0.2

15.9

b3.5

B.2

18.7

57.0

27,6

30.7

21,0

18.5

Notes: Light touch pressure (less than 1 psi) applied to heated metal surface.

bow and knee sometimes received second-degree burns without pain.

(After Blockley, 1964)
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Figure 3-27. Pain from radiant and eonvective heating. A: strong skin pain produced by

sources ranging from intensity of nuclear weapon flash (approximately 100 BTU/sq ft/min)

to _ow heat pulse associated with reenlxy heating, where the heaUng is partly convective.

(After Bloekley, 1964; adapted from Buettner, 1952; Hardy, 1954; Kaufman et al., 1961;
Stoll & Greene, 1959; Webb, 1963). B: dividing line between painful and nonpainful heating

for air at various temperatures vs the heat transfer coefficient, which depends on air density,
air velocity, and surface areas and shapes. (After Blockley, 1964)
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The ability of the body to withstand high heat pulses is shown in figure 3-28.
Figure 3-28(a) and (b) show the pulse responses and average skin temperatures of
subjects exposed to three different severe heat exposure transients which come
close to both the pain limit and the heat storage limit. Each curve represents the
average data from five or six subjects. Clothing consisted of a standard flying cover-
all worn over long underwear with an insulation value of 1 Clo. Figure 3-28(c)
shows the increase in tolerance times for subjects exposed to a heat pulse where
wall temperature was increased at 100°F/min, and the subjects wore clothing af-
fording various degrees of protection. With subjects wearing heavy" aluminized
coveralls, wall temperature increase was stopped at 500°F and that temperature
held until tolerance was reached. Adding ventilation with air at about 85°F al-
lowed these exposures to last beyond 20 min. Figure 3-28(d) graphs tolerance time
for man in a hot environment. The time scale indicates prepain time for exposure of
the skin to radiant heat, and escape time for the curve marked "body." The latter
refers to a lightly clad man with his face exposed. The temperature scale denotes
room temperature for the body curve and radiation temperatures for curves refer-
able to the skin. The curve marked warm dry refers to experiments with an initially

dry skin, and a skin temperature initially of about 30°C. A tourniquet was applied
to obtain the data marked without circulation. The cold wet curve utilized skin

exposed wet at an initial skin temperature of about 15°C. The clothed skin curve
was obtained using skin covered with 1 cm insulating cloth with an initial skin
temperature near 30°C.

A computer program is available for evaluation of time-temperature histories
of the skin at different depths following heat pulses (Weaver, 1967).

Cold Stress

Shivering ensues when heat losses to the environment exceed the metabolic
energy being produced by the body and body and skin temperatures reach critical
values. The shivering reaction increases skeletal muscle activity (without doing
measurable work) and results in an increase in metabolic heat production. A two-
fold increase in metabolism due to shivering has been observed after exposure to an
ambient temperature of 4 I°F (5°C) for more than one hour. A fivefold increase in
metabolism due to shivering is considered to be the maximum attainable (Bul-
lard, 1963). Although shivering may add enough to metabolic heat production to
prevent further heat loss, it is never sufficient to replace heat already lost. The
shivering response may be triggered by the rate of decrease in temperature and not
the temperature of the bodyper se (Burton, 1946).

Cold Stress Tolerance

The effective loss of about 80 kcal/sq m or 31 BTU/sq ft has been taken as
the maximum heat loss a person can tolerate with severe discomfort (Spector,
1956). The heat available for loss can be taken as 0.75 Em + 80 kcal/sq m, where
E m is the metabolic rate in kcal/sq m-hr. Sleep of unacclimatized Caucasians will
be disturbed at 50 percent of this loss rate. The lowest ambient temperature at
sea level that can be tolerated for prolonged thermal equilibrium is a function of
the exercise rate, insulation, wind speed, and several other variables.
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Figure 3-28. Tolerable heat pulses. (Part c is adapted by Blockley, 1964, from data of

Kissen & Hall, 1963; Kaufman, 1963; Webb, 1963; Part d is after Buettner, 1952, based on

data of Bloekley & Taylor, 1948, and Pfleiderer & Buettner, 1940)
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An empirical expression for the total cooling power of the environment,
disregarding evaporation, is called windchill (Iampietro et al., 1958):

Kc : (V x 100 + 10.45 - V)(33 - Ta) (27)

where K c = windchill, that is, total cooling in kg-cal/sq m/hr

V : wind velocity in m/sec

T a = air temperature in °C

Although K c is not rcprcsentative of human cooling and is probably not very
closely representative of physical cooling either, windchili has come into

common use as a single-valued index of the severity of the temperature-wind
combinations. As such, it provides a descriptive quantity against which human
cooling phenomena can be evaluated. A nomogram, giving rapid approximations
of windchill, is provided as figure 3-29. In outdoor cold weather, the wind
velocity has a profound, sometimes decisive, effect on the hazard to men who

are exposed. The windchill concept provides a means for quantitative
comparison of various combinations of temperature and windspeed. For
example, note in the nomogram -50°F with an air movement of 0.1 mph has the
same windchill value, and therefore is predicted to produce the same sensation
on exposed skin, as -15°F with a wind of only 1 mph or +14°F with a wind of

5 mph. The windchill index does not account for physiological adaptations or
adjustments and should not be used in a rigorous manner. It is based on field

measurements by Paul Siple during World War II of the rate of cooling of a
container of water.

When the rate of body heat production is greater than the windchill, excess

heat is removed by evaporation; under bright, sunny conditions, the nomogram
values should be reduced approximately 200 kg-cal.

For ocean recovery in winter months, the rate of cooling in water is impor-
tant. Figure 3-30 is a nomogram for estimating tolerance time to cold water
immersion (Smith et al., 1962). The nomogranl was devised to relate the many
factors involved in estimating tolerance in cold water, where one knows or can

assume: water temperature (Tw); insulation of clothing and tissue (It);
metabolic heat production per unit surface area (M/A); the immersed

surface area (A); body mass (m); and exposure time (t). As shown by the
dotted example line (for a nude man in water at 4°C, a metabolic rate of

400 kcal/sq m-hr, an immersed surface area of 1.75 sq m, a body mass of
75 kg, and an exposure time of one hour) the nomogram predicts: heat loss
to the environment He/A; heat debt per unit surface area (D/A); heat debt

(D); changes in mean body temperature (dO); and mean body temperature
(0).
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Figure 3-29. Windehill nomogram.

(After Blockley, 1964; adapted from Siple & Passell, 1945)
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Figure 3-31 is a graphic presentation of practical experience in cold
water tolerance with routine flight clothing and antiexposure suits. The
"voluntary tolerance, flight clothing" zone in figure3-31(a) shows the
average results from numerous experimental studies, including a recent one
using a diver's "wet suit" in conjunction with a flight suit and long
underwear. Such experiments are typically terminated when the subject
declines to accept the discomfort any longer, or reaches a skin temperature
below 50°F. The second limit shown, pertaining to men protected by
potentially waterproof garments, reflects the fact that hands and feet cannot
be adequately insulated and remain functional. Nude men in 75°F water

reach, within 12 hours, one or mlother tolerance limit (rectal tempcrature
below 95°F, blood sugar below 6Orng/lOOml, or muscle cramps). The
extent to which real survival time would exceed this limit is difficult to

predict, due to the importance of injury, equipment available, and such
psychological factors as belief in the possibility of rescue. An analysis of
over 25,000 personnel on ships lost at sea during 194044 showed that of
those who reached liferafts, half died by the sixth day if the air
temperature was below 41°F (5°C); survival time increased with increasing
air tcmpcrature. Figurc3-31(b) indicates life expectancy for individuals
immersed in cold water wearing no protective clothing.

Figure 3-32 shows the time to reach critical core and skin temperatures
after exposure to cold water in several types of exposure suits. A criterion
of 76°F is based on the general observation of extreme discomfort when

this point is passed. In most of the experiments summarized here, some
subjects requested termination of the exposure at or near the time when

the group average reached this point. Note for comparison the data point
for nude exposure to water at 48°F. The value of exercising in cold air and
the lack of an advantage in cold water is evident.

Recent developments in isotopic heating devices make practical the use
of exposure garments heated for long periods of time (Sanders, 1966).

In cold air, injury to the extremities is often a limiting factor in human
performance (Bullard, 1963). Figure3-33 indicates the power required to
attain given skin temperatures of tland and loot in electrically heated gloves
and seals with subjects in an air temperature of -40°F in a 10mph wind.
The body core in these experiments was wound in a U.S. Army
Quartermaster 4.3 Clo cold-dry standard clothing ensemble. Performance is
severely hindered if the temperature of the fifth finger falls below 55°F
(Clark, 1961 ).

Figure 3-34 prescnts a typical physiological response of a body immersed
in cold water and rewarmed. The pathophysiology and treatment of
hypothermia and cold injury in space operations were recently reviewed by
Busby (1967).
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Performance in the Cold

Skilled motor performance shows a progressive loss with continued cold

exposure (Trumbull, 1956). Tactual sensitivity is markedly affected by lowered
skin temperature. A numbness index has been developed based on the ability of
the individual to discriminate the separateness in space of two straight edges on

which the finger is placed (V-test or two-edge limen) (Mackworth, 1946).
Figure 3-35 shows the great difference in the size of gap required to detect the
presence of the gap under varying conditions of air temperature and windspeed.

General performance also is altered by cold in a complex way. Figure 3-36
shows the effects of various combinations of air temperature and velocity (and

thus windchill) on the manual dexterity of soldiers. Except as indicated,
complete Arctic uniforms were wom. During the test trials, the subjects removed
the heavy arctic gauntlet and performed with only the wool trigger-finger insert.
The results are based on a total of 530 soldiers sorted into the various subgroups

of the experiment. It may be seen that performance time increased in direct
proportion to the windchill and that mean skin temperature and digital
temperature were roughly inversely proportional to windchill. The rate of
cooling is an important factor (Clark et al., 1960). There is clearly a relationship
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between performance and the skin temperatures; however, analyses of these
data and those of figure3-37 indicate that the direct dependence of
performance on finger and skin temperatures may be relatively small and
that other factors of a psychological or physiological nature may he of
equal or possibly greater importance.
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Figure 3-35. Comparison of two-edge and two-point thresholds
as a function of skin temperature in air at sea level. (After Mills, 1957)

Total body cooling is not as significant a factor as finger temperature in
dexterity tests (Gaydos, 1958); cooling of the hand decreases finger
flexibility (LeBlanc, 1956).

The reaction speed of men to simple visual signals also is affected by
the cold (Teichner, 1958). The relative loss is not as g_eat as that of tactual
sensitivity, but it is greater than that of manual dexterity. Figure 3-38
shows a comparison of these three phenomena for appropriately dressed,
but unacclimatized men in terms of the percentage loss relative to optimum
thermal conditions. It is reasonable to expect losses in a cold environment
for all types of performance that depend on any of these functions, as well

as tasks of eye-hand coordination (Teichner, 1954) and intellectual tasks
requiring fast reactions such as the cold test (Horvath, 1947). Nothing has
been reported to indicate that intellectual tasks not requiring fast reaction
times, motor skills, or tactual sensitivity are affected by cold exposure, at
least short of the accumulation of a serious heat debt.
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Acclimatization to Cold

Recent evidence indicates that under cold conditions, increased voluntary

caloric intake and other compensatory processes result from the increased

energy expenditures associated with field activities (Davis, 1963) instead of

from the low temperature as such.
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Whatever the direct cause, the result contributes to a beneficial increase

in heat production, vasomotor and renal control. The major known
physiological changes produced in the cold were shown in table 3-11. This
table indicates that acclimatization takes the form of increased levels of

some functions and the return to normal of others. The value of using cold

acclimatization to increase the performance and survival capabilities of
astronauts during emergencies, in such missions as lunar night operations,
has not been established.

Clothing

The effects of clothing on thermal transfer from the body must be
considered for all conditions of space flight. The basic principles of thermal

physiology involved with the effects of wearing clothing have been discussed in
this chapter. Other factors, however, need to be considered (Blockley, 1954,
1964; Burton, 1955; Newburgh, 1949; and Roth, 1966).

Insulation Values

The addition of clothing to the body surface reduces the quantity of heat
that can be lost by evaporation because of the increased resistance to diffusion

of water vapor. At the same time it reduces the quantity of heat gained or lost
by the body by radiation and convection.

Two properties of clothing must be evaluated to determine the effect of
clothing on thermal balance:the_ are thermal resistance (Rg) and vapor
resistance (1_). Thermal resistance is the resistance of a particular clothing
assembly to flow of heat. It is generally expressed in CIo units (see discussion

after equation 3).

Thc total insulation value of a clothing assembly to the man must include
the insulation of any gas layer trapped between clothing layers. Calculation of
the total insulation value of newly designed garments and fabrics requires the
knowledge of the equivalent thickness of the still-air layer (R°), which is equal to

the sum of the clothing thickness (R'g) as a still-air equivalent and the film
thickness of the still-air layer (Re):

R' : R'g + R e (28)

Values for R'g for standard fabrics are shown in table 3-14. If fabric
thickness is known, the following relationship can be used:

Rg _ equivalent air thickness
(29)

L fabric thickness
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If thermal resistance in Clo units is known, the _lationship shown in
equation 30 can be used.

R'g vapor resistance (in. of air) 0.5 in. 1.2 cm of air

R---:" thermal resistance (Clo units) CIo of air or Clo (30)

Vapor resistance (R°g) depends on the vapor diffusion of evaporated water,
weave and thickness of the fabric material, thickness of the air layers between
the garments, and nature of the gaseous environment. While the rate of vapor
transfer across near isothermal air layers is directly proportional to thickness,
bellows action and resulting c6nvection suggest use of the same maximum
effective thickness for vapor transfer as for heat transfer, that is R' e = 0.3 in.
(0.75 cm). The values of R'/L in table 3-14 are a conwmient estimate of the

vapor resistance of similar fabrics.

After thermal resistance and vapor resistance of the garment assembly are
determined, the boundary for heat transfer with the environment may be shifted
from the skin of the body to the surface of the clothing. With clothing as the
boundary, Tc is substituted for Ts in all expressions for heat transfer.

Ventilated Suits

Suit convective heat removal is computed from the mass flow of ventilating
air and the difference between inlet air temperature and the desired surface
temperature (Blockley, 1964).

Q = 0.24 (90- Tin)w Btu/hr (31)

The cooling capacity of Apollo prototype ventilated suits as a function of
gas flow at several internal suit pressures is shown in figure 3-39. The partition of
cooling into sensible and latent loads is indicated. The capacity of Apollo
prototype ventilated suits to handle different metabolic loads is shown in
figure 3-40.

Liquid-Cooled Suits

For wprk loads greater than 600 BTU/hr, liquid cooling must be added.

The broken line in figure 3-39 represents projected capacity for liquid
cooling cascade addition to ventilated suits. Total liquid loop suits have
been used to extract heat in a warm environment and heat the body in a
cool environment (Burton, 1966; Lang, 1965).
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Table 3-14

Vapor Resistance of Fabrics (R'g)

129

Wright Thickness (L) Resistance (R' 1

Fabric (oz/sq yd) (cm) (cm air) R'/L

Cottons

Cotton net

Cotton twill (3 by I in.)

Cotton twill (5 by I in.]

Cotton twill (2 by I in,)

Cotton poplin

Cotton oxford

Cotton balloon cloth

Cotton 'jungle cloth"

(Bedford cord)

Heavy cotton

Close-weave cotton

(Shirley L-30)

Wools

Double-Face wool pile

Wool twill C2 by 2 in.}

Worsted serge

Wool serge

Nylons

Spun-nylon fabric

Nylon poncho cloth

Five-end nylon sateen

Filament nylon fabric

Plain weave nylon

Rayons

Viscose rayon 12 by 2 in,

twill (filament)

Acetate rayon satin

(filament]

Glass

Glass fabric

Plain weave glass fabric

4.4

8,2

8.8

4,4

5.8

6 7

2,2

15.6

13.5

9.8

22

I0

6,1

I0,7

4,9

1,5

2,3

2,0

2.6

3.6

2,7

3.3

6.6

0. I00

0,097

0. I12

0.069

0.039

0,081

0,015

0. I07

0,076

0.051

I.I

0.173

O. 056

O. 130

0,046

0.018

0.016

0.013

0,020

0.025

0.0_8

0.013

0.030

0.12

0.19

0.24

0.15

0.09

0.19

0.0_

O. 30

0.28

0.23

I.I

0.26

0.12

0.31

0,18

0.07

0.05

0.09

0.19

0.13

0. t4

0.12

0.32

(After Blockley et al., 1954)

1.2

1.9

2.1

2.2

2.3

2.4

2.6

2.9

5.7

&.5

I

1.5

2,1

2.Z,

5.9

3.9

5.0

6.9

9.5

5.2

7.8

9.2

10,5
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If the cooling requirement for a given thermal situation is accurately
known, the appropriate line in figure 3-41 gives a family of suitable inlet

temperature and flow combinations to meet the requirement. The inlet
temperature coordinate has a lower limit of 32°F because, for all practical
purposes, pure water can exist only in liquid form above this temperature
and because of the possibility of causing local frostbite. The upper limit of
inlet temperature has been set at l13°F because temperatures above this are
liable to burn the skin. Mass flow coordinates extend up to 150 Ib/hr
because this is about the maximum flow capacity of the present suit. The
suit should be capable of absolute maximum cooling rates of 1930 BTU/hr
and heating rates up to 700 BTU/hr at a flow of 150 Ib/hr. If the cooling
requirement is accurately known, file unit performance indicated in
figure 3-41 should specify inlet temperatures to about 2°C or 3.2°F.
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Figure 3_1. Suit performance for liquid-cooled suit. (After Burton, 1966)

The recommended distribution of tubing in a typical water-conditioned
suit for use at rest required to give no local overcooling is shown in
table3-15 (Burton, 1965). Unfortunately, severe exercise may alter this
distribution.

Data on the latency of cooling after exercise loads recently have been

gathered and are most useful for design of thermal regulators for liquid
suits (Webb, 1967). Figure 342 compares the equilibrium rectal temperatures
attainable at different metabolic rates.

Figure 3-43 presents the shivering and sweating thresholds for subjects in
Apollo prototype liquid-cooled suits. Extravehicular suits must be designed
to remove at least 2000 BTU/hr 500 kcal/hr) of heat and remain within
these thresholds (Lalrg, 1965).
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Table 3-15

Recommended Distribution of Tubing in Water-
Conditioned Suit at Rest

Region Percentage of Tubing

1/2 head 0

Hand 0

Foot 0

Forearm 9.3

Arm 16.9

1/2 back 10.0

1/2 chest 8.8

Calf 18.1

Th igh 25.6

Buttock 4.5

1/2 abdomen 6.8

(After Burton & Collier, 1965)
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Figure 342. Plot of rectal temperatures at equilibrium (energy balance) vs work level,

incorporating data from many sources. (:_naded area is an envelope of data from five
sources.)(Webb, 1964; after Webb & Annis, 1965)
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Figure 3-43. Comfort thresholds of sweating and shivering in prototype
liquid-cooled Apollo suit. (After Lang & Syversen, 1965)

Conductive Heat Transfer

Liquid cooling garments require that physiological constraints to conductive

cooling modes be quantifiably identified. These constraints include sensitivity to

thermal and pressure gradients on the skin surface, tube to skin contact resistance,

skin resistance, temperature ranges (for comfort) of body parts, and the effects of

hair and perspiration on conductive exchange.

Unfortunately, the liquid-cooled space suit is worn under exercise conditions

wherc skin comfort temperatures, thermal conductanccs to deeper subcutaneous

structures, and similar factors arc quite different from the resting conditions

(Webb, 1966). The characteristics of the skin in thermal comfort cannot be used

under the unusual environmental condition of exercise in a liquid-cooled suit.

Specific data are needed on the determinants of skin comfort under such

conditions. Figure 3-43 is a good example of the type of data needed.

To determine heat conduction in the steady state, the following equation may

be used :

k

Qk/A = -_ (T 1 - T2) (32)

In the resting condition, the thermal constant for conducting heat from the interior

of the body to the skin (tissue conductance only) is:

k = 1.5 +0.3 x 10 -3 kcal/cm-sec-°C (at 23 ° to 25°C ambient)
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At full vasoconstriction, when tissue conductance is 9 to 10 kcal/sq m-hr-°C, the

value for conductance corresponds to a tissue layer 1.8 to 2.2 cm thick. At the

limit of vasodilation, thermal conductance is increased to values of 28 to

30 kcal/sq m-hr-°C. Although values above and below these hmits have been

reported in the literature, many of the subjects may have become acclimated by

the tests and, accordingly, their values of conductance would exceed the norm.

A change from full vasoconstriction to full vasodilation lowers thermal resistance

of the body approximately the equivalent of 1 Clo unit.

Equivalent thermal conductance between adjacent radial layers of head,

trunk, and extremities has recently been suggested. Assuming the thermal

conductivity of tissue of 36 kcal-cm/sq m-hr-°C, physiologically effective masses

and heat capacitance of different body compartments atso have been calculated.

The effectiveness of vascular convective heat transport can be measured

quantitatively by deriving values of thermal conductance for the peripheral

tissues of the body (Stolwijk, 1966). Cardiovascular changes, such as shunting

during exercise, considerably complicate such calculations and, unfortunately,

are key factors in operational situations.

In general, it can be concluded that as a physical thermal transfer system,

conductive coohng can he adequate to maintain essential thermal equilibrium. It

is essential, however, that the heat exchanger in contact with the skin operate at

high enough temperatures to preclude vasoconstriction and guarantee adequate

transfer of heat from the deep core to the skin to the heat exchanger. Current

designs are not adequate to maintain man in the comfort zone during exercise at

high metabolic rates.

GLOSSARY

Nomenclature

Symbol Definition BE Units

A area sq ft

A b surface area of body sq ft

A surface area of clothed body sq ftc

A r radiating area of body sq ft

A area of wall sq ftw

C wetted area/A b

Cp specific heat at constant pressure Btu/Ib°F

D diameter or significant dimension ft

D v vapor diffusivity sq ft/hr

E r evaporative water loss Ib/sq ft

E m metabolism Btu/hr
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Few

g

G

h
c

hD

h r

hrb

hfg

k

L

H

P

Po

P

Pa

Ps

Qc

Qe

Qg

_am

Qr

Qs

_sr

Qk

_v

q

R

R .= _/h
g g

R'

R _
g

T

T a

T b

TE

Tcmpcrature

Definition

shape-emissivity factor

fraction of earth gravity

mass velocity C_V)

convection heat transfer coefficient

mass transfer coefficient

radiation heat transfer coefficient

radiant conductance (b}ackbody)

heat of vaporization

thermal conductivity

thickness

molecular weight

atmospheric pressure

standard barometric pressure

water vapor pressure

atmospheric water vapor pressure

water vapor pressure at the skin

convection heat transfer

evaporation heat transfer

garment cooling

metabolic heal

radiation heat transfer

storage rate

solar heat transfer to man

conductive heat transfer

respiratory heat transfer

rata} heat transfer

Gas constant

thermal resistance of clothing

vapor resistance in terms of the

equivalent thickness of still air

clothing vapor resistance

temperature

atmospheric temperature

weighted mean body temperature

effective temperature

135

BE Units

dimensionless

lb/sq ft-hr

Btu/sq ft-hr-°F

ft/hr

Btu/sq ft-hr-°F

Btu/sq ft-hr- °F

Btu/lb

Btu/ft-hr- °F

ft

Btu/hr

psia

psia

psla

psia

psia

Btu/hr

Btu/hr

8tu/hr

Btu/hr

Btu/hr

8tu/hr

Btu/hr

Btu/hr

Btu/hr

ft-lb/lb -°R

s__q.ft-°F
Btu

ft still air

ft still a_r

oR

oR

oR

o F
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Definition

clothing surface temperature

operative temperature

reference operative temperature

recta| temperature

._eighted body skin temperature

garment ventilating temperature

average wall temperature

film temperature

internal energy per unit mass

overall heat transfer coefficient

velocity

respiration rate

mass flow rate

work rate

GREEK SYMBOLS

solar absorptivity of skin or garments

emissivity

emissivity of clothing

emissivity of wall

time of exposure

tolerance time

viscosity

density

Stefan-Boltzman constant

BE Units

o R

o F

o F

o F

o R

o F

o R

o R

Btu/Ib

Btu/hr-sq-fL-eF

ft/hr or ft/min

]iters/hr

lb/hr

Btu/hr

dimensionless

dimensionless

dimensionless

min or hr

min or hr

_b/ft-hr

Ib/cu ft

0.1714 X I0 "s

DIMENSIONLESS GROUPS OR NUMBERS

h D

Nu c
k

C

Pr --P--
k

Nusselt number

Prandt I number

Re ,VD Reynold number

Sc PD Schmidt number

v
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APPENDIX

A TWO-NODE Model of Human Temperature Regulation in FORTRAN

by A. P. Gagge

The following is an Annoted FORTRAN Program which includes the most
recent concepts of the regulation of body temperature during rest and exercise
and during the transient and steady states. The general principles described arc
presented in NASA Report CR-1855, A Mathematical Model of Physiological
Temperature Regulation in Man by J. A. J. Stolwijk (1971). The present model
(A. P. Gagge, J. A. J. Stoiwijk and Y. Nishi, ASHRAE TRANSACTIONS, Vol.
77, Part I, 1971) is a simplified version, which considers the control of body
temperature to be accomplished primarily by the mean skin temperature and a
central core temperature; the latter may be measured either in the rectum or in
the esophagus. The present model also includes an analysis of the seven
independent environmental factors necessary to make a complete partition of
the heat exchange. Definitions are indicated for the new Effective Temperature
(ET*) of the American Society of Heating, Refrigerating and Air-Conditioning
Engineers, as well as the new Standard Effective Temperature (SET*), by which
it is possible to compare on a commonly experienced temperature scale the
expected physiological heat stress caused by use of clothing, by radiant heat, by
air movement and by barometric pressure. Modifications of the model for water
immersion are also indicated.

The independent variables are:

MR = metabolic rate in W/m 2 (REAL) 2

WK work rate accomplished in W/m

CLO = intrinsic clothing insulation in ol___oo units [0. 155 m 2 • C°/W_

CHR = linear radiation exchange coefficient in W/_m2.UC)

OHC = convective heat transfer coefficient in W/(m2.°C) at sea level

and varies with both air movement (VELA) and activity (VEL) (see Nishi and Gagge, 1971)

BARe = barometric pressure (ram I{g)

TA = ambient air temperature °C

TR = mean radiant temperature °C

PPllO = ambient vapor pressure in mm Hg and may be found

from Net bulb (TWET) or dew point (TDP) measurements

The dependent variables are:

TSK = temperature of skin shell (_ Tsk ) in °C

TCR = central core temperature ( _' rectal or esophageal) in °C

ALPHA = ratio of mass skin shell to mass central core (N.D.)

SKBF = skln blood flow in l/(m2-hr)

EV = total evaporative heat loss in W/m 2

Characteristics of an Average Man

70. = body weight in kg

I. 8 = body surface in sq. meters

0.72 = ratio of body's radiating area to total surface area

5.28 = minimum skin conductance in W/(m2-°C_

6.3 normal skin blood flow in I/(m2"hr)
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The assigned coefficients are
1.163= specific heat of blood in W.hr/(l'°C)
0.68 = latent heat of water W.hr/g

0.97 = specific heat of body in W'hr/(kg'°C)

2.2 = Lewis Relation at sea level in OC/mm Hg

760. = sea level barometric pressure in mm Hg
5.67E-08 = Stefan-Boltzmann Constant in W/(m 2.K °4)

Initial Conditions (TIM = O) are those for physiological thermal

neutrality;
TSK = 34.

TCR = 37. (for rectal) or 36.6 (for esophageal)

CHR = 5.0

CTC = CHR+CHC

SKBF = 6.3
ALPHA= O. 1

EV = 5.0

For sedentary case (I met):

MR = 58.2

RM = MR

WK = 0

CHC = 2.9

For exercise:

CHC = 5.4 (bicycle ergometer at 50 RPM)

CHC = 6.0 ( .... 60 RPM)

CHC 6.51*VEL**0.391 (treadmill walking for VEL tn m/sec)

CHC = 8.60*VEI,_*0. 531 (free walking at VFL in m/see; still air)

CHC = 8.60*VEL*_O.531 • 1.96*VELA**O.86 (where VELA is a head

wind in m/see)

Initial Definitions

Respired Evaporative Heat Loss (ERES} (Fanger, 1970)
ERES = 0.0O23*RM*(44.-PPHG)

Respired Convective Heat Loss (CRES) (Fanger, 1970)

CRES = 0.0Ol2*RM*(34.-TA)
Burton Clothing Efficiency Factor (FCL)

I'CL = l./(1 ,_0.155*c'rc*cLO)

Operative Temperature (TO)

TO = (CIIR*TR_CHC*TA)/CTC

The above definitions are enteJed by READ end l)O statements

The Simulation Proqram for Human Temperature Regulation

starts here:

I00 CONTINUE

Clothing Surface Temperature

TCL = TO+FCL*(TSK-TO)

Factor (FACL) Increases radiation area of body by 15%/clo (Fanger, 1970)

FACL = I.+0.15"CLO

The coefficient CHR varies with TSK or TCL during regulation

CIIR = 4.*5.97E-08*((TCL+TO)/2.4273,)**3.*FACL*0.72

CTC = CHR4CHC

FCL = 1./(1.#0,155*CTC*CLO)

DRY = CTC*FCI,*(TSK-TO)

Heat Flow (HFCR) from body core to skin shell

HFCR = RM-ERES-CRES-WK-(5.28+l.163*SKBF)*(TCR-TSK)

Heat Flow (HFSK) from skin shell to environment at TO

HFSK = (5.28+I. 163*SKBF)*(TCR-TSK)-DRY-(EV-ERES)

Thermal Capacity of body core (TCCR)

TCCR = 0.97*(I.-ALPIIA)*70.

Thermal Capacity of skin shell (TCSK)

TCSK = 0.97*ALPHA*70.

Change in core temperature (DTCR) caused by HFCR

DTCR= (HFCR*I.8)/TCCR
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Change in skin shell temperature caused by HFSK

DTSK = (HFSK*I.B)/TGSK

Iteration to simulate regulation will be at one minute intervals

or by DTSK and DTCR not greater than ! O. l°C.

DTlM= 1./60.

U = ABS(DTSK)

IF(U-0.1)5, I0, I0

10 DTIM=0. I/(U*60.)

S CONTINUE

U=ABS(DTCR)

IF{U-O. 1) 105, ll0,110

110 DTIM=O. I/(U'60)

105 CONTINUE

TIM is In hours

TIM = TIM4DTIM

TSK = TSK+DTSK*DTIM

TCR = TCR+DTGR*DTIM

Definition of the Control Signals {SKSIG, CRSIG)

from skin shell:- "cold" (COLDS); + "warm" {WARMS)

SKSIG=TSK-34.0

IF{SKSIG) 15,15,20

15 COLDS=-SKSIG

WARMS=0.0

GO TO 25

20 COI, DS=O. 0

WARMS=SKSIG

25 CONTINUE

from body core: - "cold" (COLDC); + "warm" (WARMC)

CRSIG-TCR-37.0

IF(CRSIG) 30,30,35

30 COLDC=-GRSIG

WARMC=0.0

GO TO 40

35 WARMC=CRSIG

GOLDG=0.0

40 CONTINUE

Control of Skin Blood Flow (STRIC-vasoconstriction; DlLAT-vasodilation)

STRIC = 0.5*COLDS

DILAT = i 50. *WARMC

The coefficients 0.5 and 150, , which change during acclimatization, may vary

+_ 50% without significantly changing resulting thermal equilibrium but they do

affect time to equilibrium.

SKBF = (6.3+DILAT)/{I._STRIC)

Sweating is controlled both by the mean body temperature (Snellen, 1966) and the

peripheral skintem_erature (Nadcl, Bullard and Stolwiik. 1971l

REGSW: 25 0. _ (ALP}iA* SKSIG+ (I. -ALPHA) *CRSIG)*EXP(SKSIG/I 0.7)

IF(REGSW) 45, 45, 50

45 REGSW=0

50 CONTINUE

The evaporative heat loss caused by sweating {ERS'VV)

ERSW = 0.68*REGSW

The Nishi Permeation Efficiency Factor (FPCL) for clothing

FPOL = 1./(1.+0.143"C11C*CLO)

The Ema × of the body skin surface
EMAX = 2.2*CHC*(SVP(TSK)-PPHG)*FPOL

SVP Is a FUNCTION relating saturated vapor pressure to temperature T

Skln wetredness due to sweating (PRSW)

PRSW = ERSW/EMAX

Total skin wettedness (PWET)

PWET = 0.06+0.94*PRSW

Skin diffusion (EDIF)

EDIF=PWET* EMAX- ERSW
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Total evaporative heat loss (EV)

EV=ERES_ERSW+ t'DIF

IF(PWET) 60,60,65

65 EV=ERES+EMAX

ERSW=EMAX

EDIF=0.0

PRSW= 1.0

Unevaporated sweat (DRIP) in g/(m 2" hr)

DRIP=(ERSW--EMAX)/O, 68

60 CONTINUE

Change in skin blood flow affects ALPttA causing skin shell to become thicker

or thinner (Ashoff, 1956)

Hyperbole used to fit (AhPtlA,SKBF) at three points (0,05,60)(0. I, 6.3) and (0.4.1.0}

ALP}IA=0.044240. 3509/(SKB1"-0.01386)

Protection from cold by shivering (Stolwijk and ttardy, 1967)

RM=MR+19.4*COLDS*GOLDG

A time of exposure (TIME) of 0.25 hr or greater should be selected

Iteration now begins

IF(TIM-TIME) 100,101, lOl

101 CONTINUE

After exposure (TIME), the following dependent variables have now been

evaluated by iteration: GttR, GTG, rGL, TSK, TGR, RI:GSW, EMAX, ERSW, EDIF,

EV, DRIP, PRSW, PWET, ALPHA, and a new RM, if shivering has occurred.

Rate of body heat storage (STORE) in W/m 2 and rate of change.of mean body

temperature (RTBM) in °C/hr at end of exposure TIME are:

STORE = RM-CRES-WK-EV-DRY

RTBM = STORE*I.8/(70.*0.97)

For any environment:

The resultant dry and humid heat transfer coefficients are

A=CTC*FCL

B=2.2"1.92*CHC*FPCL

The linear "dew" temperature is given by

TDEW-(25.3+E PHG)/1,92

Operative Temperature (TO) is

TO=(CHR*TR+GHC*TA)/CTC

Humid Operative Temperature (TOH) at end of time (TIME) is

C=A+PWET*B

TO H= (A'TO +PWET* B*TD EW)/G

Calculation of new ASHRAE Ffh, ctive Temperature (ET*)

ET_-TOH

80 DEWS={25.3+0,5*SVP(ET))/1.92
TOH5=(A*ET*PWET* B*DEW5)/G

ERROR=TOIt-TOH 5

IF(ERROR) 70,70,75

75 ET=ET+0. I

TO TO B0

70 CONTINUE

For the Sedentary Case only, when RM=58.2 or I met:

The Standard Environment is defined by

GHCS=2.9

GLOS=0.6

CHRS-_CHR

CTCS CltRS+GIIGS

FPLS-I ./(1. _ 0.155*CTCS*CLOS)

FPCLS- 1 ./(1 . 40. 143*CHCS+CLC)S

The standard resulting dry and humid heat transfer coefficients are

AS=CTCS*I'CLS

BS 2,2*l.92*CIICS*FPCLS

Standard Operative Temperature (STO)

STO :(A/AS) * TO _ ( l -A/A SI * TSK



146 Bioaslronautics Data Book

Standord tlumid Operative Temperature (S'I'()It)

CS AS _PWEI'*BS

STOII -{C/CS)*TOII I (l -C/CS}*TSK

Calculation of Standard Effective Temperature {SET)

SET-STOH

90 TDEW5-(25.3 _0.5*SVP(SET)/I . 92

STOH5 {AS*SlIT+ PWET* BS*TDEW5)/C S

ERR_:STOH- STOttS

Ir (ERR)80,80,85
85 SET- SET+O. 1

GO TO 90

80 CONTINUE

Prediction of Warm discomfort DISC (positive)

DISC=4.7*PRSW

Prediction of Temperature sensation (TSENS) + warm, - cold

TSENS:-0. 245*SET+0.033*0.S*SVP(SET)-6.471

See ASIIR,_E Handbook of Fundamentals (1972) for sensory data.

Prediction of Cold DISCOMFORT (neg_tive)

A TABLE function is used to rel:_te DISC to TSK:

1,80128s 90129sj30130s
DISC -4.6 -4.1 -3.6 -3.1 -2.6 -2.1

DISC -1 .68 -1.25 -0.95 -0.7 -0.5 -0.3

34.0

0.0

The desired output statements now follow, END of Program.

The above program can be used with reasonable accuracy for exercise

and work. The Standard Conditions may be set at any other desired value.

For environments different from sea level, the Lewis factor [ 2.2] is replaced

by [2.2*760./BARe]and the sea level value for CHC by [CHC*(BARO/760.)**0,55] ,

wherever they occur in the program.

In a water environment CtIR - O, and CIlC vahles in range 70 - 150

W/(m 2.°C) should he used. Under these

conditions, the I,ewis factor [2.23is set to zero as there is no evaporation.

]n Fig, A-l, the model has been u:;ed to calculate loci of constant TSENS,

TSK, DISC, PWET in terms of a uniform TA and ambient vapor pressure in mm Jig.

They are drawn for a sedentary normally ch0thed subject.

In Fig. A-2, the model has been used to calculate lines of constant

physiological strain (SET*) for the same resting subject.

In Fig. A-3, the expected thermal responses of a sedentary subject to

the new ET* or SET are Indicated.
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Figure A-I. Loci of constant Tsk, w, TSENS and DISC for a Standard Environment

in terms of ambient vapor pressure and air temperature.
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Figure A-2. Standard Operative Temperature or Dry Bulb Temperature (Ta') in a
Standard environment. The relative humidity lines apply to the uniform Ta', not to Tso

when used on the absci_a.
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Figure A-3. Human thermal responses to the new Effective Temperature ET or SET. SET

is the uniform ambient temperature at 50% relative humidity of an enclosure with air

movement 0.15 m/see or 30 fpm in which a clothed subject (0.6 cio) would exchange the

_me heat by radiation, convection, and evaporation as in the actual cnvironmen! defined by

TA, TR, PPltG, CHR, CHC, and BARO.



CHAPTER 4

SUSTAINED LINEAR ACCELERATION

by

T. Morris Fraser, M.Sc., M.D.

University of Waterloo

Waterloo, Ontario, Canada

By definition, acceleration is a rate of change and can occur in any or all of
three related, but differing, maneuvers. Linear acceleration is the rate of change
of velocity of a mass, the direction of movement of which is kept constant.
Acceleration acting on a mass will produce a force exerting a pressure on the
mass and causing it to move if movable or to deform if not.

Angular acceleration is the rate of change of direction of a mass, the velocity
of which is kept constant. In this regard, the acceleration is directly proportional
to the square of the velocity and inversely proportional to the radius of the turn.
By common usage, where the axis of rotation is external to the body, as in an
aircraft turn or a centrifuge, the acceleration is frequently termed "radial"
acceleration, while the term "angular" is retained for situations where the axis of
rotation passes through the body. Where the radius is long, the effects of radial

acceleration on man approximate those of linear acceleration.

In its third form, acceleration occurs as a component of the attraction
between masses. The resulting force is directly proportional to the product of
the masses and inversely proportional to the square of the distance between
them. The proportionality constant is the gravitational constant g which
represents an acceleration of 32.24 feet per second (fps) within the terrestrial
field of reference. This is the accepted unit of measurement of acceleration.

When a mass is acted upon by the acceleration of gravity, the resulting force,
acted vectorially, represents its weight. When the acceleration is other than
gravitational, it interacts with gravity, if present, to produce a resultant which
effectively increases the weight of the mass in the direction of the resultant. It is
this effective increase in weight which, in one form or another, is largely

responsible for the physiological and other changes found in the body exposed
to sustained acceleration.

Reviewed by Randall M. Chambers, Ph.D., NASA Langley Research Center

149
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In this regard, it must be remembered that the body is essentially a fluid
system and reacts accordingly. Pascal, in the 17th century, showed that in ideal
fluids at rest: (a) fluid pressure is equal in all directions, (b) pressures at points
lying in the same horizontal plane are equal, and (c) pressure increases with
depth under the free surface. This increase is equal to pgh dynes/cm2, where/9 is
the density of the fluid, g the gravitational constant, and h the depth. The_ laws
apply to the vascular system and, after a fashion, to the body as a whole.

The descriptive nomenclature for acceleration used herein is tile system
defined in chapter 6, Impact.

Terminology for duration of acceleration depends on the fact that there is a
difference in body response to accelerations of duration below and above

approximately 0.2 second, related to the latent period for development of
hydrostatic effects. Thus, abrupt acceleration is considered as ranging to
0.2 second, while sustained acceleration is prolonged beyond 0.2 second.

Subjective Effects of Sustained Acceleration

In thc operational situation, it is unusual, if not impossible, for acceleration
stress to occur in a simple form. One is rarely, if ever, exposed to a simple
unvarying +Gz stre_s. Instead, acceleration may vary. in its resultant vector,
magnitude, and type, and may be accompanied by complex oscillations and
vibrations. For purposes of analysis, however, it is simpler to consider the
response to a continuous resultant vector without additional complexities. The
following compilation is derived from the study by Fraser (1966).

Positive Acceleration Effects (+Gz)

1 Gz:

2Gz:

2 I/2 Gz:

3 4Gz:

4 l/2-6Gz:

Equivalent to the erect or seated terrestrial posture.

Increase in weight, increased pressure on buttocks,
drooping of face and soft body tissues.

Difficult to raise oneself.

Impossible to raise oneself, difficult to raise arms and
legs, mows'merit at right angles impossible; progressive
dimming of vision after 3 to 4 seconds, progressing
to tunneling of vision.

Diminution of vision, progressive to blackout after
about 5 seconds; hearing and then con_iousness lost
if exposure continucd; mild to severe convulsions in
about 50 percent of subjects during or following
unconsciousness, frequently with bizarre dreams;
occasion',ally parcsthesias, confused states and, rarely,
gustatory sen_tions; no incontinence; pain not
common, but tension and congestion of lower limbs
with cramps and tingling; inspiration difficult; loss of
orientation for time and space up to 15 seconds
postacceleration.
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-1 Gz:

-2 to -3 Gz

-5 Gz :

Negative Acceleration Effects (-G z)

Unpleasant but tolerable facial suffusion and con-

gestion.

: Severe facial congestion, throbbing headache; pro-
gressive blurring, graying, or occasionally reddening
of vision after 5 seconds; congestion disappears
slowly, may leave petechial hemorrhages, edematous
eyelids.

Five seconds, limit of tolerance, rarely reached by
most subjects.

2 - 3Gx:

3 -6Gx:

6 -9Gx:

9 - 12Gx:

15Gx:

Forward A cceleration Effects (+G x)

Increased weight and abdominal pressure; progressive
slight difficulty in focusing and slight spatial dis-
orientation, each subsiding with experience; 2 Gx
tolerable at least to 24 hours, 4 Gx up to at least
60 minutes.

Progressive tightness in chest (6 Gx, 5 minutes),
chest pain, loss of peripheral vision, difficulty in
breathing and speaking, blurring of vision, effort
required to maintain focus.

Increased chest pain and pressure; breathing difficult,
with shallow respiration from position of nearly futl
inspiration; further reduction in peripheral vision,
increased blurring, occasional tunneling, great con-
centration to maintain focus; occasional lacrimation;

body, legs, and arms cannot be lifted at 8 Gx; head
cannot be lifted at 9 Gx.

Breathing difficulty severe; increased chest pain;
marked fatigue; loss of peripheral vision, diminution
of central acuity, lacrimation.

Extreme difficulty in breathing and speaking; severe
vise-like chest pain; loss of tactile sensation; recurrent
complete loss of vision.

Backward Acceleration Effects (-G x)

Similar to those of +Gx acceleration with modifications
produced by reversal of force vector. Chest pressure reversed,
hence breathing easier; pain and discomfort from outward

pressure toward restraint harness manifest at about -8 Gx; with
forward head tilt cerebral hemodynamic effects manifest akin to
-Gz; distortion of vision at -6 to -8 Gx; feeling of insecurity
from pressure against restraint.
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Lateral Acceleration Effects (+Gy)

(Little lnformatio n Available)

3 Gy:

5 Gy

(14.5 sec):

Discomfort after 10 seconds; pressure on restraint

system, feeling of supporting entire weight on
clavicle; inertial movement of hips and legs, yawing
and rotation of head toward shoulder; petechiae and
bruising; engorgement of dependent elbow with pain.

External hemorrhage, severe postrun headache.

Table 4-1 shows the most common symptoms which occurred during +Gz
and +Gx acceleration on the centrifuge of the U. S. Naval Air Development

Center, Johnsville, Pennsylvania, during the period 1961 through 1965.

Table 4-1

Human Response to +G z and +G x

Accelerations on a Centrifuge

Vector

+G z

+G x

Miscellaneous

(York et al., 1968)

Symptom

Grayout

Blackout

Motion sickness

Chest pain

Motion sickness

Dyspnea

Arrhythmia

Abdominal pain

Headaches

Syncope

Limb myatgia

Paresthesia

Instances

351

167

40

104

97

29

29

Runs

2380

2380

2380

2557

2557

2557

2557

17 cases

15

15

12

7
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Physiological Effects of Sustained Acceleration

The fundamental stimulus influencing the physiological effects of sustained
acceleration arises from the effective increase in weight of the body, and particu-

larly its fluid components, along the acceleration vector. This is illustrated in
figure 4-1. The center sketch of the figure, illustrating the vascular effects at
+1 Gz, indicates that with a mean arterial pressure of 120 mm Hg, the mean
pressures at head and foot levels are calculated to be 96 and 170 mm Hg,
respectively. At +5 Gz, while maintaining mean arterial pressure at heart level of
120 mm Hg, the theoretical pressure at the base of the brain will be zero, whilc at
the feet it will be 370 mm Hg. Under these circumstances, the subject would be
unconscious, and an additional venous pressure of 250 mm Hg would be required
to return blood from feet to heart. In fact, unconsciousness does not necessarily

occur at +5 Gz because of physiological compen_tory adjustments.

5G

tOO

200

30O

37O

Figure 4-1. Hydrostatic
at 1 G and during

1G

pressures in vascular system of a man in upright sitting position
headward acceleration at 5 G. (After Wood et al., 1963)

During +Gz acceleration with rates of onset from 1 to 2 G/sec, and of
magnitude sufficient to produce loss of vision, there is an immediate decrease in
blood pressure at head level, an increase in heart rate, a decrease in blood w)lume at
the ear, and a decrease in the amplitude of the arterial pulse at ear level (Lindbcrg &
Wood, 1963). Recovery of blood pressure and ear pulse begins before the accelera-
tion episode is complete, indicating compen_tory physiological adjustments. The
fall in blood pressure at head level is proportional to the magnitude of the
acceleration. Blood pressure at heart lew:l, howcvcr, is maintained near normal and
in fact may actually increase during cxposurcs to the level of +5 Gz. These
effects are illustrated in figure 4-2. Some of the general cardiovascular responses
are tabulated in tablc 4-2.

487-858 O - 73 - [l
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120 £

HEART RATE

BEATS PER MINUTE

--200:

ARTERCAL PRESSURE

mm Hg (head level)

s0:

!

Figure 4-2. Sequence of physiological events during exposure of normal subject to

positive acceleration at +4.5 Gz for 15see. Note initial period of progressive failure:
there are, in order of occurrence, decrease in blood pressure at head level, increase in

heart rate, loss of blood volume in the ear, and failure of peripheral vision. This is

followed by a period of compensation despite continuance of exposure. (After

Lindberg & Wood, 1963; reprinted by permission of Academic Press, Inc. Copyright

1963 by Academic Press, Inc.)

Table 4-2

Cardiovascular Responses to +G z Acceleration

CV Response
Percentage Increase (+) or Decrease (--)

+2 G z +3 G z +4 G z

Cardiac output - 7 -18 -22

Stroke volume --24 -37 --49

Heart rate + 14 +35 +56

Mean aortic pressure + 9 +21 +27

Systemic vascular resistance +17 +41 +59

(Wood et al., 1961)

In the -Gz vector, the direction of the increased hydrostatic pressure is
reversed. With the onset of acceleration, the arterial and venous pressure rise
some 70 to 90 mm Hg as measured in the carotid artery and jugular vein
(Gamble et al., 1949).
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Gauer and Henry (1964), describing work carried out between 1947 and

1949, silowcd that the venous pressure developed under -G z acceleration, as

measured in the supraorbital vein, depended on the degree of tilt of the

head because of the geometrical relations of the vertical axes of the head

and the eyes. Figurc 4-3 illustrates the resulting effects at -2 Gz during

rotation from the full prone to the full supine position.

4o

3

20

10

0

90 ° 75 ° 60 ° 45 ° 30 ° 15 ° 0 ° 15 ° 30 ° 45 ° 60 ° 75 ° 90 °

DEGREE OF TILT
O without cuffs
• with cuffs

Figure 4-3. Venom pressures during exposure to -.Gz acceleration in different poations
of body tilt. Light line and O=data obtained normally; heavy line =theoretically
calculated pressures; broken lines=pressures obtained when rotating subject with

tourniquets about legs to prevent reflux of blood. Venom pressure was measured in
forehead vein. (After Gauer & Henry, 1964)

Change in heart rate has been inconsistent in different studies. Browne

and Fitzsimmons (1957), in an ECG study of 53 subjects with

366 exposures in the range of +3 to +5 Gz for 15 seconds duration, found

a progressive increase in pulse rate with increase in acceleration level.

Electrocardiographic changes under sustained acceleration are largely

nonspecific and chiefly manifest as alterations in the electrical axis, along with

some S-T segment and T-wave changes. Arrhythmias are not uncommon and
occur under all vectors.

Retinal and Visual Response

Vision is markedly affected by alteration in hydrostatic pressure. The

symptoms, namely, grayout or loss of peripheral vision and blackout or total loss
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of vision, manifest themselves at levels below those producing unconsciousness,

since intraocular pressure is some 20 mm Hg higher than intracerebral pressure.

Consequently, blood supply to the retina fails before failure of cerebral

circulation (Andina, 1937).

Visual effects occur in all vectors but, because of the vertical position, are

more common in the Gz vectors. Because of the forward position of the eye

with respect to the midline, the force experienced at the eye is not the same as

that applied to the midline.

Duane (1954) obtained illustrations of the retina during +Gz accelerations to

blackout level. A correlation between visual change and change in the fundus

oculi was established, as indicated in table 4-3.

Table 4-3

Correlation Between Changes in Vision and Fundus Oculi Changes

Stage Subjective Response

I Lossof peripheral vision

I I Blackout

III Return of central peripheral vision

Objective Response

Arteriolar pulsation --i.e., recurrent ex-
senguination

Arteriolar exsanguination and collapse

Return of arteriolar pulsation and tempo-
raw venous distension

(Duane, 1954)

Newsom and his colleagues (1968) conducted retinal photography and

fluorescence angiography during 10-second plateaus of blackout from +Gz

acceleration in human subjects. Some of the findings are shown in figure 44.

On exposure to -Gz acceleration, local hydrostatic pressure is increased at

the eyeball and gives rise to pain and a feeling of fullness. The occurrence of

"red-out," or reddening of the visual fields has been reported experimentally in

centrifuge work (Ryan et al., 1950), but it is doubtful if it occurs consistently or

operationally. It has been suggested that red-out is a distortion of vision caused

by obstruction from the conjunctiva of the lower lid.

Visual Thresholds. The general range of visual threshold in relation to

unconsciousness is shown in table 4-4. There would appear to be a change in

the absolute threshold of vision under acceleration, that is, the minimum light

intensity at which a stimulus can be perceived. White (1960) showed that for a

given stimulus intensity to be perceived as of equal intensity with a probability

of 50 percent under increased acceleration, the actual intensity had to be

increased according to the ratios shown in table 4-5. Foveal and peripheral

thresholds as a function of acceleration are illustrated in figures 4-5 and 4-6.
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BLACKOUT ON THE HUMAN CENTRIFUGE

PEAK ÷ 3.5 Sic PEAK ÷ 4,5 Sic PEAK PEAK + 11.5 Sic

157

ARTERIAL

COLLAPSE

"_ ARTERIAL / VISION /

"_ PULSATION / RETURNINGJ

3.0 + GZ--_ _Sec,,E-arm / \

0 10 20 30 74

TIME IN SECONDS

Figure 4-4. Serial photographs of fundus of right eye in a human subject during
blackout. Read from left, up, right, and down. (After Leverett, 1968, from work of
Newson et al., 1968)

Table 4-4

Range of Visual Thresholds
in Relation to Unconsciousness

Criterion
Mean Standard

Threshold Deviation Range
(G)

(G) (G)

Lossof peripheral vision 4.1 -10.7 2.2 -- 7.1

Blackout 4.7 -+0.8 2.7 -- 7.8

Unconsciousness 5.4 +0.9 3.0 -- 8.4

(After Cochran et al., 1954)

The effect of acceleration on brightness discrimination is shown in

figure 4-7. The minimal detectable difference in intensity between a test patch

and its lighted surround has long served as a test of visual sensitivity. The

threshold difference has been found to be a function of basic energy level as well

as contrast between the patch and its reference illumination. Thus, the greater

the background intensity, the smaller the ratio between the patch and the

background required for detection. The data compiled in tile graphs in

figure 4-7 illustrate an interaction between acceleration and the minimal

discernible differential intensity (AI). The stimulus display used to collect the
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data consisted of a background subtending 804 ' visual angle positioned
28 inches from the eye and viewed monocularly through a circular aperture
17.5 inches from the eye. The test patch, projected upon the background,
subtended a 1°28 ' visual angle (Braunstein & White, 1962).

Table 4-5

Increase in Visual Stimulus Intensity* Required to Perceive a Stimulus
as Equalling that at +1 Gz (P = 50%)

Acceleration (+G z)

Required Increase in Stimulus Intensity

Fovea Periphew

1 1 1

2 -- 1.5

3 2 3

4 3.4 4

*Expressed as a ratio of that at +1 G z.

(Data of White, 1960)

7.4 -

_- 7.2-
::L

g_

7.0 _g
<
Z

J 6.8

._1

O
T
(,/')
LU
n'- 6.6
I
i-

6.4

FOVEAL THRESHOLDS

POSITIVE G z NO PROTECTION

I t I I I
1 2 3 4 5

ACCELERATION (G units)

Figure 4-5. Threshold of foveal vision under +1 to +4G z acceleration.
(Mter White, 1960)
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PERIPHERAL THRESHOLDS
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Figure 4-6. Threshold of peripheral vision under +1 to +4 G acceleration.

(After White, 1960)
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BACKGROUND LUMINANCE - h-k

Figure 4,-7. Relationship between brightness discrimination and background luminance

under four levels of pofitive (+Gz) (top) and five levels of transverse (+Gx) (bottom)

acceleration. (After Braunstein & White, 1962)
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The effects of oxygen on brightness discrimination

figure 4-8, from work by Chambers and Kerr (1962).
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Figure 4-8. Brightness discrimination with different breathing gasses
at different acceleration levels. (After Chambers & Kerr, 1962)

Visual Distortion. In the -Gx vector, distortion becomes marked at -6 to

-8 Gx. Smedal and his colleagues (1963) showed that this was not due to

corneal distortion in the bulging eye but was associated with intermittent

watering occurring at about the -6 Gx level.

Visual Fields. Limitation in the visual field under acceleration exposure is, of

course, related to the occurrence of grayout. At about +4.5 Gz, the field is

narrowed to an arc of less than 46 ° . Figure 4-9 indicates the effect of the retinal

position of a sign',d on the acceleration response. In the study which the figure

illustrates, 115 subjects were exposed to +G z acceleration with a light array

above. Almost invariably, subjects lost the 80 ° light before loss of the

23 ° light. In 30 subjects, the 80 ° light loss occurred at a mean of 4.2 Gz,

standard deviation -+0.7 G. In the same subjects, the 23 ° light loss occurred at a

mean of 4.5 Gz, standard deviation -+0.8 G. Central light loss occurred at

5.3 Gz, standard deviation :t0.8 G.
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CENTER

23 ° LIGHT 23°

Comparison of 80 ° Light Loss, 23° Light Loss, and 0 ° Light Loss

Mean (G z level)
Range (G z level)
Standard deviation

Duration of symptom-
mean (sec)

Duration of symptom-
range (sec)

Clear

3.8
2.3 -- 5,1

0.7

Symptoms

80 ° LL

4.2
2.7 -- 5.7

0.7

5.4

1.9 -- 17.0

23 ° LL

4.5
2.9 -- 6.4

0.8

5.1

1.9 - 11.9

CLL

5.3
3.6 -- 7.0

0.8

6.8

2.1 -- 23.4

Figure 4-9. Effect of retinal position of a signal on the perception
of light signals under acceleration. (From Zariello et al., 1958)

Pupillary Reactions. Pupillary dilation begins with loss of peripheral vision

(Beckman et al., 1961). Accommodation is unaffected by acceleration (Smedal

et al., 1963).

Unconsciousness and Cerebral Function

Loss of consciousness and complete impairment of cerebral function occur

between +3 Gz and +8 G z, the specific level depending chiefly on biological

factors and duration and rate of onset. Figures 4-10 and 4-11 indicate tile range

of responses found. In tile other vectors, the subject normally reaches a

tolerance threshold of another sort before unconsciousness occurs. On return to

consciousness, there is usually a short (5 to 15 second) period of confusion

(Franks et al., 1945).

Convulsions with characteristic EEG changes are a common accompaniment

of unconsciousness, having been found in 52 percent of 230 subjects (Franks

et al., 1945). Sere-Jacobsen (1959, 1960) has recorded and photographed them

in pilots in flight. Brent and coworkers (1960) have found that certain

combinations of hyperventilation, hypoglycemia, and +Gz acc,leration will

produce convulsions in all subjects.
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Figure 4-10. Time to unconsdousness as a function of rate of onset

of positive acceleration (Gz). (After Stoil, 1956)
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Figure 4-11. Time to unconsdouanes_ as a function of varying rates

of positive acceleration (Gz) onset, G amplitudes, and exposure times. (After Stoll, 1956)

Pulmonary Response

A naturally occurring pressure gradient exists even at 1 G between the apex

and the base of the lung in the vertical subject and between the front and the

back of the lung in the supine subject (Glaister, 1967; Wood, 1967; Rutishauser

et al., 1967, and others). With increase in acceleration, there is an increase in

perfusion of tile pulmonary vessels in the dependent portions of the lung and a
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decrease in the upper zone (Bryan & MacNamara, 1964, and other workers).
Figure 4-12 shows the relationships at +3 Gz, while figure 4-13 shows the
relationships at 0, +1, and +3 G x. Individual relationships are shown in

figure 4-14.

dislance up lung Pa Pv tlow

(cm) (crn H?O) (cmH20) zot_ dist ributio_

25 -45 -55

2o -3o -4o I

15 -15 -25

---- " 1o-- -- o -----1o----

-- ---s----T-- --% ....

o 3o 20 [11

I

0 flow

Figure4-12. Theoretical pressure-flow relationships in vertical lung at +3 Gz; Pa,
mean pulmonary arterial pressure; Pv mean pulmonary venous pressure. Hydrostatic
indifference plane is taken to be 5 cm below the lung hilum; arteriovenous pressure
difference is assumed to remain constant at 10cm water. (After Glaister, 1967;
reprinted by permission of the Controller of Her Britannic Majesty's Stationery Office)
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Figure 4.-13.. Distributions of ventilation (VA), perfusion (Q), and ventilation/perfusion
ratio (VA/Q) down the lung at positive accelerations of +1, +2, and +3 Gz, averaged
from four subjects. Mean position of diaphragm at each level of acceleration is also
indicated. (After Glaister, 1967; reprinted by permission of the Controller of Her
Britannic Majesty's Stationery Office)



164 Bioastronautics Data Book

VENTRAL CHEST WALL

0G Intr_Burll............. ,/

:'.Tj':

Pulmonarypru=urga: Artery Vein PA PV

DORSAL CHEST WALL

-30 5G -40

_3 2

lure

• ) 60 ,
+18

/

PA PV

Figure 4-14. Effects of forward (+Gx) acceleration on intrathoracic pressures
(dorsal-ventral dimension of lung is 20 cm_ Numerals indicate pressures as cmH20 ,
and zero reference level is atmospheric pressure at midthoracic coronal plane. (After
Wood et al., 1963)

Lung Volumes and Mechanics of Breathing. Respiratory rate increases

almost linearly with acceleration. Minute volume increases initially, but

levels off at about +8 Gx, when acceleration is applied in that vector. Tidal

volume, although increasing initially up to about +5 Gz, or +8 Gx,

decreases with still greater acceleration. Positive pressure breathing

(30 cm H20 ) diminishes the changes in lung volumes resulting from
acceleration, and, in particular, allows a relative increase in ventilation of

the lower lung. This effect, however, is abolished by the increase in

abdominal pressure induced by wearing an inflated G-suit (Glaister, 1965),
as shown in table 4-6. Glaister (1961) also showed that there was no

change in lung stiffness or air resistance, at least up to +3 Gz. This was

confirmed up to +4 G x by Watson and his colleagues (1960), who further

demonstrated an increase in the resting relaxation pressure amounting to
5 mm Hg/G as illustrated in figure 4-15.

The oxygen cost of acceleration in the Gx vector was examined by

Zechman and coworkers (1960) and by Glaister (1963). These investigators
confirmed, with experiments at +2 to +3 Gz for 1/2 to 5 minutes, that at

the lower levels of acceleration oxygen uptake does not increase during the

exposure, and may even fall, although an oxygen debt is built up. This debt
is, however, repaid on return to 1 G. These findings are summarized in
table 4-7 and figure 4-16.

Arterial Oxygen Saturation. The effect of the changed ventila-

tion/perfusion relationships is to produce a progressive decrease in arterial

oxygenation with increase in acceleration. Figure 4-17, from the work of

Wood et al. (1963), shows the average and range of changes in arterial

oxygen saturation in four healthy men exposed to +Gz acceleration, as

indicated, breathing air.

Alexander and his colleagues (1965) measured arterial oxygen saturation

in a group of 25 pilots breathing air while exposed to +Gx accelerations

representative of Apollo operations. The results are illustrated in figure 4-18.
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Figure 4-15. Static relaxation pressure-volume curves during control (+Gx) and +2, +3,
and +4 Gx acceleration. All lung volumes were obtained at 1 G. (After Watson et al.,
1960)

Figure 6-19 illustrates a similar experiment with subjects breathing 100
percent oxygen at 5 psi. It will be noted the rate of desaturation is slower and

the rate of recovery is even more so.

Arterial desaturation is also evident on exposure to acceleration in the -G x

vector, although the severity is perhaps not so great. Figure 4-20, from the work

of Smedal et al. (1963), indicates the results.

In the +Gz vector, the effects of arterial desaturation are overshadowed by

other more dramatic responses, but Barr (1962) demonstrated its occurrence and

further showed that the rate and degree of desaturation were increased by

repeated exposures. Arterial desaturation has also been observed with accelera-

tion in the -Gz vector (Gauer & Henry, 1964).

The "altitude equivalent," representing the extent of hypoxia commensurate

with the intensity of +G x accelerations, is shown in figure 4-21.

Renal Output

Reduction of urine secretion under applied +G z acceleration, followed by an
increased outflow on cessation of acceleration has been demonstrated in human

subjects by Stauffer and Errobo-Knudsen (]953), with results shown in figure
6-22.
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Figure 4-17. Average and range of changes in arterial 02 saturation of four healthy

men, recorded by cuvette and car oximeters dining 3 m at +2.1, +3.7 and +5.4 G z.
(After Wood et al., 1963)
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Figure 4-18. Means of arterial saturations in 25 subjects exposed to +G x acceleration
breathing air at 14.7 psia.AV = 37 000 fps. (After Alexander et al., 1965)
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The underlying mechanism has been postulated as involving an increase in

secretion of antidiuretic hormone (ADH) as a result of stimulation of fluid
volume receptors, or from change in glomerular filtration rate arising from
hemodynamic effects on the renal artery. Increase in ADH levels has been noted
in human subjects at +2 Gz acceleration for 30 minutes (Rogge et al., 1967).

Mechanical Impedance and Natural Frequency

The fundamental resonant frequency of the human body sitting erect under
normal gravitational conditions is approximately 5 Hz (Coermann, 1963). A
sustained +G z acceleration stiffens the seated human body in the direction of
the spine and increases the fundamental natural frequency to 7 Hz at +2 Gz and

8 Hz at +3 Gz. During +3 Gz acceleration, at vibrational frequencies up to about
5 Hz, the body tends to respond as though it were a pure mass. The transmission
factor decreases under +Gz acceleration, especially at the 5 Hz resonance, but

increases considerably above 6 Hz. The damping coefficient of the erect sitting
human remains unchanged at about 0.575 during +Gz acceleration. Some of the
foregoing factors are illustrated in figure 4-23 from the work of Vogt et al.,
1968.

Tolerance to Sustained Acceleration

Tolerance may be defined as the limit of man's capacity to endure the
physical and emotional discomfort of a stressful environment. The limit may be
difficult to define with certainty, and, in fact, may commonly be an arbitrary
cutoff point imposed from without, rather than a subjective endurance
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threshold. In +G z acceleration, the occurrence of grayout, blackout, or
unconsciousness can be used as a standard. In -+Gx acceleration, dyspnea, pain,
and discomfort tend to be self-limiting features not amenable to quantification.

Human Acceleration Experience

Figure 4-24 is a compilation by Fraser (1966) from numerous sources, of
various human experiences in sustained acceleration. The curves are an

estimation of the maximum voluntary tolerance of healthy, well-motivated men

but must be considered maximum levels and not operational levels. Higher levels
than those indicated in figure 4-24 have been tolerated but not in the form of an
acceleration plateau, for example, +20 Gx for a few seconds in the form of a

haversine peak (Collins et al., 1958) and +25 G x for several seconds (Collins &
Gray, 1959).

Figure 4-25 compares average G tolerance for several axes (Chambers, 1963).

As contrasted with the average tolerance illustrated in the previous two
figures, figure 4-26 demonstrates the upper limits of voluntary tolerance of a
group of highly motivated test pilots, preconditioned to the effects of
acceleration and suitably restrained.

Rate of Onset

Figure 4-27 illustrates the effect of different rates of onset on the response
of 15 subjects to +Gz acceleration (Stoll, 1956). From these data, a monogram
was developed (figure 4-28) which, although empirical, indicates the expected
duration before grayout at a given plateau and rate of onset.
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Posture and Podtion

Figure 4-29 (Bondurant et al., 1958a) illustrates the effect on tolerance of

various positions in the +Gx vector, while figure 4-30 specifies the advantages

and disadvantages of a variety of positions. The ideal position for forward (+Gx)

acceleration is considered to be in a seated posture, forward facing, with the

trunk inclined forward 20 ° from the vertical, hips flexed to bring the knees to

eye level, and lower legs extended (position B, figure 4-30).

Very Prolonged Acceleration

Exposure to levels of +3 G x and ÷4 G x has been withstood for durations up

to I hour (Bondurant et al., ]958a; Miller et al., 1959) but there are few

instances on record. Clark (1960) describes a 24-hour exposure to +2 G x in a

reclining _seat. It was characterized by rotational illusions and discomfort. Ross

and his colleagues (1963) report a study of 4 hours' duration.

Restraint and Protection

Standard aircraft harnesses provide no protection against sustained

acceleration except to maintain the subject in general position. The development

and usefulness of anti-G devices and clothing is summarized in table 4-8 from the

work of Nieholson and Franks (1966).
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To counter +G acceleration, custom-molded contour couches have been

developed and utilized in space flight to provide a body posture with inclination

of the head, trunk, thighs, and legs that combines optimum tolerance with useful

performance (Clark et al., 1959).

For the -G vector, the "Ames system" is available which incorporates a

posterior molded couch with frontal and head support (Vykukal et al., 1962).

Seats with raschel nylon net as the primary support surfaces have been

developed. These provide good support up to +16.5 Gx but demonstrate an

undesirable rebound under severe vibration and impact acceleration (Peterson,

1964).

The possibilities of partial or total water immersion as a protective aid have

been explored with some success (Wood et al., 1946; Gray & Webb, 1960, 1961)

with exposures to +31 Gz for 5 seconds. Figure 4-31 shows the protection given

against the effects of transverse acceleration (Gx) when the subject is immersed

in water. Curves are also shown for subjects protected by optimal support and

positioning.

Performance Under Sustained Acceleration

Vision

Some of the basic visual responses have already been examined. This section

is concerned more with the ability to perform specific activities.

Visual Reaction Time. The majority of workers have found a prolongation in

simple reaction time on exposure to severe but tolerable acceleration (Canfield

et al., 1949; Brown & Burke, 1957; Frankenhaeuser, 1958; Chambers &

Hitchcock, 1963). A typical response time to red signal lights is shown in

figure 4-32 (Kaehler & Meehan, 1960). The two curves show mean response

times (the time from appearance of a red signal light to the movement of the

subject's hand from his lap) for five male college students, 20 to 25 years old,

exposed to transverse accelerations. The solid line in the figure shows the

combined response times for both right and left hand operation in more than

900 (+Gx) exposures up to +8 G x. The dashed line shows the combined response

times for both right and left hand operation in more than 500 (-Gx)

exposures up to -4 G x. The times required to reach and operate a horizontal

lever, a toggle switch, and a pushbntton were longer as the accelerations

increased, and variable times were recorded for left and right hand operation.

Still longer times were needed for adjusting a rotating knob and a vertical "trim"
wheel.

Reading Tasks. In a study by Warwick and Lund (1946), 24 percent of dial

readings were erroneous at +3 Gz as compared with 18 percent at 1 1/2 Gz and 0

percent at 1 G. The response under acceleration varies with luminance, as

previously noted. This variation in response is reflected in dial reading, as shown

iu figure 4-33 (White & Riley, 1958).
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Body Motion

Gross body motion is progressively impaired with increasing acceleration as

indicated below (Code et al., 1945).

+2 Gz: Walking and movement along a ladder against

acceleration very difficult.

+3 Gz: Walking, crawling, and movement along a ladder

against acceleration impossible; unaided escape from

vehicle impossible; parachute donning time increased
from 17 to 75 seconds.

+4Gz: Movement at right angles to acceleration vector

impossible.

+5 Gx: Difficult to hold feet forward on rudder pedals.

+6 to +7Gz" Extremely difficult to reach face curtain ejection seat

firing mechanisms (Christie, 1961).

+8 Gx: Arms, legs, and body cannot be lifted.

+9 Gx: Unsupported head cannot be lifted although use of

counterweighted headgear permits motion up to

+12 Gx.

+25 Gx: Hand and wrist movement still possible (Collins et al.,

1958).
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Control and Tracking

Control maneuvers involving gross motions of limbs are not practicable

above 3 to 4 G, and become impossible, as noted above, as acceleration

increases. Movement of hand controls is impaired relatively little, however, at

high accelerations. The general characteristics of side-arm controllers and the

general response to tracking task are shown in figures 4-34 through 4-42.

Higher Mental Function

Relatively little information is available on higher mental function. Increased
time is required to complete multiplication tests at +3 G z for 2 to I0 minutes as

compared with performance without imposed acceleration (Frankenhaeuser,

1958). A decrement in color-naming has been observed during l-minute trials at

+3 Gz, although no decrement was noted in arithmetic ability, number ranking,

mid word separation tests in the same series (Wilson et al., 1951). According to

Chambers (1963), repetitive memorization of a portion of a sequence of random

numbers was satisfactorily undertaken at +5 Gx but the subjects involved stated

that the concentration required at +5 Gx was much greater than at 1 G.

Chambers also found in the same series of experiments that immediate memory.

was unaffected to +5 Gx but impaired at +7 G x and above.

P_TCH

AXIS

AX_S ROLL

AXIS ROLL

2-AXIS, FINGER TiP 2-AXIS, HAND

CONTROLLER CONTROLLER

YAW

AXIS

PITCH

AXIS

3-AXIS, BALANCED _AXIS, UNBALANCED

CONTROLLER CONTROLLER

Figure 4-34. Four types of right hand, side-arm controllers. Under acceleration each

responds differently. Pilot performance is influenced by both acceleration and type of
control stick. (Chambers & Hitchcock, 1963)
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CHAPTER 5

ROTARY ACCELERATION

by

T. Morris Fraser, M. Sc., M.D.

University of Waterloo

Waterloo, Ontario, Canada

Rotary acceleration is defined as the acceleration which exists during angular
motion when the axis of motion passes through some part of the body.
Consequently, it is a manifestation of angular acceleration, and is always present
during steady state spinning or tumbling, even when the angular velocity is
constant. The problems related to the acceleration environment of rotating
chambers, rooms, tables, and short radius centrifuges in which the axis of

rotation is not through the body are not considered here. These are discussed in
chapter 12, The Vestibular System.

Rotary acceleration was first noted to be a problem in the tumbling and
spinning that occurred during the deployment of early aircraft ejection seats,
particularly during ejection at relatively high speeds. In the ejection situation,
the problem is more than that of simple tumbling or spinning, since the motion
may occur within a decelerative G-field, which, for short durations, may reach a
peak or plateau of as much as 50 G. In a space vehicle, or during extravehicular
activity, in the null gravity state, problems can arise from simple tumbling or
spinning, following imparted motion by, for example, failure of a reaction
control system, such as in Gemini 8 where severe tumbling was experienced.

While a specific terminology for rotary acceleration has been suggested
(Pesman, 1968), it is more common to use the G terminology defined in
chapter 6, Impact, along with specification of the axis of rotation, where x refers
to rolling, y to pitching, and z to yawing or spinning. The term tumbling is
often used in place of pitching and rolling.

Subjective Reactions and Tolerance

Subjective reactions to rotary acceleration vary with the frequency, axis, and
duration of rotation. Individual variability in response is marked. Vertigo, as

Reviewed by Randall M. Chambers, Ph.D., NASA Langley Research Center.
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manifest subjectively by dizziness, sometimes nausea, and occasionally vomiting,
is a common feature of the initial and terminal phases of acceleration to and
deceleration from constant angular velocity, but normally ceases after the
motion has reached constant velocity, provided head movement is limited. In
some individuals, it recurs during prolonged exposure. Vertigo and its associated
phenomena are considered in chapter 12.

Tolerance

From the few reports available, tolerance to rotary acceleration does not
seem to be a rectilinear function of rotation rate. Most subjects, without prior
experience, can tolerate rotation rates up to 6 rpm in any axis or combination of
axes. Most subjects cannot initially tolerate rotation rates in the region of 12 to
30 rpm and rapidly become sick and disoriented above 6 rpm unless carefully
prepared by a graduated program of exposure (Fletcher, 1968). On the other
hand, rotation rates of 60 rpm for up to 3 or 4 minutes around the y-axis (pitch)
and around the z-axis (spin) have been described by subjects as being not only
tolerable but pleasant (Weiss et al., 1954; Urschell & Hood, 1966). Intolerability
becomes manifest again at about 80 rpm in the pitch mode and at about 90 to
100 rpm in the spin mode, although McCabe (1960) relates that one of the Ice
Capades skating stars spins around the z-axis for 12 seconds at 420 rpm without
manifest discomfort. In the pitch axis, with the center of rotation at the heart
level, symptoms of negative acceleration (-Gz) are demonstrated at about 80 rpm
and are tolerable for only a few seconds. Some effects of positive acceleration

(+Gz), namely numbness and pressure in the legs, are also observed but develop
slowly, with pain being evident at about 90 rpm. No confusion or loss of
consciousness is found, but in some subjects disorientation, headache, nausea, or
mental depression are noted for several minutes after a few minutes of exposure
(Weiss et al., 1954). With rotation in the spin mode, when the head and trunk
are inclined forward out of the z-axis, rotation becomes close to limiting at
60 rpm for 4 minutes, although some motivated subjects have endured 90 rpm in
the same mode (Courts, 1966). Except for unduly susceptible subjects, tolerance
tends to improve with exposure. Long duration runs in the pitch mode have
been endured for up to about 60 minutes at 6 rpm in selected subjects (Fletcher,
1968).

The center of rotation within the body determines, to a considerable extent,
the nature of the resulting effects, as will be examined in connection with the
discussion of physiological mechanisms. Figure 5-1 illustrates the general human
tolerance to tumbling in the pitch plane with centers of rotation at the heart
level and at the level of the iliac crest. On the basis of extrapolated data from
dogs, Weiss and coworkers (1954) calculate that unconsciousness from
circulatory effects alone would occur in man after 3 to 10 seconds at 160 rpm
with the center of rotation at the heart and at 180 rpm with the center of
rotation at the iliac crest.

Tolerance to tumbling in the pre_nce of a superimposed G field is shown in
figure 5-2.
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Tolerance to Gz 100 percent gradient spin is very closely related to tolerance

to rotary acceleration, in that in the former the axis of rotation is tangent to the

crown of the head. Figures 5-3 and 5-4 illustrate human tolerance to this form of
rotary acceleration.
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Figure 5-3. Mean tolerance to 100% +Gz gradient spin for seven untrained subjects
rotating around x-axis with center of rotation tangential to the head. The two isolated
points represent tolerance times of a subject who utilized phydologieal countermeasures to
increase his tolerance. His values are not induded in the means. (After Piemme et al., 1966)
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exposure to +Gz 10(F/o spin around the x-axis with center of rotation tangential to the head.
(After Piemme et at., 1966)
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Pain and discomfort are not features of slow rotation but begin to bc
manifest at about 80 rpm in the pitch and roll axes, largely because of fluid
swelling of tissues from the imposed +G fields (Weiss et al., 1954). Even in the
z-axis at these rotation rates, discomfort can be severe in the seated posture
because of the hydrostatic gradient that develops along the forearms and

thighs (Urschell & Hood, 1966).

Perception

The threshold of perception, or awareness, for rotary acceleration is in
fact a measure of vestibular sensitivity, but warrants brief consideration

here. Using a one-degree-of freedom simulator that could produce angular
accelerations within narrow limits of error, Clark and Steward (1969)

examined perception thresholds in the yaw axis in the erect seated position
at the center of rotation with head fixed. Figure 5-5 shows the distribution
of thresholds in 53 normal male subjects under these conditions.

Table 5-1, from a review by Clark (1967), details the findings of
25 studies on perception of angular acceleration in man. Clark points out
that in evaluating the findings in the table, one must bear in mind the
miscellany of definitions of threshold, the variation in rotation devices, and
psychophysical methods. In general, the results indicate an extreme
sensitivity to angular acceleration with perception thresholds varying from
O.035°/see 2 to 8.2°/see 2.

The relationship between a rotational input and a subjective or objective
(for example, nystagmus) output may be so tenuous that time must elapse
before the threshold of response is reached. Figure 5-6 indicates the latency
time for perception of angular acceleration about the yaw axis, as also do
figures 5-7 and 5-8.
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Figure 5-5. Distribution of thresholds for perception of angular acceleration
for 53 normal men. (After Clark& Stewart, 1969)
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Performance During Rotary Acceleration

Relatively few studies have been conducted to determine performance

ability during rotary acceleration, that is, with the axis of rotation passing

through the body, although numerous investigations have been conducted in
rotating rooms and short radius centrifuges. Much of the work on performance
bas been done in connection with investigation of the vestibular %,stem and is
presented in that chapter.

Visual Acuity

During natural turning movements, vestibular and visual sensory inflow act

synergistically to maintain clcar vision. Guedry (1968) measured visual acuity
during rotary acceleration around the z-axis in seated subjects, with particular
reference to the presence and intensity of concurrent nystagmus. The results are

shown in figure 5-9. Rate of recovcry of visual acuity is related to the magnitude
of the preceding stimulus, the stronger stimuli requiring Iongcr recovery times.
In further testing, subjects were decelerated from an angular velocity of

-180°/sec through 0 to +180°/sec at ratcs of 10 °, 15 °, or 30°/see 2 for 18, 12,

or 6 seconds, respectively, and visual acuity examined throughout the process.
Results are shown in figure 5-10, which indicates the buildup of nystagmus and
loss of visual detail during each of thc three stimuli, as well as the dccline of

nystagmus and restoration of visual detail following each stimulus. Considerable

individual difference was found among the IBsubjects, as indicated in

figure 5-1 1.
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Figure 5-9. Decline of nystagmus and recovery of visual acuity following 10, 15, and
30°/see 2 stimuli. Values are measures of means taken in initial acceleration and final
deceleration of each trial. (After Guedry, 1968)



Rotary Acceleration 203

to

5 t 25

........:-..'-': IF. .......
10 _lO .30 (' 5 10 15 20

,x

.o.-I
j 5 . II

. ..-°" J .Ii

I0 20 _'

75

so

g
, _

*'" z

i •

$ I0 15 20

I "

, . , 1°*o%.._ i, o i

I0$ 5 I0 15 20

TIME (sect

Figure 5-10. Loss of recovery of visual acuity during and after nysta_mus from stimuli of
different magnitudes. Blank areas were inserted in 15°/sec 2 and 30°/sec2results to

compensate for differences in duration of stimuli and to aid in visual comparison of results.
Dots are nysta_mus; solid lines are visual measures; arrow marks end of stimulus. (After
Guedry, 1968)
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Figure 5-11. Number of subjects seeing each set of visual targets during each second of
three different intensities of acceleration stimulus (10, 15, and 30°/see 2) from -180°/see
through zero to + 180°/sec. (After Guedry, 1968)
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Operational Tasks

Using the Rotational Flight Simulator (RFS) of the U. S. Air Force School

of Aerospace Medicine, an air-bearing vehicle capable of simulating various

rotational profiles, Lim and Fletcher (cited in Rothe et al., 1967) investigated

the time required for subjects to restore the simulator to a preset position by

means of a joystick after exposure to various rotations. The profiles used were a

"slow random" rotation of 4 +-2 rpm and a "fast random" rotation of 12 +4 rpm

for periods of 2, 4, 8, 16, and 30 minutes. Representative results from one

subject are shown in figure 5-12. Data from three subjects indicate they had

different abilities in righting the RFS, that fast improvement occurred with

practice, and that righting time was increased with duration of tumbling and
increase of "randomness."

t_
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i
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l l
Ii I I 1 1 I I I I I

] RANDOM FAST

5 10 15 2O 25

DURATION OF TUMBLING (mln)

Figure 5-12. Performance of control task during slow and fast random rotation; (A) time

required in successive trials to bring back RFS to upright position from initial position;
(B) righting time plotted as a function of duration of random tumbling at a slow rate;
(C) fighting time plotted as a function of duration of random tumbling at a fast rate. (After
Lira & Fletcher, cited in Rothe et al., 1967)
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It may be that a rotation rate of 6 to 12 rpm is more demanding than
some higher rotations, since much higher rotations have been endured with
relatively little performance decrement. Using the NASA Multi-axis Test
Facility, Useller and Algranti (1963) investigated the ability of pilots to

determine and apply corrective torques induced at rates up to 70 rpm.
Performance error was determined as a percentage of the total time during

which incorrect torque was applied. Error ranged from 6.5 percent to
18 percent, depending on the individual, and was independent of the rate of
rotation.

In another form of operational performance task, Weiss and his
colleagues (1954) examined the ability of subjects to release a lapbelt (5-1b
spring tension) and pull a ripcord (20-1b spring tension) while being exposed
to rotations around the y-axis (pitch) of up to 100 rpm with the center of
rotation at the heart level, and up to 75 rpm with the center at the iliac
crest, or hip. Results are shown in table 5-2. A slight increase in reaction
time is observed during the constant speed portion of the run and during
the "deceleration" phase. The effect of the deceleration phase is
accentuated by requiring the subject to reach out and actuate a toggle
switch before releasing the lapbelt. Results of this added test are shown in
table 5-3.

Numerical Processing and Coding

Using a sophisticated All-Altitude Air-Bearing Research and Training
Simulator (ARTS), Fletcher (1968) examined numerical processing
performance during rotations of 3 to 24 rpm in eight individual axes. Tests
involved simple arithmetic tasks conducted in four modes: auditory (with
verbal response), visual (with remote control of presentation by subject),
manipulatory (with digital manipulation of cards by subject), and <'flying"
(with digital manipulation of cards and instructions to look up and focus
on a distant object as though flying, between each numerical task). Task
response was measured as time to completion. Table 5-4 indicates overall results
of the procedure. Table 5-5 indicates the rank order of speed of performance in
the four modes at 3 rpm in the pitch axis, and the rank order of all tasks in eight
rotational modes at 3 rpm.

The improved performance at higher rotation rates is shown by the work of
Weiss and coworkers (1954) who used coded lights, coded sounds, and verbally
presented arithmetic problems as measures of performance. Results of tests
during rotation in the pitch axis at about 100 rpm with center of rotation at
heart level or 75 rpm at the level of the iliac crest showed "virtually no errors
attributable to spinning, and no increase in the time required to answer. Answers
to simple arithmetic problems were invariably correct and no subjective
confusion was reported."

Physiological Effects of Rotary Acceleration

The primary factor involved in the production of physiological change
during rotary acceleration, as with other forms of sustained acceleration, is
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the development of a hydrostatic pressure head along the vcctor of

acceleration (see chapter4, Sustained Linear Acceleration). In rotary

acceleration, however, with the axis of rotation passing through the body,

two opposite vectors exist at the same time, their intensities being

dependent on the site of the axis. In addition, rotation has a highly

characteristic effect on the vestibular system (see chapter 12).

Table 5-2

Time Required for Release of Lapbelt and Parachute Ripcord
During Various Phases of Rotation Around the Pitch Axis at 100 rpm

Time from Switch to Lapbelt Release (sec)

Subject Before Spin During Steady During
Spin Deceleration After Spin

1,8OR,L.

H.S.

R.E.

H.N.

R.M.

J.R.

E.S.

J.S.

H.S.

AVERAGE

1.68

1.04

1.32

1.06

1.18

1.16

1.15

1.31

1.35

1.2_

1.10

1.21

1.07

0.84

1.12

1.25

1.66

1.25

1.40

1.20

0.87

1.27

1.37

1.08

t .87

1.63

1.33

1.10

1.40

1.27

1.17

1.72

1.00

1.70

1.05

1.30

Time from Lapbelt to Ripcord Pull (sec)

R.L,

H.S.

R.E.

H.N.

R.M.

J.R.

E.S.

J.S.

H.S.

AVERAGE

1.16

1.09

1.30

1.29

1.17

1.05

1.10

0.80

1.26

1.14

(After Weiss et al., 1954)

1.65

1.30

0.97

1.36

1.13

1.43

0.95

1.00

1.45

1.25

1.40

1.40

1.41

1.73

1.19

0.80

1.32

1.30

1.32

1.10

1.30

1.59

1.50

1.01

1.21

1.23

1.22

1.27

Cardiovascular-Theoretical Comiderations

As noted above, the site of the center of rotation is critical in determining
physiological effects. A centrifugal force directed away from the heart produces
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Table 5-3

Time (_c) Required to Actuate a Switch at Arm's Length
in Front of Chest During Various Phases of Rotation at 100 rpm

Around the Pitch Axis

Subject Before Spin During Steady During After Spin
Spin Deceleration

R.L.

H.S.

R.E.

H.N.

R.M.

J.R.

E.S.

H.S.

AVERAGE

(After Weiss et al., 1954)

0.75

1.04

0.69

0.73

0.63

0.76

0.71

1.18

0.81

0.80

Missed

1.29

0.52

0.60

1.72

0.88

0.90

0.96

(Discounting

miss)

1.80

1.70

1.27

1.80

1.73

1.66

1.66

Table 5-4

Performance of Visual, Auditory, and Manipulatory Tasks
During Rotation Around Various Axes

0.90

1.70

0.79

0.60

1.07

0.93

0.80

0.97

Number of subjects: 17

Number of test runs: 78

Modes tested: Pitch

Pitch forward

Roll

Yaw

Pitch + roll

Roll + yaw

Pitch + yaw

Pitch + roll + yaw

Random

Range: 3 - 24 rpm

Typical results: A 21% performance decrement in four men exposed to

6-rpm rotation in random axes while performing visual,

auditory, and manipulating tasks

(After Fletcher, 1968)
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an increment of pressure in both the venous and arterial sides of the circulatory

system. Flow would continue unabated were it not for the highly distensible

venous bed. When pooling in this bed is sufficient, the return of blood to the heart

will be inadequate and cardiac output will fall. If this fall produces a pressure drop

in the cerebral circulation greater than the increase in hydrostatic pressure occa-

sioned by the rotation, cerebral hypoxia will ensue. When the center of rotation is

moved towards the feet, the hydrostatic column to the foot is shortened and a

lesser degree of pooling can be expected. Conversely, of course, the negative accel-

eration (-Gz) effects on the cerebral circulation can be expected to increase. Move-

mcnt of the center of rotation toward the head will increase the positive accelera-

tion (+Gz) effects. Thus, final effects are governed by both the rate of rotation and

the position of the center of rotation (Edelberg et al., 1954).

Figure 5-13 is a model of hydrostatic pressure variation secondary to rotation

in the pitch axis perpendicular to the Earth's gravitational field for a man 67 inches

tall. The point of hydrostatic indifference is considered here to be at the level of the

diaphragm.

Table 5-5

Performance Decrement in Four Simple

Numeric Processing Tasks

Rank order for four tasks at 3 rpm (pitch)

1. Auditory input

2. Simulated visual flying task

3. Visual input

4. Simulated manipulation flying task

NOTES: Largest increase in time taken (auditory): 3.9 sec

Smallest increase in time taken (manipulation): 2.5 sec
Optimum time for test (0 rpm): 20.6 sec
Change: 12% to 19%

Rank order of eight rotational modes at 3 rpm (all tasks)

1. Random

2. Rotl + yaw

3. Pitch

4. Roll + pitch

5. Yaw

6. Roll

7. Roll + pitch + yaw

8. Pitch + yaw

NOTES: Largest increase in time taken (random): 4.3 sec

Smallest increase in time taken (pitch and yaw): 2.6 sec
Optimum time for test (0 rpm): 20.6 sec
Change: 12% to 21%

(After Fletcher, 1968)
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Figure 5-13. Simplified model of hydrostatic pressure variation secondary to rotation in
pitch axis. In A, B, E, and F are indicated expected mean arterial pressures (A and E)and

venous pressures (B and F) in the neck, diaphragm, and feet levels when subject is at 90 °

and 270 ° positions. C and D illustrate calculation of hydrostatic pressure components from

anatomical considerations and their sinusoidal variations. In G is shown expected

hydrostatic pressure variation in head and feet. Circled sine wave refers to body position

where maximum point corresponds to the head-up position and minimum point to

head-down position. Maximum hydrostatic pressure at foot area lags head-up position by
angle0sincesubject is in sitting position. MAP:mean arterial pressure; MVP=mean

_enous pressure; 5 and 2 are hypothetical pressure drops along arterial and venous vessels,

respectively. (After Lira & Fletcher; cited in Rothe et al., 1967)
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Cardiovascular Response to Rapid (70 to > 100 rpm) Rotation

Figures 5-14 and 5-15 illustrate some of tile cardiovascular findings in human
subjects rotated around the z-axis (yaw) with the center of rotation at the heart or

the hips. The electrocardiogram (ECG) exhibits changes in the QRS and T vectors,
which are probably the result of anatomical motion of the heart within the chest, as
well as transient extrasystoles (abnormal beats). Some of these results are delin-
eated in table 5-6. Table 5-7, from the work of Urscheli and Hood (1966), shows
further aspects of change in blood pressure and heart rate.

_e 7

_,_ i

!_ E ,_I_; _TEm_L P_ESStmF

L VENOUS PRESSUR_ _*_e _

*o o i0 _o 30 io so 6o

Figure 5-14. Effect on human heart rate, respiration rate, pulse pressure, blood pressure of
spinning around z-axis at 106 rpm with center of rotation at the heart. (After Weiss et al.
1954)
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Figure 5-15. Mean arterial blood pressures at eye level, carotid sinus, and aortic arch
during rotation around z.axis at 106 rpm with center of rotation at the heart (upper figure);
and at 72 rpm with center of rotation at the lilac crest (lower figure). (After Weiss et al.,
1954)
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Table 5-6

ECG Changes Associated with Rotation Around the Pitch Axis

211

ECG Component

Heart rate (bpm)

P--R interval (sec)

Q--T interval (sec)

QRS-T angle
(degrees)

Center of Rotation at Heart (96--118 rpm)

No. of

Subjects

Average Starting
Values and SE

Average Change
from Starting Values and SE

Before Tumblin 9 During Tumbling(96-118 rpm) After Tutoring

12 83.0 +4.2

12 0.18 +0.011

12 0.40 -+0.007

12 14.1 -+3.06

10.0 -+2.7**

- 0.01 +0.006

0.03 -+0.007 * *

-- 4.6 -+3.18

-26.0 +2.8**

0.01 +0.005*

- 0.04 -+0.006**

1.8 -+1.49

Center of Rotation at Iliac Crest (75 -- 93 rpm)

Heart rate (bpm)

P--R interval (sec)

Q--T interval (sec)

QRS-T angle
(degrees)

89.0 -+5.6

0.17 -+0.012

0.41 -+0.017

22.1 -+8.96

-22.0 +3.1"*

0.0 -+0.0O5

- 0.08 -+0.012"*

6.0 -+2.67

8.0 -+3.9

- 0.Ol +0.005

-- 0.03 +0.016

-- 2.7 -+2.42

=Significant at the 0.05 level.
** Significant at the 0.01 level.
(After Weisset al., 1954)

Cardiovascular Response to Slow _1 to 15 rpm) Rotatioa

Lim and Fletcher (cited in Rothe et al., 1967) examined the heart rate

response to relatively slow rotation with the center of rotation at heart level.

They recognized three different types of response in 82 exposures studied. Type I

response, where the heart rate from cycle to cycle shows a minimum of scatter, is

illustrated in figure 5-16. Superimposed is a sine wave representing the subject

body position, 90 ° being head-up and 270 ° head-down. It will be noted that heart

rate "tracks" the body position curve with increase in the head-up position and

decrease in the head-down position. Type I response was observed in all but the

very slow and very fast rates of rotation.The maximum heart rate, however, lags the

90 ° position, and the lag increases as the rotation rate increases. Type II response,

with more scatter evident, is found at very low rates (1 to 2 rpm), and is shown in

figure 5-17. Type Ill response, in which little or no correlation is observed between

heart rate and body position, is found in those situations where the half cycle

period of the rotational rate approaches the maximum heart period. The response

is illustrated in figure 5-18. Lim and Fletcher suggest that the type [II response

may be due to the prolonged time constant of the parasympathetic response as

compared with the sympathetic, such that the heart is still under vagal control

when the subject comes up to and passes through the head-up position.
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Table 5-7

tleart Rate and Blood Pressure Changes at End of Constant Velocity Phase
of Exposure (3 min) to Rotation (120 rpm) in the Roll Axis

Slow Onset

Subject Pulse Systolic Diastolic Mean Pulse
Pressure Pressure Pressure Pressure

Tu

H

B

Ta

Te

Means

+40

+74

+66

+67

+70

+63 + 6

p < 0.001

+13

-20

-34

-45

-55

-28 +--12

+18

+6

-16

-20

-4

-3 +-7

+13

-8

-18

-24

-22

-12_+7

-5

-26

-18

-15

-51

-23 +8

p <O.Ol

Fast Onset

Subject

Tu

H

B

Ta

Te

Pulse

+62

+61

+30

+74

+76

Means +61 +8

p < o.oo5

(After Urschell & Hood, 1966)

Systolic

Pressure

-21

-54

-30

--43

-35

-37 +5

p < o.oo5

Diastolic

Pressure

-2

-24

+ 1

-16

+ 1

-8 +5

Mean

Pressure

-6

-30

-12

-23

--6

Pulse

Pressure

-19

-30

-30

--27

-36

-28 +3

p < o.ool

The cardiac rate tracking phenomenon no doubt reflects carotid sinus
stimulus, with phase lags related to complex interrelationships of blood
vessel wall impedance, blood fluid inertia, and reflex vasomotor, rcsponses.
Blood pressure readings taken immediately before and after various runs of
3 minute duration on the roll and pitch axes are presented in table 5-8. No
trt_nd can be observed at the rates recorded in either systolic or diastolic
levels.

For slow rotation, just as for fast rotation, changes occur in the form
of the ECG as the axis of rotation changes (Rothe et at., 1967). The
variation is different from one subject to another, but reproducible for the
same subject. The changes are more pronounced in random axis rotation
than hi pure axis rotation. No irregularities or arrhythmias have been
obserw'd during slow rotation.
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Figure 5-16. TyF I heart rate response to rotation (6 rpm in pitch axis) in axis

perpendicular to Earth's g field plotted as a function of body position. (After Lim &

Fletcher, cited in Rothe et al., 1968)
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Figure 5-17. Type II heart rate response to slow (1.5 rpm in pitch axis) rotation in axis

perpendicular to Earth's g field plotted as a function of body position. (After Lim &

Fletcher, cited in Rothe et al., 1968)

Cardiovascular Response to Gz 100 Percent Gradient Spin

While the distribution of vascular pressures is somewhat different during

100 percent gradient Gz spin as compared with rotary acceleration, it is
markedly different from that found in long radius sustained acceleration, and is
illustrated in figure 5-19. In high gradient spin, pressures in the head and neck
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are little "altered from normal while in low gradient configurations, central

nervous system blood flow is maintained against a large head of pressure. The

limitation to CNS blood flow in high gradient spin is not insufficient perfusion

pressure but lowered cardiac output occasioned by insufficient venous return,

•although the impedance to venous return is, in fact, less in high gradient spin

than in long arm configuration (Piemme et al., 1966).

3O

40 80 120 160 200 240 280 320 360
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80 8
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- _-

30--

I I J I 1 I J 1 I I I I I I I f I l
40 80 120 160 200 240 280 320 360

BODY POSITION {o)

Figure 5-]8. Type Ill heart rate response to fast pitch rotation at ]5 rpm; (A) heart rate
response of 6 cycles averaged at each body position, (B) cycle to cycle heart rate variation.
(After Lim & Fletcher, cited in Rothe et al., 1968)

Mean pulse rates for subjects undergoing 100 percent gradient Gz spin are

presented in figure 5-20. At lower G levels, some increase in pulse rate is found

with onset of acceleration but this rapidly subsides to control levels. At higher G

levels, rates increase progressively to termination of the experiment. No

arrhythmias or other cardiac irregularities have been observed (Piemme et al.,

1966).

Other Physiological Findings

Apart from investigations of the cardiovascular and vestibular parameters

noted above and in the chapter concerning the vestibular system (chapter 12),

very little attention has been paid to other physiological effects of rotary

acceleration. During high speed rotation in dogs, Edelberg and coworkers (1954)

noted that at rates above 140 rpm with the center of rotation at the heart level,
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respiration is inhibited. He attributes the apnea to pull on lung stretch receptors.

When the center of rotation is moved tailward, however, respiration is maintained.

In humans rotating at 106 rpm, respiration is still maintained, according to Weiss

and coworkers (1954). Fletcher (1968) also notes that respiration, which tends to

be rapid and shallow at 30 rpm, slows and becomes deeper at lower rotation rates.

The subject in pitch rotation may, in fact, breathe synchronously with the inver-

sion cycle.

Table 5-8

Blood Pressure Values Before and After Rotation in the Roll Axis

RPM*

Subject
2 4 6 8 10 12 14 16

Pre-

_run

J.N. _Post-
/ru n

Pre-
vrun

E'G" lPos t .
" run

}Pre-

run,A.R Post-

/FUrl

_ Pre-
frun

A'S'_Pos t .
J run

T.S, _Post-

/run I

_ Pre-
frun

R'D'lPos t.
.,run

)rPur_"

V.R "_Post-
/ run

BP

Reading

S _*

D**

S

D

S

D

S

D

S

D

S

D

S

D

S

D

S

D

S

D

S

D

S

D

S

D

S

D

*Revolutions per minute are midpoint rotational rate of class intervals.

**S - systolic; [J -diastolic.

(Rothe, et al., 1967)
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Figure 5-19. Phy_cal pressures (mm Hg) in absence of compensatory vascular reflexes at
each level of the body in high _adient _ low gradient acceleration. At the feet, in each of

the two figures to the right, a 5 G pressure exists. The difference in pressures against which

the heart must perfuse the central nervous system in each ease amounts to little if any more
than normal physiologic pressures in high gradient acceleration, as opposed to 100 or more

mm llg in the low gradient profile. (After Piemme et al., 1966)
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Figure 5-20. Pulse rates of seven subjects as a function of duration of exposure to +G z
100% spin around the x-axis with center of rotation tangential to the head. Time zero

identifies onset of 3 rain plateau of constant angular velocity. Each point represents mean
for 'all subject veins at each level. (After Piemme et al., 1966)
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Pathological Effects of Rotary Acceleration

Tile pathological effects of rotary acceleration, that is, those resulting in injury,
have been studied to a vet3' slight extent in animals and observed occasionally in
man. Table 5-9 presents a summary of postmortem findings in dogs after 1 minute
exposures at 195 rpm in tile pitch axis. In addition, frequent nasal, oral, and con-
junctival hemorrhage have been observed in dogs, occasionally associated with
rectal bleeding (Edelberg et al., 1954). Extrapolation of animal findings to man
must 'always be done with caution, but it is reasonable to assume that similar effects

might be expected.

Table 5-9

Summary of Results of Postmortem Examination of Eleven Dogs
after Rotation Around the Pitch Axis at 195 rpm (one to five runs,

1 min each)

Organ Description Positive Cases Negative Cases

Brain Macroscopic cerebral hemorrhage 4 7

Microscopic cerebral hemorrhage 5 6

Hyperemic 6 5

Heart Subendocardial hemorrhage 2 9

Lung Atelectasis 4 7

Hyperemia or edema 8 9

Hemorrhage 2 9

Viscera Hyperemia 7 4

Rectal hemorrhage 1 10

(After Edelberg et al., 1954)

Humans have not been exposed to the same intensity of exposure, but
conjunctival petechiae (pinpoint bleeding into the white of the eye) have
been found along with petechiae on the top of the foot. Figure5-21
illustrates the occurrence of conjunctival hemorrhage at various rotation

rates (Weiss et al., 1954). Urschell and Hood (1966) note that all their
subjects, spun around the z-axis, developed petechiae on the hands and feet
during their rotation at 120 rpm. One experimental subject, following a
4 minute exposure to 60 rpm, developed convulsions 3 hours later. These
were attributed to a blood clot in the brain (cerebral embolus), although no

other neurological findings were demonstrated (Urscheil & ttood, 1966). The
incident, ahhough isolated, appears nevertheless to be significant.

487 858 O - 73 IS



218 Bioastronautics Data Book

w

1000

1oo

10

3

2

O NO HEMORRHAGE

• OCULAR HEMORRHAGE

a

\+

o ',?.,

o+%

i . , I i I i J i i i I i i i i i i

20 40 60 80 100 120 140 160 180

RPM

Figure 5-21. Incidence of conjunctival hemorrhage during rotation at various rates

around pitch axis. Note that time in ordinate refers to duration of exposure. (After
Weiss et at., 1954)
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CHAPTER 6

IMPACT

by

Richard G. Snyder, Ph.D.

University of Michigan

The limiting factor of all methods of emergency escape and crash survival
protection is the tolerance of the occupants to accelerative forces. Abrupt
acceleration, deceleration, or impact is characterized by forces of very abrupt
onset, short duration, and high magnitude. It is generally considered that impact
involves the occurrence of forces of less than 0.2-second duration (Stapp,

1961b). Some abrupt impact conditions to which aerospace or aircrews may be
exposed include astronaut pre-lift-off tower escape, lift-off abort, ejection seat
or modular capsule firings, launch vehicle staging, escape device parachute
deployment, flight instability, clear air turbulence, aircraft or aerospace vehicle
crash landing, and capsule water or land touchdowns. In situations such as
saw-toothed accelerations produced by successive rockets firing in multistage
propulsion systems, in extreme turbulence, or in many crash landings where
multiple contacts are made with trees or other objects, the occupants will be
exposed to a series of separate impacts. The tolerances of the human component
of the abruptly decelerated system are related to the elastic and tensile limits of
the tissues involved, as well as to profound physiologic, psychologic, and
metabolic effects.

Our current state of knowledge concerning human impact tolerances is very
incomplete. While most human volunteer studies have been conducted on young
healthy male subjects under rigidly controlled conditions with careful medical
monitoring, they have been voluntarily terminated at levels below that of
irreversible injury. No experimental impact data are available for females,
children, or other segments of the population, and, due to the range of human
variability, data derived from volunteer male subjects must be used with caution
in other applications.

Animals have been used extensively to obtain physiological data at impact
levels above those potentially injurious to the human vohmteer. Cadavers offer a

Reviewed by Randall M. Chambers, Ph.D., NASA Langley Research Center
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means of determining structural limits of tissues, but cannot provide the
physiological information which must be obtained on living systems.
Accidental free-falls have provided still another means of determining human
tolerances to extreme impacts beyond those to which human volunteers
may be subjected in the laboratory. Other estimates of impact tolerance are
obtained from clinical studies of impact trauma and from reconstruction of
automotive, aircraft, or space vehicle accidents. While both mathematical
modeling and anthropomorphic dummies are used extensively as tools to
provide predictions, particularly of body kinematics and force-mass

relationships within the body during impact, such simulations can be no
more accurate than the very limited biological input information available.

Determination of human tolerances to impact is complicated by many
other physical factors influencing the outcome, including tightness and
configuration of restraint and support (seat); body orientation; equipment
such as helmets or parachute chestpacks, which can alter the force
distribution on the body; and the magnitude, direction, distribution,
duration and pulse shape of the force resulting from the impact. In
addition, biological factors including sex, age, and physical and mental
condition have been identified as influencing survival. Individual variability
must be considered, for tolerance under identical test conditions will vary in
the same individual as well as from person to person. Furthermore, while
considerable data are available concerning impact forces in some body
orientations, such as in forward or aft-facing positions, less is known of the
effects in other orientations, such as in lateral impact. Limited experimental
studies of exposure to simultaneous forces or to off-center forces have been
conducted. Such conditions also greatly influence tolerance.

It is not possible to state precisely what human tolerance to impact
forces is without defining the specific conditions involved. It is the intent
of this chapter to present a summary of the known data concerning human
tolerance to impact.

Terms and Definitions

The biophysical terminology employed in the field of impact is generally
consistent with terms used in the field of sustained acceleration. Some

specialized meanings and distinctions have, however, developed. Most work
is identified by descriptive terminology, such as forward, rearward or aft,
headward, footward, or right or left lateral accelerations. Physiologically, the
subject's orientation cart be described in relation to the force, and, since
1961, terms using the x, y, z axis (table 6-1) have been recommended
by the Biodynamics Committee of the Aerospace Medical Panel, AGARD, as
the standard description for simple uniaxial accelerations (Gell, 1961). The
physiological standard (System 4in the table) is recommended as the
universal system. Air Force or Navy investigators may use the vernacular
description relating "eyeballs" movement in inertial response to the applied
acceleration.
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TABLE A

Direction of Acceleration

Aircraft Computer

Standard (Sys. I)

+ a x

-a x

-a z

+ a z

+ay

-ay

Acceleration

Descriptive

(Sys. 2)

Forward accel.

Backward accel.

Headward a¢cel.

Footward accel.

R. Lateral accel.

L. Lateral accel.

LINEAR MOTION

Forward

Backward

Upward

Downward

To Right

To Left

TABLE B

Inertial Resultant of Body Acceleration

Physiological

Descriptive

(Sys, 3)

(1,2) Transverse

P-A G Prone G

Back to chest G

Transverse A-P G

Physiological

Standard (Sys. 4)

-G x

+G x

Vernacular

Descriptive

Eyeballs In

Eyeballs Out

Supine G

Chest to Back G

Positive G

Negative G

Left Lateral G

Right Lateral (3

+ G z Eyeballs Down

-G z Eyeballs Up

+ GV Eyeballs Left

-Gy Eyeballs Right
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Since body orientations and resultant inertial responses in off-axis impacts

may involve complex multiaxial accelerations, a three-dimensional description is

often used and expressed in terms of degrees of roll, pitch, and yaw relative to

horizontal flight on a polar coordinate system. In the neutral position

of 0-0-0 the crewman is seated upright facing toward the point of impact

(figure 6-1). In the 0-5-180 orientation, a crewman would be seated upright, five

degrees back from perpendicular with the back facing the point of impact.

Inertail forces in this orientation are directed from anterior to posterior

(Hanson, 1965). Similarly, 0-55-90 orientation would indicate a +Gy (eyeballs

left) impact, 55 degrees back from the perpendicular, and 0-0-270 would

correspond to a -Gy (eyeballs right) impact.

+7

+×

--Z

--×

+7

Figure 6-1. Coordinates for describing location of subject within an impact environment.
(Modified from Coburn, 1970; Gell, 1961; revised 1966b by AGARD Biodynamics Panel).

Historically, confusion of terminology has existed between researchers in the

fields of impact and sustained acceleration. Early impact experimentation was

accomplished on deceleration test devices, where the direction of force acting on

the test subject is opposite to that which occurs in acceleration, even though the

direction of motion is the same. Thus a test described as "forward facing

impact" (deceleration) is equivalent to backward acceleration.

Understandably, despite efforts to_.ard standardization, some confusion still

exists. One reason for this is the limitation of the term "G" to the inertial

reaction of the subject. This poses no problem to the investigator working in

steady state acceleration, since the transient response is of minor consequence

with most devices capable of producing sustained acceleration. For the

investigator concerned with impact, the transient response is of major

importance since most end points are established by a transient peak. Because of
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the time-varying nature of the transient response, the inertial reaction is
continually changing. Moreover, due to the complicated reactions of the
biological system, the inertial reaction varies tbroughout tile body during the
impact. Thus tbe specification of a single "inertial response" magnitude as a
descriptor of the experiment would be of little value to the researcher in impact
tolerance. Some researchers have recognized this limitation but have used the

"G" magnitude to indicate the input peak rather than the response. This is
advantageous for purposes of experimental control and permits relatively easy
measurement with generally available equipment.

Acceleration

Acceleration is defined as the time rate of change of velocity. Since velocity
is a vector, acceleration occurs when either the magnitude (speed) or the
direction of motion of a body changes. Most impact test devices use a track and
sled system, operating either vertically (FAA, NASA, and 6570 AMRL drop
towers, or the 6571 ARL HYGE) or horizontally (such as the USAF "Bopper"

or "Daisy"). The test pulse is provided either initially, as the sled accelerates to
speed, or terminally as the sled is slowed or stopped from a given speed. Impact
pulses may be of a variety of waveforms, either as selected by the researcher or
limited by the capability of the test device. Figure 6-2 shows an example of a
rectangular profile, with a relatively long plateau or "dwell" time. Rise time
depends upon how rapidly peak accelcration is reached. The term rate of onset
(T) is frequently used synonymously. Jolt describes the rate of change of
acceleration (displacement with respect to time), and has been found to be a
strong limiting factor in tolerance. A variety of controlled pulse shapes are
shown by Chandler (1967). Difficulty is often encountered in describing
concisely a complex impact pulse shape, and a number of techniques have been
adopted to provide consistent descriptors (the most recent, Mil-S-94793,,
16 June 1967).

The "G" System of Units

Few units of measurement have been more misused and misunderstood than

the unit "G." In the strictest sense, it is merely a dimensional representation of

the magnitude of acceleration, expressed as a ratio of the magnitude of the
measured acceleration to the magnitude of the "standard" acceleration of

gravity, G = lal/lgol. Since acceleration is a vector quantity, having properties
of both magnitude and direction, the capital letter G is used to denote that only
magnitudes are being compared, so that the direction of the acceleration of
interest does not necessarily coincide with the direction of the acccleration of
gravity. The signs and subscripts of the standard terminology, previously
discussed, are an attempt to restore directionality to the G nomenclature.

Consideration of Newton's second law, stated in simplified form as F = ma,

with weight defined as mass times "standard gravity" (W = mgo), can lead to the
conclusion that G is also equivalent to the ratio of the force (required to
accelerate the mass m at an acceleration level a ) to the weight (under standard
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gravitational conditions). This relationship would be stated: G = F/W. Thus G is

often thought of as having both force and acceleration significance.

2

PEAK WG)

I

E TIME_ _ DECAY TIM

TIME tmsec)

Figure 6-2. Example of rectangular-shaped impulse deceleration profile.
(Adapted from Stapp, 1961)

The quantity G is dimensionless, being the ratio of two accelerations or of

two forces. However, by definition it is capable of telling how much force is

acting and what acceleration is taking place in a given dynamic situation. Thus, if

it can be stated that a body is experiencing a certain amount of G, the total

amount of force can be determined in ordinary units if the given value of G is

multiplied by the standard weight Wo of the body, or F = G Wo. Simi-

larly, Gdefines magnitude of acceleration, a=Ggo. Although dimension-

less, G possesses the same property of direction as do the force and acceleration

which it connotes. Thus, it is possible to construct G vector diagrams in place of

force or acceleration diagrams when analyzing dynamic problems. G is usually

thought of.in respect to its "force" aspect (Dixon and Patterson, 1953).

The symbol g has been widely abused in aerospace medical literature.

Although g has been rigidly established by physicists as a symbol (go) for a

specific physical quantity (32.2 ft/sec2), the acceleration of gravity, it is often

indiscriminately used in place of G in the literature. In contrast to sustained

acceleration, in impact a whole body can only be said to experience a

certain G when that G refers to the whole body input, not response. On impact,

each element of the body experiences a different G load, depending upon its
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elastic, viscous, and/or plastic relation to the rest of the body, to the parameters
of the impact pulse, to the support/restraint system, to the general structural
characteristics of the test vehicle, and many other factors. Realistically,

six degrees of freedom for motion of each clcment would have to be measured
to accurately assess the force imparted. Although accelerometers have been
available for at least five decades, the measurement of force and force

distribution during impact has not yet been accomplished. To convert an
acceleration measurement to a force measurement, one must know the mass

upon which the acceleration is acting (F : ma). Due to the distributed mass and
undefined interconnections of tissues encountered in the human body, the
effective mass for the acceleration measured is not known. Therefore,

investigators cannot yet speak of inertial force based upon body acceleration
measurements without making crude guesses.

Interpreting the Data

There are other considerations which pose major problems to the impact
engineer. The calibration, placement and attachment of transducers can cause
artifacts in the data. Head or chest accelerometers, unless firmly attached or

implanted in bone, are subject to distortion of the supporting strap or
intervening tissue and result in higher acceleration readings than actually occur
(Ewing, 1969). G forces may be recorded on a sled in one study and in various
locations on the body in another, yet reported without distinction.

To accurately specify acceleration it would be necessary to utilize
three linear accelerometers and three angular accelerometers at the same point,

or provide some other means of obtaining these data. Also, acceleration
measurements change from point to point on any distributed body element
unless it is rigid and moving in only one linear direction without rotation. Thus,
one acceleration measure, even if properly made, is not representative of the
acceleration distribution over the body (Chandler, 1970). For example, in lateral

run No. 2530 programmed for 10sled G on the ttolloman Bopper, peak
sled G was 8.48, peak G on subject's chest was 14.47, and head G was recorded
as 22.04 (Zaborowski, 1966).

Finally, results are subject to various interpretations depending upon system
or computational parameters which may go unreported. For example, while
most test results are presented in terms of peak G, some arc given as
plateau G or average G. Some investigators "round-off" or "average" multiple
peaks while others report the peaks. Frequency response and damping
characteristics may differ. All of these factors should temper interpretation of

reported tolerance limits.

Human Tolerance Limits

Tolerances have been variously defined, and different researchers have
established different end points as criteria. Bierman (1947) defined tolerance as
"that value of impact or load which produces a painful reaction;" Stapp used a
variety of criteria ultimately defining tolerance as the limit beyond which either
the subject or the experimenter fears to go lest there be serious injury. Injury has
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been termed "reversible" or "irreversible" depending upon whether or not the

individual can recover. Aerospace and aviation medical research in impact has

been concerned primarily with whole body response to impact forces. Most

human tolerance limit data developed to date are based upon the seated, young

male subject utilizing maximum body support. In the majority of tests body
orientation is in relation to the four main body axes: forward (-Gx), rearward

(+Gx), headward (+Gz), and footward (-Gz) acting forces. Only one series of

right lateral (+Gy) tests with human subjects has been conducted (Brown, et al.,

1966). Test results can be affected by body position, restraints, instructions
given the subject prior to testing (e.g., relax or tense muscles during the test), the

subject's task, etc.

In figure 6-3 data from a number of sources have been combined to illustrate

impact experience documented to date. It should be noted that numerous

biophysical factors influence survival, and the "approximate survival limit"

shown is only an estimate.
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Figure 6-3. Impact documentation. Velocity and deceleration distance are shown on
common axes, with magnitude of force and deceleration time shown on secondary scales.
Hollow squares mark selected, well documented, free-fall survivals for which impact forces
have been calculated. Extent of /issue deformation at impact for these free-falls is not

known, thus deceleration distance is not always known. (Modified from Webb, 1964, with
data of Snyder, 1963.69)
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Tolerance to Transverse (--+Gx) Impact Force

In forward facing transver_ (-Gx) impact, tolerance limits for man are
approximatcly 50 G peaks at 500 G/see rate of onset for 0.25 second's duration,
provided there is adequate upper torso restraint (Stapp, 1951a). However,
changes in the rate of onset directly affect human response for various impulse
durations (Stapp, 1949-1968; Stapp & Hughes, 1956; Stapp & Blount, 1957;
Eiband, 1959; Stapp, et al., 1964; Stapp, 1965). Air Force design recommenda-
tions are approximately 45 G for a duration of 0.1 second and 25 G for a
duration of 0.2 second (U.S. Air Force, 1969). Restraint in the experiments
establishing these limits was by means of a double harness with 3 inch wide
shoulder straps, a seat belt with thigh straps, and a chest belt. With a less
adequate restraint system, some debilitation and injury may occur at these levels

and greater tolerance may be found with better protective systems.

Stapp reported that peak acceleration of approximately 45 G (0.09 second's
duration) with a rate of onset of 500 G/see resulted in no signs of shock. Yet, he
found that 38 G's for 0.16 second at onset rates higher than 1300 G/see
produced signs of severe shock (Stapp, 1949; 1968) and 45 G (for 0.23 second)
at 413 G/see produced severe delayed effects (run 215, Stapp, 1949). A higher
rate of onset usually implies a higher content of high frequency energy in the
acceleration pulse, with a higher energy transfer to the human. Unfortunately,
the data are too few and too often uncontrolled with respect to restraint systems
for adequate interpretation (Holcomb, 1961; NASA, 1965).

Human tolerance for impact in rearward facing (+Gx) body orientation has

not been clearly established. Humans have survived impact, with reversible
injuries, at a level of 83 G (chest acceleration, not actual input) at 3800 G/sec
for 0.04 second's duration (Beeding & Mosely, 1960). The accepted Air Force
design limit falls between this and the 45 G for 0.1 second end point for eyeballs
out impact (U.S. Air Force, 1969). Stapp (1949) reported human tolerance for
+G x (rearward-faeing impact) to be 30 G for 0.11 second's duration with a
calculated rate of onset of 1065 G/see.

Chimpanzee tests, backed by free-fall data for humans, indicate that limits
for survival may be less than 237 G at 11 250 G/see for 0.35 seeond_ duration
in the forward-facing (-Gx) body orientation when the subject is restrained by
full-body harness, and about 247 G at 16 800 G/see over 0.35 second's duration
(Stapp, 1961a) rate of onset. Persistent injury was found above 5000 G/see rate

0.3_ second s duration, although transient injuryof onset, 135 G peak and "_
effects were observed at 60 G at higher than 5000 G/see rate of onset in the -G x
direction (Stapp, 1958a).

Attempts are being made to expand design criteria regarding the relationship
between rate of onset and duration of transverse impact acceleration (U.S. Air
Force, 1969). Figure 6-4 gives data related to abrupt transverse (+Gx) impacts
which have been survived by men and animals. In view of these gaps in the data,
the general form of the curves in this figure merits some comment (NASA,
1965). It can be seen that for duration times up to 0.01 second, the tolerance
level drops off linearly (log-log scale) as duration time increases. This can be
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explained in terms of dynamic response, since the critical human response occurs

as in a relatively low frequency system. Short duration impacts do not possess
sufficient energy to excite maximum response of this low frequency system.
When full overshoot is attained (at about 0.01 second) any further increase in

the duration of impact does not increase the man's response for a given input

level, until the "long" duration regime is approached when hydraulic effects

become noticeable and reduce the tolerance level still further (see also
figure 6-12).
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Figure 6-4. Survivable abrupt transverse (+Gx) impact. Reference numbers are those
in original reports. (After Webb, 1964; based on data of Eiband, 1959)
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Figure 6-5 presents data for tolerance to +Gx impact as a function of

velocity change and average acceleration. The curves of Gurdjian (1954) were

calculated to define the dividing line between mild injury (no damage) and

severe injury such as shock and retinal hemorrhage in humans, in terms of

velocity change and average acceleration force. There are few human

experiments at the high accelerations. Animal data support the shape and

approximate location of file curve (Kornhauser, 1964). Because of all error

found in the original calculations, they were recalculated and plotted as shown.

Good agreement is noted except for the 0 to 0.02 region where the earlier model

of Gurdjian shows a greater permissible velocity. It can be seen that for

exposures of less than 0.02 to 0.06 second, the change in velocity, rather than

the acceleration level, determines tolerance (as predicted by figure 6-12). More

human data are needed to define the curve at short exposure durations.
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Figure 6-5. Tolerance to rearward +G x short-duration accelerations as a function of
velocity change and average acceleration. Dashed line rcpre_nts +G x tolerance curve for
injury as determined by Kornhauscr and Gold (1961), corrected for errors found in the
original duration times. The solid line is the tolerance curve resulting from more recent
analysis of available usable impact data by Stanley Aviation Corp. (NASA, 1965). [After
NASA (Stanley Aviation Corp.) 1965 ].

Tolerance to Vertical (-+Gz) Impact Force

Design curves for ejection seat and escape capsules (HIAD, 1960; General

Dynamics, 1961) have been vague regarding the relationship between rate of

onset and duration, especially in the region of short duration impact (Holcomb,

1961). For example, whole body deceleration of 50-pound chimpanzees at 3 -G z

using a trapezoidal deceleration profile with a plateau of 50- to 60-msec duration

resulted in G amplification of 2.0 to 2.5 times the sled G, as detected by a
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miniature accelerometer rigidly mounted on the calvarium (Sonntag, 1967).
Figure 6-6 gives data which may be helpful in this regard. It shows the
durations and magnitudes of abrupt vertical decelerations, in both the
tailward (-Gz) and headward (+Gz) directions, which have been withstood
by animals and man.

Impact tolerance has been assessed in terms of impact pressure (i.e.,
force per unit area) as well as from the magnitude-duration point of view.
The +Gz (headward) case is illustrated in figures 6-7 and 6-8. There is a

considerable area of unknown effect between the region of voluntary human
exposure and the region of known injury. The unknown area covers about
20 G in tile ordinate in figure 6-7, which includes the region of most
interest in space operations. It is clear from the figure that the boundaries
of injury versus non-injury are not yet particularly well defined, and a few
more reliable points might well change the general shape of the curves,
particularly in the impulse region.

Tolerance to Lateral (-+Gy) Forces

Lateral (-+Gy) impact tolerances appear to be considerably lower than is
tolerance in either the transverse (-+Gx) or footward (+Gz) body
orientations, with a maximum of 14.lpeak sled G at 600G/see for

0.]22 second's duration under full body restraint (Sonntag, 1968). When the
subject is restrained by a lap belt only, the voluntary tolerance limit for
belt (-Gy) lateral impact has been reported to be only 9 G (average) for a
duration of approximately 0.I second (Zaborowski et al., 1965; Zaborowski,
1966). More recent tests with the F-Ill restraint system (General Dynamics
version) resulted in subjective tolerance levels at 9.2 to 10sled G's, or 12 to

14 G on the chest (Sonntag, 1968). Few fight lateral impact (+Gy) tests
have been done, but in this orientation with full Mercury mission-type body
restraint, the subjective tolerance level has been reported to be above
21.5 G (sled) maximum for ll90G/sec and 0.121 second's duration 0Veis et
al., 1963a). With the early Apollo restraint system, 18.7 G (sled) was
tolerated with no complaints (Brown et al., 1966).

Computer Analyses of Plateau Tolerances

Recent attempts have been made to supplement empirical curves with
preliminary computer models employing impedance and resonance
techniques (NASA, 1965). Art analysis of headward (+Gz) accelerations has
shown that the maximum plateau input acceleration can probably he taken
as 40 G with some degree of confidence. Although essential for computer
studies, the selection of an equivalent spinal frequency (60) is not so well
defined. Because of the shortage of results in the impulse region, the most

reliable evidence can be taken from the critical velocity change deduced
from drop tests which give a value for 62 of 225 rad/sec (Swearingcn et al.,
1960).
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effects are caused by shifts in body fluids and tissues. Data points are taken from

human experiments in drop towers, falls, and rocket sleds with various restraint
devices. Two shaded areas define approximate areas of effect in terms of impact

pressure for any duration. (After Webb, 1964, adapted from Thompson, 1962)
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236 Bioastronautics Data Book

In the transverse, backward direction (+Gx) the plateau tolerance line

falls at a value of 45 G for the input acceleration, and the most reasonable

position for the impulse tolerance line corresponds to an equivalent

frequency of 95 rad/sec. This is somewhat higher than tile value suggested

by the evidence from accident survival. The adoption of the more

pessimistic tolerance hne appears justified since it satisfies the few sled test

points available, and accident cases usually represent extreme end points and

cannot be precisely reconstructed. No satisfactory conclusions can be made

from the transverse forward data (-Gx) but a frequency of 95 tad/see, as for

the backward case, is suggested. From a physiological standpoint, the

plateau tolerance level for forward facing impact might be lower than that

for the backward direction because of the position of the spine relative to

the internal organs, but this also depends upon restraint. Until more

relevant tests have been conducted, it is suggested that the allowable peak

input acceleration be taken as 35 G.

Tentative impact tolerance parameters suggested for use with the single

degree of freedom, undamped dynamic model, are given in table 6-2. It

should be remembered that these values are applicable to an undamped

model. Damping will introduce changes in the tolerance levels considered to

be small enough to be ignored at this stage of model development. Analytic

results are also available for two and three degrees of freedom models

(NASA, 1965). These bring out the factors determining the drop in

tolerance levels at the longer durations of figurcs 6-4 and 6-6. The exact

shapes of the curves are determined sequentially by tolerance of the head,

lumbosacral, and spine-abdomen system as the duration of impulse is
increased.

Table 6-2

Tentative Impact Tolerance Parameters for Use With Single Degree

of Freedom Undamped Dynamic Models

Parameter

Equivalent frequency

Maximum allowable mass
acceleration

Impulse region

End of plateau

Headward (+G z)

225 rad/sec

+80 Gz

0 - 0.009 sec

.00 sec

Impact Direction

Backward (+G x)

95 rad/sec

+90 G x

0 - 0.02

.06 sec

Forward (-G x)

95 rad/sec

-70 Gx

0 - 0.02

.08 sec

(After NASA, 1965, Stanley Aviation Corp.)

Tolerance to Peak Impact Accelerations

Figure6-9 indicates the peak accelerations that have been survived

without permanent injury. Figure 6-10 shows the greatest vertical impact
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subjects would voluntarily endure and the type of symptoms noted at given
rates of onset. Free-fall studies have indicated that the critical entrance
velocity for human survival of water impact is about 100 ft/sec, feet-first
(+Gz), and 97 ft/sec in the head-first (-Gz) body orientation (Snyder, 1965;

Snyder & Snow, 1967). These velocity calculations were corrected for aero-

dynamic drag and are thus lower than standard values.
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Other Factors Affecting Impact Tolerance

Besides the numerous factors affecting human tolerance to impact which
have been indicated in studies to date, new environmental factors

encountered in space flight may also exert some degree of influence. In extended
space flight, astronauts will be exposed to ionizing radiation which may

substantially change the functional state of the organism. However, no
information is yet available concerning the effects of ionizing radiation on
human impact tolerance and only a little animal data has been gathered.
Exposure of mice irradiated in doses of 250 to 850 R to prolonged accelerations
of 40 to 42 G for 3 minutes resulted in estimates of the limits of overload

resistance of a human subject injured by ionizing radiation of about 52 days

(Davydov et al., 1965). Extensive physiological, histological, and biochemical
monitoring of two turtles aboard Zond-5, showed no correlation between
radiation and impact effects (Gazenko et al., 1969).

Preliminary acceleration studies (centrifuge) have been initiated relative to
the effects of the circadian rhythmicity on impact tolerance, Bolend, 1970, but
biological effects upon man's impact or deceleration tolerance have not been
reported.

Low-altitude, high-speed flight in turbulent conditions, which exposes crews
to random multiple vertical impacts, has been found to result in markedly
deteriorating performance after one hour of flight as terrain slopes steepen and
airspeed increases from Mach 0.4 to 0.9 (Soliday & Schohan, 1965).

Physiological and Biochemical
Response to Impact

Human tolerance criteria are largely physiologically determined, and it
must be emphasized that most data related to the human have been
obtained at impact levels at or below voluntary tolerance. Very limited

human data, generally obtained in connection with accidents, are presently
available at higher impact injury levels. Most estimates of lethal impact
ranges are extrapolations from animal studies. A large number of
environmental factors directly influence physiological responses, including
body orientation, direction of application of force, and magnitude, duration,
and rate of application of the acceleration pulse shape. In addition,

supporting structures and restraint play a major role in variation.

Cardiovascular Response to Impact

Rate of onset has been shown to be a primary limitation and appears to

influence clinical shock directly following impact (Stapp, 1955b; Taylor, 1963).
The mechanisms of this physiological shock, which involve complex,

*In semilunar flight from 15-21 September 1968; splash down landing in Indian Ocean.
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_muitaneousneural-humoralevents,arenotyetclearlyunderstood.Post-impact
bradycardia,or slowingof theheartratebelow60beatsperminute,hasbeen
welldocumented(Bierman,Wilder,& Hellems,1946;Stapp,1949;Ruff,1950;
Rhcin& Taylor,1962;Tayloret al., 1962;Weiset al., 1963a;Brownet al.,
1966).At 30Gpeakand100G/sec,unpleasantpressuresensations,pallor,drop
in bloodpressure,increasedpulserate,andoccasionalretinalvenousspasms
reportedlyoccur.Thesetransientchangeswerefoundin the absenceof
mechanicalfailureor tearingof tissuesandorgansandwithoutbonefracture.
Brownet al.,(1966)foundthatbradycardiapost-impactisa functionof the
accelerationprofileandthesubjectorientation,butlittleadditionaldocumented
informationis availablerelativeto the influenceof impactorientationand
magnitudeonpost-impactheartslowing.

Mildbradycardiaisproducedat 15Gimpactin theforward-facingposition
(-Gx)but is notasmarkedin therearward-facing(+Gx)position.Increasing
levclsof impactincreaseboththeseverityanddurationofbradycardiaupto the
testedvoluntaryhumanlimitsof 30G(Taylor,1963).In impactpulsesof less
than50msecandlessthan15Gthecardio-inhibitoryreflexcausingslowingof
theheartrate apparently does not occur. At low G forces (7.21 to 15.46 G), a
tachycardia, or speeding up of the heart rate, has been reported (Piotrowski,
1968).

A carotid sinus reflex induced by sustained pressure rise in the carotid
arteries was subjectively observed following exposure to forward-facing (-Gx)
impact of 600 G/see to a plateau of 15 G sustained for 0.60 second (Stapp,

Iq61a). The cardiovascular shock effect is characterized by pallor, sweating,
drop in blood pressure and rise in pulse rate. Mild transient shock has been
observed at less than 25 G peaks where duration was less than 0.1 second. Severe
shock has resulted from exposure to 38.6 G at a 1370 G/scc onset rate for

0.12 second's total duration (8 to 9 Hz resonant frequency) (Stapp, 1961b).

Hematological and Biochemical Change

In man, various changes in chemical constituents of the blood as well as

adrenal gland activity have been reported to occur in conjunction with impact
accelerations. Reduction in blood platelets (thrombocytopenia) after for-
ward-facing (-Gx) impact at 20G (peak sled G) was observed one hour
post-impact at 400 to 800 G/see onset rates (Taylor, 1963). Sympathoadrenal
response to impact was suggested due to changes found in measurement of
urinary excretion of vanehnandelic acid (VMA) (Hanson & Foster, 1966). More
precise measurement of norepinephrine, epinephrine, and 17-hydro-
xycorticosteroid in urine pre- and post-impact showed a definite connection
with sympathoadrenal function and emotional stress (Foster & Sonntag, 1969).

Pulmonary and Muscular Effects

In ÷Gx (rearward-facing) impact levels up to 25 G, no significant impairment
of puhnonary function has been found to occur in the restrained +Gx
(forward-facing) position ([tanson, 1965).
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In lateral (_cGy) impact, minor physical complaints such as muscle stiffness
occurred in approximately 258 G/see rate of onset for durations of 0.3 to
0.1 second (Zaborowski, 1966).

Physiological Tolerance

Symptoms of various degrees of shock are the first physiological signs
limiting human voluntary tolerance to transverse acceleration. A 40 G peak at
331 G/see onset rate of 0.32 second plateau duration (wearing upper torso

restraint) can be tolerated with no indication of cardiovascular shock. Further
increase in duration of acceleration (i.e., sustained acceleration) will not affect

response (Lewis & Stapp, 1958). However, in seated forward or rearward-facing
body orientations (-+Gx), physiological alterations in man have been reported
when peak forces exceed approximately 15 G and onset rates are above
400 G/see. When these levels are exceeded, subjects turn pale, perspire, and
exhibit transient rises in blood pressure. More severe loads result in uncon-
sciousness. At the maximum acceleration loads which have been applied,
immediate effects are sometimes not pronounced, but delayed effects occur with

gradual onset over the next 24 hours (Stapp, 1955, 1965; Pesman & Eiband,
1956; Stapp & Hughes, 1956; Stapp & Blount, 1957; Beeding & Mosely, 1960;
Stapp et al., 1964).

The most severe shock observed in human testing occurred in a

rearward-facing (+Gx) impact of 82.6 G at 3826 G/see measured on the sternum,
or 40.4 G measured on the sled at 2.139 G/see for 0.04 second's duration (12 to

14 Hz resonant frequency). In this case there was no blood pressure for
30seconds post-impact, returning to 70systolic and 40diastolic within
5 minutes. The subject complained of severe lower back pain, then lost
consciousness 10 seconds post-impact. He was hospitalized for 3 days to recover
from headache and back pain (Stapp, 1961).

For the lateral body orientation, tolerance has been defined as subject
discomfort with prolonged stiffness and soreness in the neck musculature

(Zaborowski et al., 1965). Tests reported by Sonntag (1966) have placed
voluntary limits in lateral impact with lap belt restraint only at 12 G at which
point anal sphincter pain, attributed to vagal effect and acute dilation of the

sphincter, has been observed. Two episodes of fainting in shock response are
reported, with bradycardia but no nonreversible physiological effects. Earlier,
human tolerance determinations, based upon body kinematics, had placed

tolerance with lap belt restraint alone as well as lap belt plus shoulder harness at
9 G for 0.1 second's duration.

Apollo Impact Tests

In a study of predicted Apollo command module landing impacts, Stapp and

Taylor (1964) observed that impact forces produced effects to the nervous,
cardio-respiratory and musculo-skeletal systems. Neurological effects of impact
were momentary stunning and disorientation. A consistent effect on the
cardiovascular system was transitory post-impact slowing of the heart rate in
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those body orientations in which the decelerative force acts in a footward

direction (inertial force acts headward). Respiratory effects of impact were
momentary shortness of breath and chest pain. Effects to the musculo-skeletal
system were soreness and spasm of muscle groups of the neck and back. No
effect to the human subject was severe enough to exceed human tolerance or to
cause significant incapacitation of undue pain (tables6-3 and 6-4). In table 6-3
subjects" complaints are compiled into 10 categories. The numbers under the
column heading "Category of Complaints" in table 6-3 correspond to thc
categories listed in the note at the end of the table. In some tests, more than one

complaint was registered. The "Complaint G Range" indicates the range of
impact at which complaints occurred, as measured on the sled used in the tests.

To date no evidence of cumulative effects due to repeated exposure to
impact forces close to voluntary tolerance limits has been reported. However,
the number of subjects and exposures are too limited, and physiological and
psychological tests do not permit valid differentiation of subtle effects of such

stress from the changes which occur with time in individuals unexposed to
impact.

Physiological response of man subjected to linear, lateral, vertical, and

free-fall impact, along with transient neurological and psychological alterations
which have been reported, are summarized in tables6-5 to 6-12. Changes
associated with off-axis impact can be found in table 6-14 at the end of this
chapter.

Biomechanical Factors of Impact

The design capability of manned aerospace vehicles is limited by both the

biological and the biomechanical "breaking points" of the human body. The
body consists of a skeletal structure, held together by tough fibers, which
provides both mechanical support and a lever system upon which the muscles
act. The basic structural component is the spinal column of vertebrae which has
four curvatures. These curvatures are found only in man with his upright
posture. The vertebrae act as load carrying elements and are separated by
intervertebral discs. These act mechanically as energy absorbers and connecting
linkages. The thoracic organs (heart, lungs, and liver), contained in the rib cage,
and the abdominal viscera are suspended freely by connective tissues from the
muscle and bone framework.

Tissues of the human body show mechanical properties such as
compressibility, elasticity, and shear and tensile strength. In general, biological
materials are muhiphase, noifllomogeneous, anisotrophic, and nonlinear. Fluids
are generally non-Newtonian and solids are non-Hookean. Much work has been

done to determine the mechanical properties of tissues, but the
stress-strain-history law is not known for any tissue (Fung, 1968). Live, whole
body response is known to be nonlinear and to exhibit a high degree of rate
sensitivity (McElhaney & Byars, 1967). The body responds to impact with
considerable variation, both within the same individual and between
different indMduals.
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Table 6-4

Significant Physical Findings
Post-Impact in Apollo Impact Tests

Significant Physical Findings

Harness burns (all first degree)

Test Position Test Numbers

2 1537

Sled G

20.0

7 1552 23.0

Dazed and disoriented (lasting no longer

than two minutes post-impact)

17 1163 t7.4

1187 18.9

1204 21.7

1205 25.8

1456 19.6

19 1295 30.0

24 1303 28.1

1182 24.6

1403 16.5

9 1387 9.8

1 1517 17.2

21 1610 19.0

Respiratory difficulty (lasting no longer

than one minute post-impa'_t)

17 1187 18.9

23 1191 19.5

18 1215 24.6

1216 23.2

24 1217 23.7

1403 16.5

Blood pressure difference (20 mm Hg
19 1295 30.0

at pre and post run physical exam)

23 1192 19.4

Pulse difference (20 beats/min at pre 17 1456 19.6

and post run physical exam) 24 1441 20.2

12 1819 19.5

Engorged retinal vessels
17 1204 21.7

3 1487 9.2

Back and/or neck pain and decreased

range of motion

(Brown et al., 1966)

17 1205 25.8

1 1517 17.2

5 1559 25.1

1591 21.0
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For each region of the body, specific tolerance can be defined. The physical
properties of bone are best known, but much less information is available con-
cerning physical properties of most soft tissues and organ systems. Such infor-
mation is important since human tolerance to a specific impact may be limited
by the soft tissue damage to a critical organ at levels far below skeletal structural
failure. Damage may occur at the cellular level with no gross evidence of shear,
tensile, or compressive forces. Such localized trauma may limit whole body
tolerance to the lowest threshold of an organ or tissue.

Any attempt at stress analysis of man with respect to impact forces must
take into account the responses of the body as a whole: the simultaneous
responses of different kinds and states of materials in the body structure, such as
the pneumatic and hydraulic behavior of gases and fluids, plastic deformation of
soft tissues, the stretching of mesenteries and ligaments by organ masses, and the
nonlinearities prevalent throughout the body. Human stress analysis must
determine reversible and irreversible, disabling and fatal failure criteria for the
human structure, and should relate measurements to points of structural
weakness or of load concentrations (yon Gierke, 1961). To better understand
the mechanics of the body, mechanical analogs have been devised (Coermann et
al., 1960; Shapland, 1961; Payne & Stech, 1962; Feder & Root, 1964;
Kornhauser, 1964; NASA, 1965; yon Gierke, 1967; Stech & Payne, 1968).
Eventually, there may be sufficient data about impedence of segments, body
masses, coupling, damping, kinetics, and other features of the models so that
they may permit accurate predictions about the effects of the random, multi-
vectored, and, often, sequential forces that operate under actual impact
environments.

Lastly, biomechanical effects of impact arc dependent, as are physiological
effects, upon the environmental complex surrounding the impact event, that is,
body orientation, velocity, protection, and so forth.

Physical Properties of Human Tissue

Table 6-13 shows some physical properties of human tissue. Data concerning
the strength of the vertebrae are also available (Ruff, 1950; Perey, 1957;
Gurdjian, 1962; Crocker & Higgins, 1966; Henzel, 1967).

Vertebral Fracture

Escape ejection accelerations from high performance aircraft have
resulted in vertebral injury, generally compression of the anterior lips of the
lumbar or thoracic vertebrae (Stapp, 1959; Jones et al., 1964; Chubb et al.,
1965; Ewing, 1966; Collins et al., 1968; Klopfenstein, 1969). This may be
due to poor seat padding, seat contour, inadequate restraint, forced head
flexion, poor trunk-thigh angle, or spinal extension or flexion (Jones et al.,
1964). Approximately 80percent of all vertebral injuries occur in the
thoracic region. Available literature to 1965 on ejection-related vertebral
injuries in aircrew together with basic findings and analysis of the ejection
environment are contained in a study by Higgins et al., (1965.)
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Compressive load analysis of vertebra-disc complexes have demonstrated
that the vertebral end-plates are the initial failing structures of the spinal
column (Brown et al., 1957; Snyder, 1958; Roaf, 1960; Patrick, 1961;
Stech& Payne, 1963; Henzel, 1967). Vertebrae of cadavers fail at loads as
low as 435 pounds (Patrick, 1961). Compression fractures of the vertebrae

have occurred under experimental test conditions. An experimental impact
at 16mph of a B-58escape capsule at 43.6G (spinal) measured on the
subject resulted in one reported compression fracture of T-3 (Holeomb &
Huheery, 1962).

An ejection seat impact profile of 18.8 peak G for 100 msec with rate
of onset of 420 G/see and body orientation 34 ° back from the vertical axis
(+Gz) produced compression fractures to the fourth and fifth thoracic
vertebrae in one subject. Others have been exposed to 26 G and velocity
change of 8 m/see in the +Gz orientation (off-axis 45 °) under the same
conditions with complaint of occasional "mild transient pain" over the area of
the second to fifth thoracic vertebrae (Henzel et al., 1965). More recently a
human volunteer received a compression fracture of the seventh thoracic
vertebra under impact conditions of 16.62 +Gz peak sled G, with an onset rate
of ll60G/sec, entrance velocity of 39.8ft/sec and braking distance of
26.5 inches (Klopfenstein, 1969).

End-plate and vertebral body injury is much more apt to occur during spinal
axial loading than is intervertebral disc disruption (Ruff, 1950; Perey, 1957;
Roar, 1960; Henzel, 1967). Work by Kazarian et al., (1968) has identified file
mechanisms of other vertebral body iujuries in +Gz vertical impact. There is
general agreement that a peak of 20 to 21 G for a duration of less than
0.1 second at a rate of onset of 250 to 300 G/sec is tolerable if the spine is
properly positioned for +Gz impact (Watts et al., 1947b; Beckman et al., 1953;

Jones et al., 1964). A thorough review of the biomechanical aspects of vertebral
injury is found in ttenzel (1967). A viscoelastic rod model which includes
damping has been used to simulate the spinal column mathematically (Terry &
Roberts, 1968).

Head Injury

Injury to the head is the most frequent and severe result of impact, and
75 percent of aircraft crash fatalities may be attributed to head injury. Usually
such trauma occurs through head contact with the structure or projections
rather than the action of acceleration forces on the head as a whole. The shape
and elastic properties of the object injuring the head and exposure time are of
prime importance in determining the degree of injury. Dynamic load measure-
ments on the skull and knee bone conducted with less than 1 in.2 penetrators
(such as a control knob) show that skull penetration takes place in five steps:
initial load build-up as the penetrator loads the entire skull structure; sudden
penetration of the outer layer of compact bone, with abrupt falloff in load, in
primarily a tensile fracture approximately the circumference of the penetrator;
compression of the diploe layer; a cone_haped shear failure extending to the
hmer layer of compact bone; and finally fracture of the inner table in the form
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of a plug larger than the diameteof the penetrator. Soft tissue does not
significantly (10 percent) alter the skull penetration load (Melvin et al., 1969).

The frontal and occipital bones of the skull have been the subject of
numerous impact studies (Gurdjian et al., 1949; Lissner & Evans, 1958;
Gurdjian, 1962), but limited data are available related to lateral (_zGy) impact
tolerance of the parietal or temporal bones (Nahum et al., 1968). Experimental

studies in progress indicate that lateral blows to the parietal or temporal area
result in fracture at about half the loads required to fracture a frontal bone.
Within the conditions studied, the total energy required for skull fracture of
frontal bone varies from 400 to 900 in.-Ib, with an average often assumed to be
600 in.-lb (6.8 x 108 ergs) (Roth, 1967).

Experimental studies also indicate that facial bones fracture due to tension,
not compression (Huelke, 1962). tlodgson (1967) found that 1000 lb of force
was tolerated for durations of 3 msec or less, while impacts lasting beyond
4 mscc produced fracture at approximately 2001b for a lin.2 area of
distribution.

A mathematical model describing the response of the cadaver zygomatic
(check) bones to blunt impact has been used (Hodgson et al., 1966). Impacts as
low as 30 to 40 G for 10 to 40 msec may produce transient unconsciousness.
Fracture tolerance for the facial bones is about 30 G for the nose, 50 G
cheekbone, 100 G for teeth (3.6 in2), 40 G mandible, 80 G for 3 msec (1 in.2

area), or 150 G (4 in.2 area) for the forehead (Swearingen, 1965). For a contact
area of 1 in.2, fracture tolerance values for the cheekbone have been found to

approximate 200 to 225 lb, for the temporal-parietal (side of head) area, 450 to
550 Ib,and 900 to 1100 Ib, for the frontal area (Nahum et al., 1968). A 600 Hz
natural frequency, 0.01 damping factor, 9.5 ib simple system has been found to
represent occiput acceleration response to impacts on the forehead for a 1 in.2
area (within 5 percent), for a wide range of pulse durations and acceleration
amplitudes in the cadaver (Hodgson & Patrick, 1968). Such results must be used
with caution for the living human.

Neck injury, especially to the cervical spinal cord at the first vertebra,
appears to occur from hyperextension rearwards followed by abrupt flexion
when the whole body is accelerated from back to front without head support.
Neck injury may be aggravated by the increased mass of a helmet. Concussion
may be accompanied by deformation or fracture of the skull with shear strains
throughout the brain. An experimental model of the human head shows the
existence of pressure gradients along three orthogonal axes, and at levels of
impact to the forehead of less than 80 G, the pressure gradients are linear in
shape. Cerebrospinal fluid flow can produce shear stresses previously

demonstrated in the region of the brain stem (Roberts et al., 1966). There is a
voluminous literature regarding head impact, skull fracture, cervical injury, and
the mechanisms of brain injury (Lindgren, 1966; Caveness & Walker, 1966;
National Institutes of Health, 1969; Gurdjian et al., 1970; Hodgson, 1970;
Thomas, 1970).



Impact 275

Lower Limb Fracture

Mechanical stiffness of the lower limbs (Hirsch & White, 1965) and the
fracture tolerance to bending force in impact (Snyder, 1961; Young, 1967;

Mather, 1968) have been studied. The lower leg (tibia) can tolerate a
concentrated impact of 1000 to 1500 lb prior to fracture (Young, 1967), and
the knee and leg voluntary limit is 1050 Ib, with the fracture level at about
1500 lb (SAE, 1970).

Soft Tissues

The mechanical properties of soft tissues have had limited study. The skin

appears to fail more often in a tensile or cohesive manner than from a shearing
or cutting action. Penetration resistance of human skin is thought to be about
15 to 20 Ib (Gadd et al., 1967). Data are available relative to mechanical
properties of the tendons, muscles, blood vessels (refer to extensive references in
Fang, 1958) and the nervous system (Ommaya, 1968).

Visceral motion responses in humans have been measured by
cineradiography. Sixteen subjects were exposed to triangular deceleration pulses
(velocity change of up to 2.44 m/sec, time duration of about 7.5 msec, peak
acceleration up to 654 m/sec) with successive radiographic images (60/scc)

obtained during the impulse. A density wave was observed and interpreted as a
shear wave (dilation) traveling through the abdomen and torso. It was concluded
that voluntary tolerance may be below 4 m/scc (13 ft/sec velocity change) (Weis

& Mohr, 1967).

Resonance and Impedance

Studies such as that cited above suggest that the heart, great vessel branches,
and associated visceral attachments behave as a spring-mass system with
subcritical damping frequency of 7.5Hz for the human diaphragm when the
abdominal musculature is relaxed voluntarily at impact 0Veis & Mohr, 1967).
Whole body vibration studies with humans (von Gierke, 1964) suggest the
thoracic viscera may respond as a spring-mass system with viscous damping. In
these studies 4.5 Hz is reported for the diaphragm and heart (yon Gierke, 1964).
Analysis of 29 human impact tests in the Gx position on the Daisy Decelerator
indicated that the natural frequency of the response measured by sternum
accelerometers varies inversely as the duration of the onset of the input
deceleration. The value of the product of response frequency (Hertz) and onset
duration (seconds) is approximately 0.5 (Chandler, 1962).

The general impedance concept is ordinarily used in conditions where the
motion is rectilinear but applies equally well for angular motions or
combinations of rectilinear and angular motions (Weis & Primiano, 1966).
Figure 6-11 illustrates some human impedance results. The figure indicates that
except for the sitting and standing positions during steady-state vibration,
impedance magnitude ranges from zero at low frequencies to higher values at
higher frequencies. Critical frequencies are found at 7 and 12 Hz (Weis et al.,
1963b, 1964). The locations of resonances obtained from transient data may not
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always coincide with those obtained under vibration conditions (Bowen et al.,

1966). The human mechanical impedance for a particular experimental con-
dition can be used to determine the motion of the human center of mass in the

same condition (Weis & Primiano, 1966), although the effective center of mass

for mechanical impendanee may not be the center of gravity.
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Figure 6-I1. Human mechanical driving impedance in the transient (impact)environment.
The impedance magnitudes and phase angles reveal critical frequencies at approximately 7
Hz and 12 Hz. The impedance magnitude lends toward zero at tow frequencies and toward
higher values at higher frequencies. This indicates that man is much like a pure mass over the
frequency range of 0-20 Hz, but that resonances in certain frequency ranges depend upon
body orientation. (After Weis et al., 1964)

In impact exposure of less than one second when no fluid shifts have time to

occur, it is believed that physiological effects are caused by localized pressures

and relative tissue displacements. These may develop into pathological trauma if

the mechanical stress limits of the tissues involved are exceeded. It has been

found that the physical response of the body and its organs, and the impedance

of this response on the duration and shape of the acceleration time function, can

be calculated when the appropriate mechanical system, representative for the

body or the particular situation, is known (Latham, 1957; Shapland, 1961;
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Payne, 1961a; Kornhauser, 1961, 1964; Linder, 1962; Feder & Root, 1964;

Barrett & Payne, 1965; NASA, 1965; Stecb & Payne, 1968). Conditions involving

unusual acceleration profiles in accidental or operational situations, nonlinearity in

response of tissue, and limitation of complete directional data for the whole body

tend to limit use of these models to first order approximations for aerospace design

purposes.

If the impact duration is to the same order of magnitude or larger than the
natural periods of the body systems, maximum effect of impact functions usually

results. Excitation follows a pattern from the dynamic response factor for the

transient response of linear structures to shock typical of that shown in figure 6-12.

Curves of equal physical displacement of organs are shown as a function of pulse

duration and maximum acceleration. In such tolerance curves (see figures 6-5 and

6-12) if the pulse duration is much shorter than the natural period of a system, the

response is only dependent on the acceleration time integral, "impulse." It is equal

to the differences in velocity of the system before and after impact and ceases to be

a direct function of the peak acceleration (NASA, 1965). The curves in figure 6-12

represent undamped responses, but note that the more complex damped responses
more realistically represent the actual condition (Barrett & Payne 1965).
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Figure 6-12. Theoretical impact tolerance curves of a one-degree-of-freedom system.
Curves of equal physical displacement of organs as a function of pulse duration and max.
acceleration. Figure shows, for various types of pulses, pulse height (as a function of ratio of
pulse length to natural period of the system) needed to achieve same max. displacement of
the system. (T = natural period of system; t = pulse duration). Pulse duration scales on
abscissa are for a system with resonance at 5.5 Hz (main body resonance) and for a system
with resonance at 30Hz (head resonance). (yon Gierke, 1964a, Transient acceleration

vibration and noise problems in space flight. In Bioastronautics, copyright by the MacMillan
Company, 1964, and used with their permission)
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In general resonant-response analysis applies to interaction of flexibily linked
body masses, and probably to natural frequency characteristics of internally
suspended organs, but factors relating to more sustained force application may
determine the stress limit. Voluntary tolerance of the lower spinal column in

_Gz vertical (longitudinal) impact of less than 6 G amplitude at sustained low-
frequency vibrations is in contrast to 20G, and even 50 G single impact
tolerance under well-defined conditions (yon Gierke, 1961). This well illustrates
the danger ill arbitrary conclusions about tolerance, stress limits, and generalized
application of criteria beyond their definitions.

Impact Other Than Along Primary Axis ("Off Axis")

The majority of experimental impact studies have been concerned with
simple, uniaxial accelerations. Few studies have been conducted of multiaxial
acceleration and resultant inertial responses. The orientation of thc acceleration
vector is a (:ritical factor in human tolerance limitations since the body
structures and man's dynamic respon_ characteristics vary with the direction of
the applied force. The ()dentation of the acceleration vector may be random and
uncontrolled during aerospace emergency escape, the sequential acceleration
environment, and i, ground landing impact in closed capsules. The polar
e()ordinate system, in which orientation is expressed in terms of degrees of roll,
pitch, and yaw, has been developed to define the precise multiaxial profiles
tested (figure 6-13).
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Figure 6-13. Seated subject orientation in 0-0-0 polar coordinates of roll, pitch and yaw
relative to direction of sled motion and resultant inertial force. Such a system is used to
describe off-axis impacts involving complex multiaxis decelerations. Numbered lines
represent direction of forces applied to subject during impact. Columns on right indicate
translation of force orientations into seat position. (After Brown et al.,1966;
Chandler, 1967'o; Stapp, 1968)
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To date only one study has been conducted of human response to the
acceleration profiles of Project Mercury 0Veis et al., 1963a), and two studies
have been conducted related to Project Apollo profiles (Stapp & Taylor, 1964;
Brown et al., 1966). Table 6-14 provides a summary of other studies in which
response of man and animals to impact loads at variable axes is known.

A summary of the acceleration profiles and responses noted in subjects
exposed to off-axis accelerations while seated in form-fitting couches used in
Project Mercury is presented in figure 6-14 and table 6-15. In these experiments
the 20 subjects wore the Mercury pressure suit hehnet and sat in a rigid vehicle,
restrained with a low elasticity chest and pelvic harness, and were exposed to six
deceleration profiles in seven orientations. In the lateral (+Gy) tests, both rigid
foam couches and semirigid "microballoon" couches were used which were

molded to the body contour. A vertical drop tower device was employed to
decelerate the falling vehicle when a shaped plunger entered the water. In
deceleration profiles ranging up to 26G (peak), 28ft/sec velocity, and
2000 G/sec rate of onset, subjective tolerance levels were not reached (Weis et
al., 1963). Transient premature ventricular contractions were produced, but no
injuries occurred.

For Project Apollo, Stubbs (1966, 1967) reviewed impact modes predicted
at the couch in Apollo landings. Stapp and Taylor (1964) studied human
response to predicted Apollo command module landing impacts in 146 tests of
58 human volunteers, as did Brown et al., (1966) in 288 experiments. In the first
series, impact forces were studied in 16 body positions in a combination of pitch
and yaw, in seven configurations of onset at 1000, 1500, and 2000 G/sec, at
magnitudes of 10, 15, 20, and 25G, and at durations from O.060to
O.130second. The volunteer subject sat in a seat mounted in three sets of
gimbals prodding 10° increments in yaw (0 ° to 360°), pitch (0 ° to 180°), and
roll (0 ° to 180°), on a sled suspended by four slippers between cylindrical rails.
Post-impact bradycardia of less than 30 seconds' duration resulted from
headward force vectors exceeding 15 G magnitude. Stomach mobility or
displacement occurs during whole body impact when angular force
movements exceed 40 ° or more from the line of motion (in pitch or yaw.)
No significant changes in blood or urine were recorded. All body positions
and impact configurations studied were within voluntary tolerance limits
except the forward-facing 45 ° reclining position. A forward-facing subject
tipped back 45 ° in pitch sustained simultaneous compression and
hyperflexion of the trunk by force vectors at right angles which produced
persistent soft tissue injury in the sixth, seventh, and eighth thoracic

vertebrae areas, from impact of 25 G at 960 G/sec in 97 msec. Loose
restraints contributed to whole body resonancc amplification of impact.

With a less sophisticated harness restraint system than the one used in the
Apollo study, compression deformities of the fourth and fifth thoracic vertebrae
have been reported in a human test subject exposed in laboratory experiments to
an impact acceleration profile similar to that produced by ejection seat rockets.
This injury was presumed to be the result of an impact profile having a peak
acceleration of 18.8 G, a rate of onset of 420 G/sec and a base line duration of

approximately 100 msec. The subject's long axis was inclined backward 34 °
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from the vertical force vector (Roth, 1967). Stapp and Taylor (1964)
recommend head fixation, energy attenuation to keep impact force below 20 G
magnitude and above 60 msec pulse duration, and automatic retraction of the
harness prior to impact to prevent slack and relative body motion. The most
favorable position was found to be backward-facing (+Gx), bowing 45° from
vertical.

Information relative to the effects of simultaneous muhiaxial impact forces

combined with other environment conditions are not known. For data on

complex multi-environmental stresses, the reader is referred to chapter 19.
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Figure 6-14. Off-axis impact: a Project Mercury profile. Data for tolcrability of impacts
applied Laterally and off major body axes. A: Directions of impact for 5 positions 45 ° off
axis, and for +Gy axis. B: Power density spectra of 6 deceleration profiles ranging from
13.4 - 26.6 G wiih onsets from 426-177 G/sec. No injuries resulted. (Adapted from Weis
et al., 1963)
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CHAPTER 7

VIBRATION

by

Richard J. Hornick, Ph.D.

Litton Systems, Inc.

Travel in vehicles of all types subjects man to mechanical vibration. This
chapter presents the results of investigations concerning vibration that con-

tribute meaningful data which may be applied to the design of future transport
systems. Emphasis is placed on data describing man's reactions to vibration
rather than on the vibration characteristics of vehicles. Vibration characteristics

of future vehicles will vary in accordance with differences in size, propulsion
system, mass, and maneuvering envelopes, while man's reactions to vibration
intensity and frequency can be expected to remain essentially constant.

Vibration effects described in this chapter are organized into the following
areas: performance effects reflected in tracking proficiency, reaction time,
visual impairment, and other measures related to man's ability to control a
system; physiological reactions; biodynamic responses; subjective reactions; and
human "tolerance" limits. Most attention is placed on performance effects
because of the importance of human performance in the operation of
sophisticated man-machine systems and because a significant amount of
performance data has been developed in recent years. Technological refinements
in shaker systems, better experimental designs, and better attempts to control
other attendant variables have all served to give recent data a greater degree of
validity.

Major vehicular resonances generally occur in the range of l to 30 cycles per
second (liz)*. Man's performance capability is known to be affected by

frequencies in that range. Further, whole body and organic resonances occur in
this range with potential adverse effects for physiological responses and
subjective" tolerance. It is for these reasons that the bulk of human vibration
studies have been conducted in this low frequency band.

*Hertz (Hz)has been adopted as the standard notation for cycles/second.

Reviewed by Henning E. yon Gierke, Dr. Eng., Wright-Patterson Air Force Base.
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Certain types of motion are not extensively treated in this chapter.
Oscillation below 1 tlz is not usually characterized as vibration since such
motion is not known to affect performance or body resonances. Instead, motion
sickness associated with otolith stimulation is the most severe effect of motion

below 1 Hz. Frequencies above 30 to 60 ttz are not normally a problem for man,
and, in any case, are easily damped by body-support cushioning as well as by the
tissues of the human body.

Another form of vibration not treated extensively here is localized vibration;
that is, vibration appfied to a limited body area such as the fingertips or the
hand. That type of vibration occurs primarily with the use of hand tools such as

pneumatic jackhammers. This problem has become less severe in recent years
due to tile increasing use of automated power equipment.

Very few animal studies are cited. They have been selected only as they
exemplify a need for some consideration important for the human.

The Vibration Environment

Terminology of Motion Axes

Terminology for the vibration environment is generally consistent with that
described in chapter 6, Impact. However, whereas bias or steady state accelera-
tion is identified with an upper case "G," oscillatory vibration is described with
a lower case "g." The complete description of a vibration environment includes
identification of the bias acceleration. Figure 7-1 and table 7-1 illustrate the
major axes of motion and the terminology involved.

+G,, . '- x

_Gv /

+G z

Figure 7-1. Major body axes for acceleration and vibration description.
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To describe completely thc vibration environmcnt for a given situation,
uondimensional G and g units arc used. In the case of a human standing upright
in a laboratory on a shake table moving in a direction parallel to the spine, the

description would appear as +lGz%tg z where r2 would be quantified. In a
spacecraft during boost, with the occupants in the usu',d scmisupine posilion and
with vibration being experienced laterally with respect to the body, the dynamic
environment might be described as +3.5Gx-+O.5g v. An astronaut would be
experiencing a 3.5 G boost acceleration force, eyeballs in,with vibration mo_ing
him from side to side.

Mathematical Derivations

Vibration is characterized by the periodic displacement of a mass over time
and is dcfincd hy the amplitude and the frequency of .the displacement.
Mathematic',rl expressions for sinusoidai vibration are derived from two basic
parameters--frequency and amplitude. Frequency can be expressed in any
manner related to a time scale -cycles per second (cps), cycles per minute
(cpm), Ilertz (ttz), etc. The Hz notation will be used in this chapter.

Conpled with frequency is amplitude or intensity. Amplitude is typic',dly
expressed by velocity, acceleration, or jerk quantities. The amplitude quantities
have bccn cxpresscd in metric terms and, more often in the United States, in
inches or feet pcr second. A useful quantity is the nondimensional g which can
lx_ ronvcrtcd into any kind of cxpn:ssion which the user wishes to employ.

Sinusoidal Vibration. For simple harmonic motion, the following relation-
ships exist between acceleration, velocity, and displacement (Society of
Automotive Engineers, 1965):

x = xo sin (2 7r t)t = xo (_)t

V¢ her("

x = instantaneous displacement from static position, inches

xo = maximum displacement amplitude front static position, inches

t = time from zero displacement, seconds

f : frequency of oscillation, Hz

: 2 7rf, radians per second

Since the number of gravities of vibration acceleration can be exprcssed as
the following:

(2 7rf) 2 xo
sin 2 rrft

g- G
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where

G = 386 inches/sec 2

then

g = 0.0511Df 2

where

D is 2x o and is peak-to-peak displacement amplitude

To convert from one numerical system to another, the following equivalent
values for g are:

acceleration in m/sec 2 ft/sec 2 in./sec 2

g = 9.80 - 32.2 386

Occasionally, frequency is expressed in radians, particularly when angular
velocity is involved. Angular velocity co in radians per second = 2_rf = 6.28 times
the frequency in Hertz. Figure 7-2 illustrates the relations of the parameters in
simple harmonic motion.

Random Vibratmn. Man most often experiences random vibration while
traveling in a vehicle. Vibration can be random with respect to frequency and
amplitude. At a given frequency, the amplitude may vary from oscillation to
oscillation; or amplitude may remain fairly constant and frequency may vary.
And, there is motion that varies both with respect to frequency and amplitude.

Amplitude is expressed typically as a root-mean-square (RMS) value in g's.
The frequency spectrum (range) is indicated by mean-square spectral density and
expressed as power spectral density (PSD), the units being g2/Hz (Meeder,
1964). Vibration acceleration RMS defines the total energy across the entire
frequency band. PSD defines the power at discrete frequencies in the selected
bandwidth. A plot of PSD (g2/ltz) versus frequency illustrates the power
distribution of the vibration environment.

In order to equate mathematically a pure sinusoidal amplitude of equivalent
RMSg values of random, the peak amplitude of the sinusoid is divided by X/_.

Vibration Spectra

Data presented here indicate, in general terms, the vibration characteristics
of some contemporary vehicles. Future vehicles may well have vibration
characteristics which are quite different.
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Figure 7-2. Relations in simple harmonic motion. For example, if a mass has an amplitude
of 1 in. at a frequency of 1 Hz, the intersection of the vertical line for frequency 1 and the
diagonal line for 1 in. amplitude can be used to find velocity and g intensity. Reading
horizontally, maximum velocity equals about 6.2 in./sec; reading diagonMly, maximum
acceleration is about 0.1 g. (From Society of Automotive Engineers, 1965)

Helicopters. Helicopters generate significant vibrations in all major axes. In

1958, Russian helicopters were reported to have significant vibration in a

spectrum from 10 to 70 Hz, with amplitudes ranging from 0.4 mm for 70 Hz to

2.4 mm for 10Hz (Borshchevskiy et al., 1958). Neel (1959) studied the

vibration experienced i,, a suspended litter in the t1-13 and 1t-19 helicopters and

found "unpleasant" vibration experienced between 25 and 75 Hz. The Utt-IF

helicopter, at the base of the pilot seat, shows _gz vibration at 25 Hz with the

major frequency components between 100 to 1000 Hz, and a lateral, +_ ,

resonance at 5 Hz at a double amplitude of 0.10 inch. At the seat, the CH-46)k

has a basic frequency of 4.5 Hz _gz, with a major resonance at 12 Hz, and

s_ondary peaks at 28, 38, and 48 Hz (Dean et ai., 1964).

In summary, the characteristic helicopter vibration spectrum has a basic low

frequency vibration related to the number of overhead rotor blade passes per

_cond. Resonances depend on structural characteristics. The intensity changes

of the primary and resonant frequencies depends significantly on load, airspeed,

and flight phase.

Aircraft. Prior to jets, the primary source of aircraft vibration was propeller

rotation. Vibration was relatively high in frequency (several hundred to several

thousand Hertz) and very low in amplitude. While there is a general trend away
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from the pistonengine/propeller-drivenaircraft,it is likely that special

applications of such craft, such as the OV-10, will keep them in service for some

time to come. Average vibration amplitude for typical propeller-driven military

aircraft has been reported to be affected very little by aircraft size, with levels

considerably below the envelope at which airborne equipment is tested for

military standards (Abeling & Bassett, 1967). Figure 7-3 shows a representative

envelope of large aircraft vibration.
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Figure 7-3. Envelope of vibration; B-52, JRB-52B,
and YB-52, selected locations. (From Abeling & Bassett, 1967)

When jet aircraft engage in low altitude, high speed flight, the dynamic

environment experienced by the pilot is a function of many factors--maneuver

loads, wing loading, gust sensitivity, aircraft size, structural bending modes,

atmospheric conditions, the type of terrain traversed, and airspeed velocity.

Lateral _g_ and vertical _gz motion for these aircraft generally have a power
peak nearYl Hz, with secondary resonances from 1 to 12 Hz. For a variable,

swept-wing configuration, significantly improved ride quality can be achieved by

proper design of seating and cushioning; little improvement can be made with

fixed-wing configurations (Yamamoto, 1965). Care should be taken, however,

that cushioning materials damp rather than amplify the undesirable motion,

since the converse is indeed possible.
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Primary oscillation for high altitude aircraft is due to atmospheric

turbulence. It has been predicted (Notess & Gregory, 1963) that a supersonic

transport plane flying above 60000 feet, would have higher lateral gust

sensitivities than propeller aircraft (but lower than current jet aircraft) because

of higher speeds with excitation of rigid body and flexible modes. Vertical gust

sensitivity, on the other hand, would be very low in an SST, due to the low

density of tile air at cruise altitude. In general, the probability of encountering

periods of turbulence could be expected to be lowest for an SST.

Spacecraft. Relatively little inflight data exist for low frequency vibration

for space vehicles. Recording accelerometers lypically used have low frequency

cutoffs at 20 or 10 llz. During the first Mercury llights, astronauts complained

of vibration during boost which interfered with their vision. A modification was

made to the head support padding resulting in more subjectively acceptable

vibration levels. A "pogo stick" phenomenon was found in the Titan I1 rocket

engine. This consisted of intense vibration at I I llz, experienced along the entire

length of tile vehicle. A similar problem was detected in an early Saturn V test.

Fuel pump and engine phasing changes reduced tile intensity to acceptable
levels.

Tile only significant _4bration levels routinely encountered in spacecraft

Ol)erations occur during the maximum aerodynamic pressure (max q) portion of

boost, with less during atmospheric entry. Since the vibration does occur during

boost and entry, it is coupled with a siguificant bias G acceleration load. Data on

tile humml effects of a coupled vibration-acceleration environment must be

obtained from studies conducted with a shaker system coupled with a

centrifuge.

Performance Effects

Tracking

A clear statement of the effect of vibration exposure on hunlarl tracking
performance is not easily achieved for a number of reasons. Paramount is tile

fact that investigations of vibration stress have used many and diver_' tasks,

involving a variety of control systems (single axes, multiple axes, fly-to, fly-from,

center-stick, side-stick, wheel and column, and steering wbeci) ill addition to

different control system dynamics, llowever, when similar tasks are used in

comparable vibration environments, reasonable agreement of research results is
found.

Since most vibration studies have been conducted with seated humans

experiencing vertical motion, most data exist for a +lGz-+ng z situation.

Coltsidered first arc tracking changes found with sinusoidal vibration ill the
z-axis.

Sinusoidal _6"z Vibration. Table 7-2 presents representative fhldings for the

sinusoidal _ IGz_lg z environment. Conclusions for random motion and for track-

ing effects in other axes are presented at tile end of the tracking effects section.
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Sinusoidal versus Random gz Vibration. Comparatively few studies have
investigated the relative effects of sinusoidal and random vibration. In 1961,
Parks used a two-axis tracking task with a wheel and column control in random
and sinusoidal motion. Of several parameters tested, only the vertical tracking
task was affected, at 2.5 Hz sinusoidal at approximately 0.40 gz" Weisz and

coworkers (1965) used a side-stick controller in a two-axis tracking task in
sinusoidal 5 Hz, 5 Hz with random amplitude, and a frequency band of 4 to
12 Hz random. Larger errors were reported for vertical tracking than for
horizontal tracking: Concerning the relative influence of the vibration environ-
ments, error occurred at lower g levels sinusoidal than for random amplitude
5 |Iz; and random 4 to 12 ltz vibration did not result in tracking error. These
studies tend to establish that random vibration is not as detrimental to tracking

performance as is sinusoidai.

Random gz Vibration. In recent years, knowledge about random gz vibration
effects has come largely from studies which have simulated tile low altitude, high
speed aircraft response spectrum. For such aircraft, the characteristic motion
environment is random, with high energy peaks in the low frequency range.

Since many simulations lack a multiaxis motion capability, lateral gy motion
effects (as from lateral gusts) are not fully known. Nevertheless, the lengthy
duration of test exposures makes the gz data quite valuable. Table 7-3
summarizes the studies of long duration random vibration.

Other Axes. The influence of lateral _gy and fore-aft _gx vibration on
tracking performance has not been extensively examined. Two studies are
indicative, but cannot be applied universally to the _gv and -_gx situations.
Fraser and coworkers (1961) studied two-axis tracking in'the three major axes.
Frequencies of 2, 4, 7, and 12 Hz were used, with single amplitudes of 1/16, 1/8,
3/16, and 1/4 inches. No effect of "longitudhlal," +lGzAngx, vibration was

detected. Error was greatest in the _'gz axis, followed by the side-to-side.. Ag..y
axis. Hornick and coworkers (1961) studied a horizontal axis trackmg task m

+lGz-+ng x and _Gz:!:ngy. Frequencies of 1.5, 2.5, 3.5, 4.5, and 5.5 [|z were used
at sinusoidal intensities of -+0.15, 0.25, and 0.30g x and :!:0.15, 0.25, and
0.35 g.. In the _gx axis, tracking error was related to vibration intensity level.
Subjects did not completely recover tracking ability during a 15-minute
postvibration period. Finally, there was a slight trend for error to increase as a

function of time (during 0.5-hour vibration periods). Similar effects were found

for tracking in the _gy axis, with the greatest error rate at the lowest (1.5 and
2.5) frequencies.

Summary of Tracking Effects. The following statements can be made
concernin_ the effects of vibration on the tracking ability of a seated human:

1. For the range of 4 to 20 Hz, sinusoidal gz vibration will significantly
impair performance when the double amphtude (D.A.) of 0.05inches is
exceeded. Figure 7-4 indicates the regions of affected and nonaffected
performance as delineated by the 0.05 inch D.A. line.
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Figure 7 -4. Summary of reported effects of -t-gz vibration
on human tracking performance.

'2. Sinusoidal low frequency vibration from -+0.20 to :!:0.80g z can produce
tracking error up to 40 percent greater than that found in static base conditions.
Vehicle control systems must consider the dynamic environment and cannot be
desi_,_wd solely on the basis of static base simulations.

3. ttigher RMSg levels are required for random vibration to impair
performance as compared to sinusoidal vibration.

4. For sinusoida| vibration, increases in error arc related to increases in

intensity; for randont vibration, tracki,g error is not related to intensity to
approximately 0.40 RMSg. Tracking error during either type of vibration is very
much a function of tracking task difficulty, suggesting tile use of controls and
displays to comprise simplified control task situations.

5. For both random and sinusoidal gz motion, vertical tracking error is
larger tt_an that found for horizontal tracking.
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6. Forrandom vibration of long duration, there is no trend for error to
increase as a function of time until about 2.5 to 3 hours is reached. Performance

deteriorates for difficult tracking tasks at that time, apparently as a result of
"fatigue."

7. The type of controller used influences the degree of tracking error
experienced. Use of a side-stick and arm support can reduce vibration-induced
error in the vertical axis by as much as 50 percent when compared to
conventional center-stick controllers.

8. When tracking impairment is experienced during vibration, a residual
effect may last up to one-half hour after exposure.

9. Vibration in the "+'gx and _gy axes is not known to cause decrement
greater than that for _'gz"

Reaction Time

Ability to respond rapidly to a stimulus during exposure to vibration has
been subjected to much investigation in a wide variety of vibration conditions.
Studies of reaction time for sinusoidal _gz vibration are reported by Schmitz,
Simons, and Boettcher (1960), Buckhout ([964), Shoenberger (1967), Johnston

and Ayoub (c. 1969); for sinusoidai and random gz vibration by Parks (1961)
and Weisz, Goddard, and Allen (1965); for random g vibration by Soliday and
Schohan (1965), Schohan, Rawson, and Soliday (19z65), Hornick and Lefritz

(1966), Holland (1967); and in gz and g_ axes by Hornick, Boettcher, and
Simons (1961). Included in these studiesYare frequencies from 1 to 20 Hz;

intensities to -+0.60g; random vibration intensities to 0.40 RMSg; sitting and
standing subjects; hand, foot, and whole body reaction; and simple to complex
reaction tasks. The data deafly indicate that (1)vibration does not typically
affect human reaction time; (2)when reaction time is affected during or
following vibration exposure, only several one-hundredths of a second are added
to the static base reaction time, normally 0.02 to 0.05 second; (3) increases in
vibration intensity or duration do not produce corresponding change in reaction
time.

It is possible, when the task is a secondary monitoring task, that reaction
time deterioration can occur. A secondary vigilance task to monitor and detect
propulsion thrust changes in a low altitude, high speed piloting simulation was

used by ttornick and Lefritz (1966). A change in displayed thrust command
occurred randomly once in each half hour during the 4 hour random vibration
session. Vigilance response time was markedly impaired, from 2.4 seconds in
nonvibration to 8.1 seconds during vibration.

Visual Impairment

When evaluating visual impairment from vibration, the type of vibration, the
posture of the man, illumination levels, and the kind of visual task must be
considered. Visual impairment is extremely sensitive to the specific
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vibration/tasksituation.To beconsideredalsoin anyoperationalsettingare
whetherornotaprotectivehelmetiswornandwhetherthedisplayisvibrating
alongwiththemanorisindependentlydamped.

In general,the rangeof 10 to 25 ltz is most detrimental to visual
performance, though occasionally frequencies above and below this band cause
decrement. The relationship of subject and display is important in that lower
frequencies (below 10 Hz) more readily cause visual decrement if the display
alone or the display and man are vibrating. Above 10 Hz, vibration of the human
more frequently results in visual decrement, as compared to motion of the
display alone. Decrement increases as a function of amplitude or intensity level.

Visual performance during vibration can bc protected by proper design of
displayed matter. Cluttered displays result in relatively greater decrement during
vibration than do those which arc easier to read. At relatively short distances,
vibration can be expected to cause crrors in _icwed numerals or letters
subtending about 9 minutes of arc or less.

In the supine position, a helmet can reduce visual error when motion is in
the x-axis. Significant error reduction in the z-axis results when the head can
move freely. There is _mn_ indication that higher frequencies (11 and 15 Hz) in
the y-axis may result in larger crror when a helmet is worn. Use of any helmet
and liner configuration can be expected to modif T man's visual response
significantly, and each specific configuration should be the subject of dynamic
base tests for high performance vehicle application.

The few studies which investigated random vibration effects have not

revealed any visual impairment up to levels of 0.40 RMSg z. Table 7-4 presents
the major results of primary studies and figures 7-5, 7-6, and 7-7 illustrate
selected results.

Miscellaneous Performance Effects

Certain performance effects are related to hiodynamic characteristics,
though they are not completely biodynamic in nature. For example, typing
accuracy' t_n be impaired duriltg vibration because of biodynamic disturbance of
the arm rather than a disruption of the basic process of typing per se. The

influence on speech, auditory, and complex mental processes has also been
examined by a number of investigators. Table 7-5 summarizes the results of
studies of the influence of vibration on these processes.

Vibration appears to act on the biodynamic and psychomotor properties o1'
man rather than on central neural proeesscs. Tasks which require accurate
placement of a limb or movements of controls (figure 7-8) are adw_rscly affected

hv virtm_ _f leg, arm,hand, or t'ingcr displaccmcnl (Clark et al., 1965;Schmitz ct al.,
li)60). In cases where accuracy itself docs not suffer (figure 7-9), time to
complete the task increases during vibration (Guignard & Irving, 1960; 1)ean et
al., 1967; Seeman & Williams, 1966). There is somc support of the hypothesis
that vibration degwadcs performanee at frequencies where major body resonances
occur.
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Figure7-5. Digit reading errors as a function of vibration and digit height.

Significant errors occur only for subtended arcs of 9and 6 min_ (From Teare &
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Figure 7-7. Visual acuity as a function of display versus observer vibration.
(From Rubenstein & Kaplan, 1968)

While speech intelligibility itself may not be greatly affected, the quality of
speech is impaired by vibration. That is, a listener can still understand the
spoken material, but does perceive quality loss. No effect on significant hearing
ability has been found (Weisz et al., 1965; Holland, 1966). At most, vibration
may produce a practically insignificant effect on the auditory thresholds for low

frequency sound (Guignard & Coles, 1965).

Tasks involving primarily higher mental processes are not adversely affected

by low frequency vibration. Mental addition, pattern recognition and matching,
and navigational behavior have been shown not to be impaired below 20 Hz. A
single example does exist where vibration at 70Hz at 4.0 g interfered with
"continuous counting" (loseliani, 1967).

Physiological Effects

Physiological disturbances which occur during vibration are found at
intensity levels much higher than those necessary to cause performance
decrement. Further, those changes which do occur are usually very small and

have no practical significance. Experimental data for physiologically damaging
vibrations are of course, not available for humans. In the operational setting,
men have been exposed to extremely intense vibration levels in helicopters when
rotor blades are lost in flight. It has been speculated that deaths in these
instances have resulted from rupture of the aorta.
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Table 7-6 summarizes tile known physiological effects of vibration. The

experiments summarized in table 7-6 indicate that mall does not experience major

physiological change while enduring whole body vibration of normal intensity. A
shght degree of byperventilation is suggested, however. No dramatic changes are
seen ill blood chemistry or endocrine chemical composition. Anesthesia reduces
those changes which do occur, suggesting a stress effect of a psychological rather
than mechanical nature. There is substantial evidence that heart rate increases

occurring in early stages or during short periods of vibration are anticipatory
general stress responses, because of a gradual return to resting state levels during
continued vibration (Hornick & Lefritz, 1966; Holland, 1967; Ziegcnruccker &
Magid, 1959; Temple et al., 1964). No clearly consistent blood pressure changes

have been identified after exposures to +lGzAng z from 1 to 27 liz (Chancy,
1965). The conclusion of von Gierke (1965) is yet valid: "...to date these effects
in no way characterize vibration as a severe stress nor do the results give us a
handle to use these response'functions as a basis for criteria."

Biodynamic Effects

Of all recorded vibration effects, there is more agreement in research results in

the area of biodynamics than in any other. Biodynamic effects are those
phenomena which consist of body movement reactions to vibration inputs. When
the human body is vibrated, it does not react in a rigid and passive manner; rather,
the body and its organs can be likened to a complex set of masses, springs, and
dampers. There have been attempts to derive a mathematical model which could be
used to define and predict man's motion responses to vibration inputs. By and
large, attempts to develop such a model may be as overambitious as the model
would be valuable. Such a model does not yet exist, due primarily to the wide
variety of environmental parameters of importance--such as frequency, inten-
sity, randomness, bandwidth, axis, duration, body-support, etc.--as well as of
personal parameters--such as body size, weight, posture, age, sex, fatigue, degree
of relaxation, and so forth. Discussions to be consulted which treat biodynamic

phenomena are the following: Goldman and yon Gierke, 1960; Coermann, 1962;
yon Gierke and Hiatt, I962; Weis, 1963; yon Gierke, 1964; Pradko, Lee, and
Kaluza, 1966; Lee and Pradko, 1968.

From a design standpoint, probably the most useful biodynamic data are those
dealing with whole body transmissibility -timt is, the ratio of output to input
motion. Resonances of internal organs, though of value, are not vital to system

design becau_ dangerous organ resonances are thought to occur only at severe
intensities where subjective tolerance limits (often associated with pain) are
reached.

Two terms which are commonly used with reference to biodynamic response
to vibration are mechanical impedance and tra nsmissibility. Mechanical impedance

is defined as the ratio of applied force to the resulting body or organ output
velocity. Transmissibility is the ratio of body output motion to applied motion in
terms of velocity, amplitude, or intensity.

Sinusoidal _z Vibration

Table 7-7 summarizes results of studies in the gz axis with seated subjects.
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Seated and Standing Subjects. Dieckmann (1958) measured transmissibility
and mechanical impedance in comparing the biodynamic effects of sitting and
standing postures, lie found 4 to 5 Itz to be the resonant frequency at the head
and shoulders of the seated subject. When the subject is standing, impedance is

greatest at 5 Hz with a secondary peak at about 12 |lz.

Comparing the biodynamic effects of sitting versus standing, Coermann
(1962) reported peak impedance at 6 Itz for sitting erect; at 5 to 6 Hz for sitting
relaxed; and at 6 and 11 to 12 Hz while standing erect. The data in the
Dieckmmm and the Coermann studies arc for one subject and are, therefore,

only suggestive that body resonance differs for the standing person. Coermann
further reported that use of an MC-3 pressure suit adversely affects biodynamic
as well as subjective response. Edwards and Lange (1964) also reported a

standing relaxed resonance near 4 to 5 Hz.

Shoulder transmissibility in standing subjects during 1 to 27 }lz was recorded

by Chaney (1965). He reported a maximum transmissibility ratio of 1.5 for the
4 to 6 Hz range, with attenuation below 2 Hz and above 7 tlz (figure 7-10).
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Figure 7-10. Shoulder acceleration expressed as a percentage
• of table acceleration for standing subjects. (From Chaney, 1965)

To determine whether the bent leg can serve as an effective isolator, Hornick

(1962) had subjects attempt to isolate the input motion as much as possible at 2
and 5 tlz. A 1 inch double amplitude was used (-+0.21 and +1.3 g, respectively).

Subjects visually fixated on a spot 6 feet forward during 2 minute exposures.
The legs effectively attenuated the input vibration as measured at the head,
though there was a gradual loss in their ability to do so over time. More effective
isolation was achieved at 5 |lz. Figure7-11 shows that transmissibility
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acceleration increases from 68 to 93 percent for 2 Hz and from 25 to

39 percent for 5 Hz during the 2 minute test time.
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Figure 7-11. Percent of acceleration b'ansmitted to headsof standing l_rsons
with knees slightly bent. (From Hornick, 1962)

Random gz Vibration

In 1966, Hornick and Lefritz recorded acceleration at pilots' heads during

simulated LAIIS flight with various RMSg z levels for a zero to 12 Hz spectrum.

It is interesting to note that, for a lO-minute sample, output acceleration is

greatest from 4 to 6 Hz, with attenuation below 2.5 tlz and above 11 Hz

(figure 7-12). These results agree very well with those obtained during sinusoidal
conditions.

Other Axes and Postures

The head motions of seated and standing subjects in +lGz+ng x conditions

were recorded by Dieckmann (1958). Figure7-13 shows that the head

follows the horizontal motion in a flat ellipse at low frequencies. As 5 llz is

reached, the elliptical shape of the head movement becomes vertically

oriented for the standing person and becomes circular fl_r tile sitting person.

Transmissibility at the head, chest, and pelvic regions was recorded by

Hornick, Boettcher, and Simons (1961) in + IGz_lg x conditions. Figure 7-14

shows that motion at the head level is attenuated through 5.5 [lz, while

transmissibility exceeds unity for the chest and belt levels with maximum

amplification at 5.5 Hz. In the _me experiment, foot pressure constancy was

recorded during the Y-gx motion. Greatest limb motion is experienced at 3.5 Ilz.
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The loss in control of foot pressure constancy becomes more severe as intensity
level increases from -+0.15 to 0.30 g.
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Figure 7-12. Biodyrmmic transmissibility during random gz vibration.
(From Hornick & Lefritz, 1966)
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Figure 7-13. ltead movement of standing subject (left)

and sitti.g subject (right) with -+gx vibration. (From Dieckmann, 1958)
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Figure 7-14. Transmissibility at belt, head, and chest levels during _g. vibration.
Standard deviations are presented for each mean for 20 subjects. (From Horn%k et al., 1961)

Hornick, Boettcher, and Simons (1961) also recorded transmissibility at tile

head, during +lGz+ngy conditions. Figure 7-15 reveals that from 1.5 to 5.5 Hz,
the body does an excellent job of attenuating motion as recorded at the head
during the side-to-side vibration. The least attenuation at 1.5 Hz suggests that

_gy re_nance lies somewhere near that frequency. Again, foot pressure
constancy was recorded, with greatest foot constancy error occurring near
1.5 |lz, the region of greatest head motion. As with the x-axis, foot motion

errors arc directly related to the _gy intensity levels.

Woods (1967) also studied +lGz+ngy vibration to 7 tlz with seated subjects.
Ills results confirm those discussed above. Transmissibility is generally below

unity abovc 2.0 llz for the hip, knee, shoulder, and head. He confirms that _gy
resonance is about 1.5 Ilz.

Roman, Coermann, and Ziegenruccker (1959) studied the chest-abdomen

resonance in supine subjects with +lGx+ng z conditions. From 2 to 17 ttz,
there is amplification in the +gz axis, with highest transmissibility (ratio of
3.5) occurring at 5.9 llz.
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Figure 7-15. Transmissibility at the head during _ vibration. Standard deviations appear
for each mean for 20 subjects. (Fro& ltornick et al., 1961 )

Clark, Lange, and Coermann (1962) recorded pelvic, chest, and abdomen

motion in supine subjects during +lGx-+ng x conditions, from 2 to 20 Hz.

Body deformation "strain" (as described earlier) was employed for measure-

ment. All strains are at a maximum at 6.7 Hz (see figure 7-16).
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Figure 7-16. Mean strain of 7 subjects exposed to _'gx vibrations
in semisupine position. (From Clark et al., 1962)
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Edwards and Lange (1964) exposed subjects in the supine position and

resting on their sides to +lGx_:ng x and +lGy_mgy vibration from zero to
20 Hz. In the relaxed supine position, it was again found that the first
resonance for the chest and abdominal regions occurs between 5.5 to
7.5 Hz. A similar result in impedance peak occurs for subjects resting on
their sides, with the peak near 5 Hz.

Summary of Biodynamic Effects

No matter what technique is used to record major body or whole body

response to vibration, results are in good agreement.

1. Internal organs have unique resonant frequencies which can differ in
each axis.

2. Whole body resonance for seated subjects is in the region of 4 to
6 Hz in the !g z axis.

3. For the seated subject, maximum hip amplification occurs at higher

frequencies, about 10 Hz, in the _gz axis.

4. Motion experienced in the seated subject at the upper torso may be
amplified from 1.5 to 4.0 times at the resonant frequency.

5. Use of helmets modifies head motion, and it is suggested that the
helmet-free condition is better than the helmet-restrained condition.

6. Standing subjects, with motion in the _gz axis, have a major body
resonance near 4 to 6Hz. A secondary resonance occurs near 12Hz.
Standing with the legs bent serves to attenuate the input vibration, but
fatigue occurs and effectiveness of this as a damping technique is gradually
lowered.

7. Wben seated and experiencing !g x vibration, tile lower body amplifies
the motion, but motion is attenuated at the head. Resonance is above
5.5 ltz.

8. When seated and experiencing _-gy vibration, motion in the upper
torso is attenuated, but maximum response occurs near 1.5 Ilz.

9. In subjects who are supine or resting on their sides, chest and
abdominal response is greatest in the 5 to 8 Hz region, indicating that man's
torso should be protected from such frequencies when in these positions.

Subjective Tolerance Levels

The system designer is confronted with a large body of conflicting data
when he attempts to determine vibration levels which are subjectively
acceptable to man. It is true that levels which are virtually imperceptible to
man can be identified, as well as those where extreme pain or discomfort
occur, tlowever, the designer is most often faced with the nebulous area
between the extremes. Tolerance limits are treated here along with
subjective levels since a tolerance limit may be considered as the uppermost
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subjective level. A true tolerance limit would be based on pathological data

such as organic damage or actual mortality. Man is not used as an
experimental animal for such purposes; therefore, estimates of tolerance
limits are based on subjective reactions to pain and anxiety or fear.

The basic problems in defining valid subjective levels are: (1) inter-
personal variability--different persons label the same intensity level with
different terms; (2)intra-personal variability--the same individual describes
an intensity level as "disturbing" at one time, and "hardly noticeable" at

another; (3)situation specificity--a particular intensity level is perceived
differently depending on whether the individual is in an aircraft, an

automobile, or in his home; and (4) semantics--a lack of consistent
definitions of terms such as "annoying," "objectionable," "disturbing," etc.

Subjective levels and tolerance limits presented in this section, therefore,
should be used with some degree of caution. The system designer should
not believe, for instance, that a potential change of 0.10 g suddenly places
his system in an "objectionable" range. He must use the described levels
advisedly, knowing that while they may be the best data available, limits
are quite flexible because of the factors mentioned above.

Historically, subjective studies have largely provided the basis for
proposed vibration standards. Various schemes have been used in attempts
to provide standards which could be universally applied to the population.
Typically, a set of frequency-intensity curves are provided representing
different levels of subjective reaction; then conversion functions might be
added to arrive at levels for different axes, for random motion, and for

duration of exposure.

Two agencies have been active in trying to define acceptable standards.
In the United States, Working Group $3-W-39 of the American National

Standards Institute (ANSI)is writing standards with respect to annoyance,
work interference, and hazard. Technical Committee ISO/TC 108/WG 7 of

the International Organization of Standardization (ISO) is determining
thresholds of vibration and shock acceptable to man (ISO, 1970; Hornick,
1969).

Probably the first attempt to organize subjective levels was made by
Goldman (1948), who summarized several independent studies with curves
describing comfort and discomfort regions. These curves were used as design
guidelines without distinction for axis, duration, or randomness. In more
recent years, studies have been conducted to define more clearly the
influence of these factors on subjective reactions.

Sinusoidal _'gz Vihcation

A short-term tolerance limit from 1 to 15Hz was established by
Ziegenruecker and Magid (1959). Lowest tolerance is the range of 4 to
8Hz. Subjective symptoms frequently reported included abdominal pain,
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chestpain,dyspnea,andgeneraldiscomfort;with relatively fewer reports of
testicular pain, head symptoms, and anxiety. Extending this study, Magid,
Coermann, and Ziegenruecker (1960) estimated the g levels which might be
tolerated for 1 and 3 minute exposures (figure 7-17).
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Figure 7 17. Short time, 1 rain. and 3 min. tolerance limits.
(Magid et al., 1960)

Showing that the nranner of respiration affects tolerance, Mandcl and
Lowry (1962) obtained higher tolerance limits for 1 minute exposures.
Subjects were instructed to continue to breathe normally instead of
erratically during vibration. Figure7-18 compares the Mandel and Lowry
data with those of Magid, Coermann, and Ziegenruccker (1960). Figure 7-19
illustrates wide variability in subjective tolerance levels reported by subjects
exposed to 1 to 27 Hz in studies by Parks and Snyder (1961) and Chaney
(1964) using identical facilities.

A psychophysical approach to the quantification of subjective levels has
recently been devised by Shoenberger and Harris (1969), whereby magnitude
_timation and intensity matching replace qualitative descriptions. For each
frequency, results are plotted as straight line functions on log-log graphs of
subjective intensity versus physical intensity. Subjects then match the
intensity of 9 Hz at 0.08, 0.16, 0.26, 0.36, 0.46, and 0.56 gz with vibration
at each of the other six frequencies. According to Shoenberger and Harris,
equal intensity curves from the magnitude estimation data show the same

general shape and comparable levels as corresponding curves determined
experimentally using the intensity matching procedure. Figure7-20 shows
the derived curves from the intensity matching and magnitude estimation
data based upon a value of 0.006gz for the threshold of vibration

perception at 9 ilz, with the six acceleration levels then corresponding to
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the multiples of that base. These results indicate that subjective response to

vibration can be assessed by techniques similar to those used in acoustics,

and that they could eventually be used for estimating the severity of

complex vibration conditions.
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Figure 7-18. Short duration tolerance as a function

of respiration technique. (From Mandel & Lowry, 1962)

Subjective levels for dual frequency sinusoidal _gz motion were

investigated by Brumaghim (1967). Subjects estimated the severity of 4, 5,

6, 8, and 10 Hz when each was experienced (1)with no other vibration,

(2) with 17Hz at 024 RMSg added, and (3) with 17Hz at 0.43 RMSg

added. Subjects were instructed to "ignore" the background 17 Hz motion
in identifying perceptible, mildly annoying, and extremely annoying levels

for the basic frequencies. When the background intensity was 0.43 RMSg,

higher intensity levels of the basic frequency were necessary for the subjects

to identify them subjectively. Figure7-21 shows the change in intensity

required for the basic frequencies to be found "perceptible," etc., when

paired with the 0.43 RMSg, 17 Hz vibration. It appears that difficulty is

experienced in perceiving the primary frequency when a background

vibration is present.

In figure 7-22 are data which present subjective levels for sinusoidal
vibration.
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Reports of Pain. Reports of pain are scattered widely in tile vibration
literature. Most often, these are relatively casual references to general
complaints or to pain in some region of the body by some of the
participating subjects. These accounts are not treated in detail here because

of the typically sporadic character of the reports, though some generaliza-
tions may be made. Little is known with respect to the specific causes of
pain during vibration. However, it is widely believed that organic resonances
and consequent stretching of supportive muscles and tissue is a major
contributor. Most reports of pain occur at levels above those necessary to

cause performance decrement. As tolerance limits and "alarming" levels are
approached, the proportion of complaints can be expected to increase. In
the frequency range of 4 to 8 Hz, complaints are often made at levels over
approximately :!:0.25gz, intensities fairly well below "alarming" levels. Pain
and discomfort disappear with the cessation of vibration.

Random gz Vibration

Table 7-8 summarizes reactions to random gz vibration.

Absorbed Power Concept. In recent years, a concept of "absorbed
power" has been advanced by Pradko and his coworkers which is claimed
to correlate subjective and quantified values quite well. Detailed explana-
tions and the mathematical structure of the technique are available in
several papers and are, therefore, not presented here (see Pradko & Lee,
c. 1965; Pradko et al., 1966; and Lee & Pradko, 1968). The technique
involves use of power spectral density (PSD), but with the added measure-

ment of the rate at which the vibration input is used by means of a
transfer function of input to output energy. The rate of flow of energy
characterizes the interaction of the vibrating human and the environment.
The energy fl0w occurs as a result of the complex damped elastic properties
of the anatomy, and this flow is designated as "absorbed power." This

concept is yet largely a hypothetical approach, and its attempts at
correlations with subjective reactions, while mathematically precise, are
based on too fcw subjects to be applicable at this time.

Other Axes

Lee and Pradko data (1968) support the notion that the gx and gy axes
may not differ much for subjective comfort, and that these axes differ from

the gz axis as follows: below 4 Hz, comfort is lower for the gx and gy
axes; above 4 Hz, comfort is greater in the gx and gy axes.

Earlier, Pradko (1964) used sinusoidal and random vibration from 1 to

30 ltz in several axes and combinations--gz; pitch; roll; gz and roll; pitch
and roll; and gz and pitch and roll. With random motion, tolerance is
greatest for roll. Overall highest tolerance is to random motion which
indicates that generalizing from sinusoidal limits to random vibration is not
appropriate and that gz limits cannot be used for other axes. To do so

could result in overly conservative design limits not desirable for system design.
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Woods (1967) compared subjective reactions to sinusoidal and random

motion in the gz and g. axes with 10 seated subjects. Descriptor opinions were:

(1) "neutral;" (2) some unpleasant effects;" (3)"some unpleasant effects

cannot be ignored;" (4)"definitely unpleasant;" (5)"most unpleasant;" and

(6) "quite unacceptable." Figures 7-23 and 7-24 show the general nature of his

findings. Random vibration is better tolerated than is sinusoidai motion in both

the gz and gy axes.
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Figure 7-23. Comparison of random and sinusoidal gz subjective reaction of "'some
unpleasant effects cannot be ignored". (From Woods, 1967; used by permission of
Aircraft Engineering)
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Figure 7-24. Comparison of random and sinusoidal gy subjective reaction of "some
unpleasant effects cannot be ignored". (From Woods, 1967; used by permission of
Aircraft Engineering)
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"Annoying" and "objectionable" levels for aircraft passenger situations
were studied by Brumaghim (1969). Subjects were seated in aircraft seats in

a simulator and experienced several types of vibration--_gz, _g., single and
combined frequencies, single and combined axes, and combine_ frequencies

and axes. These results also indicate that lateral .tg. vibrations are more
objectionable than gz motion in the range to 3 Hz (Figure 7-25). Combined

frequency tests were conducted in gz and g. axes to determine if reactions• y
to muhifrequency vibration could be linearly predicted from the values
obtained for each frequency separately. That is, for the 1 and 4Hz

combination, halves of each separate frequency intensity called objectionable
were summed as the predicted value for the combined frequencies.
Brumaghim found good agreement between predicted and actual values.
However, the results for prediction of combined axis vibration reactions
were not good, again indicating the nonequivalence of the axes of motion
with respect to subjective reaction.
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Figure 7-25. Subjective "objectionable" response levels
for :t_ axes. (From Brumaghim, 1969)

Temple and coworkers (1964) conducted a study with subjects

semisupine at +1 G x experiencing -+'gx, -+-gy, and -+'gz vibration from 3 to
20 Hz to evaluate tolerance endpoints for several couch support and head
restraint configurations. The data indicate that tolerance is extremely sensitive
to the type of support, and that complex interactions exist between type of
support system and axis of motion.

Summary of Subjective Responses

Subjective levels and tolerance limits in older literature are not useful for

design because they (1)are based on antiquated studies; (2) use grossly
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subjectivesemantics;(3)dependon "data"fromoneor veryfewsubjectsor
"observers;"(4)donotaccountforvariability;(5)donotaccountforduration;
(6)donotaccountfor personalvariables;and(7)donotdifferentiateamong
axes.Certainagenciesarein theprocessof defininglimitswhichmaybecome
universallyacceptableas designguidelines.However,thesearenot yet
_tisfactorilydefined.

Tworeviewshaveastheirobjectivetheexplorationof thelimit problem
ratherthanthedefinitionof discretelevels.Bryce(1966)exploredthebasisof
thedisagreementsin thesubjectivecomfortareaandsuggeststhatthemost
prominentdiscrepanciesareattributableto theamountof restraintaffordedby
the bodysupport.GartleyandBeldam(1967)exploredthe feasibilityof
establishingacceptableexposurecriteriaandconcludethat"theinconsistencies
andgenerallackof agreement...makeit impossibletodeveloprealisticvibration
exposurecriteria..."

Beyondthesubjectivedatareportedin figure7-23andtable7-6,it can
reasonablybestatedthatsubjectivecomforttogvandgxmotionislessthanfor
gzbelow4Hz;above4Hz,gzislikelytobemo_edisturbingthanfortheother
axes.Further,thesmallamountofdatacomparingsinusoidalmotiontorandom
suggeststhatrandommotionisbettertoleratedthanissinusoidal.Published
exposurelimits at this timearedifficult to justify andmustbe applied
cautiously.

Interaction of Vibration with Other Environmental Parameters

Limited research has combined vibration stress with other environmental

stressors such as acceleration, noise, and altitude. Visual performance during
linear acceleration with vibration was studied by Clarke and coworkers (1965).
Conditions of +3.85Gx:!:ng x were used, with vibration intensities ranging from
-+0.8 to -2.4 g at 11 Hz. No effect was found for an easy dial reading task, but
increased intensity of vibration was related to increased error scores for a

difficult task. In terms of very gross errors, no real effect was noted until +1.6 gx
was reached.

A similar set of conditions was used by Vykukal and Dolkas (1966) and
Vykukal (1968) where tracking, dial reading, and subjective assessment of

performance decrement were evaluated during +nGx:tng x conditions.
Acceleration and vibration intensifies up to +4 G x and +-3.0 gx in the 2.5 to
20 Hz frequency range were used. Results indicate that decreased visual acuity is
the most serious effect. Rapid deterioration of control performance occurred at

_:0.7 gx for 11 Hz. With a +3.5 G x bias, vibration levels above -+0.30 gx at 11 ttz
are believed to jeopardize spacecraft mission success. Body resonances were
observed at 7 Hz; between 9.5 and 12.5 Hz; and at 15 and 18 Hz. Magnitude of
the resonances increases as a function of the bias acceleration for the same level

(:tO.4 gx) of vibration. Observance of pain at 7 and 18 Hz suggests a lower
tolerance to vibration at resonant frequencies when combined with high linear
acceleration s.
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Typing performance was studied by Rulon, Sampson, and Schohan (1951)

during actual flight conditions with turbulence. Steady state acceleration levels

ranged from +1 to +3G z with turbulence producing added oscillation.

Experienced teletypists and "hunt-and-peck" typists were subjects. There was a

large practice effect observed, and accuracy of the hunt-and-peck typists actually

increased during the flights. However, the high proficiency teletypists

experienced more response (wrong finger) and displacement (hand on wrong

key) errors during the flights. No data were presented relating errors to vibration

intensity or duration.

A complex study concerning pilot control during turbulence was reported by

Hitchcock and Morway (1968). In this study, pilots "flew" through turbulent

storms in a simulated 720-B cockpit on a centrifuge with a shake platform

included to provide 4.7 and 7 Hz associated with aircraft vibration. Flight

accelerations ranged to +3.5 G z with -+0.5 gz at 7 Hz and +1.5 gz at 4.6 Hz. It

was noted that under the experimental conditions pilots were willing to follow

and capable of following prescribed penetration procedures. They chose,

however, to terminate attempts to achieve new headings and altitudes when

heavy turbulence was encountered. Finally, the study suggested that use of a

"turbulence flight director" enables pilots to maintain better speed control and

results in a reduced load factor.

Much additional research is needed in the area of vibration combined with

other stresses in order to provide data which can more adequately describe the

reactions of man in a dynamic environment.
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CHAPTER 8

WEIGHTLESSNESS

by

Charles A. Berry, M.D.

National Aeronautics and Space Administration

Gravity is a force which is ever present, continuously utilized, and little
understood. Its invariant nature underlies our every activity. We walk, we build,

we play games-in every instance relying on the constant effect of gravity and
seldom realizing that this is the case. The world of unit-gravity is very familiar
and very comfortable. A world without gravity would be strange indeed. Yet the
designers of space missions and space equipment must plan systems and devices

for perfect operation in a world in which there is no gravity.

From the design engineering vantage point, two aspects of the weightless or

reduced-weight state are especially important. The first of these, of course, is the
absence of weight itself; the second, the tractionlessness which accompanies it.
The gravitational weight of the body is a quantity to which the human nervous
system has become accustomed to responding over the entire period of
development of the species on Earth. Tile removal of man from Earth's
gravitation environment can therefore reasonably be expected to have significant
impact on the organism, notably in the areas of perceptual-motor performance,
sensory performance, and basic physiological functioning.

Perceptual-motor responses are conditioned to overcoming the existing pull
of gravity on both the limbs and on any objects one wishes to lift or move. One
learns to judge the weight of objects and to predict their movement by forces in
the limbs upon handling various objects. With no gravitational force to
overcome, free-floating objects will accelerate with the application of the
smallest force. Actual space flight experience fortunately has shown that man's
effectiveness in handling objects in that environment is not a problem. On the
contrary, one adapts readily to this aspect of the environment, and it has
frequently been used to advantage (Berry, 1970). Positioning tools, for example,
in "mid-air" at a work site and _aring from place to place are obviously
convenient when such behavior is desired.

Certain special senses are subject to functional alterations in the weightless
environment. This is particularly true of the body's balance mechanism, the
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gravity-dependent otolith organ. The physiology of these responses will be
discussed in detail in chapter 17 and will only be mentioned briefly in the
present chapter. Since the sense of cutaneous touch depends on stimulation of
the touch receptors in the skin, the gravity free environment virtually eliminates
this sensation. This seems to create for the inhabitant of the space capsule an
unusual but not inconvenient situation.

The satisfactory performance of purely motor functions has posed a more
challenging problem in the space environment. The execution of tasks which
require push-pull forces and locomotion itself in the weightless state and under
lunar gravity conditions has been facilitated through the development of various
restraints and specialized tools and preflight astronaut training employing
neutral buoyancy and other simulation techniques.

Unfortunately, prediction of physiologic respons_ during weightlessness is
more complicated than prediction of work performance. Many of the problems
anticipated have proved to be without foundation. Some, however, have been
borne out. For example, it was reasonable to expect that head colds would be

more troublesome in 0 g than in the Earthbound environment since sinus
drainage is gravity dependent. During the Apollo 7 mission, crewmembers who
suffered head colds reported considerable discomfort and indicated that the
space flight environment was in fact detrimental to relieving cold suffering.
Earthbound analogs of weightlessness are available, but these are little more than
useful tools. None actually simulates weightlessness since none eliminates gravity
effects. At best, these techniques permit long-term study of isolated aspects
similar to those which would be experienced in the weightless environment. Bed
rest studies, for instance, are useful for more closely examining the effects of

prolonged inactivity on such functions as calcium metabolism. The neutral
buoyancy technique is unsuitable for the study of long-term physiological
change because human subjects obviously can be submerged only for limited
periods of time.

Since true weightlessness can be achieved within the influence of Earth's
gravity for no longer than 1 min (usually 30 to 40 sec) (Gerathewohl & Ward,
1960), the most reliable predictor of the effects of long-term weightlessness on
the human organism is, without doubt, actual orbital space flight experience. To
date, this experience is limited to 2 weeks' exposure during the Gemini 7 mission
and 24 days in the Soviet Salyut/soyuz 11 flight. (See appendix for a
chronology of U.S. and Soviet space flight missi,_n durations.)

Animal data have been obtained during a 22-day mission where dogs were
placed in orbit by Soviet scientists aboard the Kosmos 110 satellite (Parin et al.,
1968). This and similar animal experiments are, like ground-based simulation, a

valuable, but by no means perfect, tool for studying weightlessness effects.
Whereas extrapolation from simulated to actual space flight conditions must be
made cautiously because ground-based studies cannot eliminate gravity effects,
direct applicability of orbital animal flight data is markedly restricted because of
the inherent danger of generalizing results across species. Such experimentation

does, however, offer the possibility of performing procedures which could not
be ethically applied to man, and animals can be subjected to excessive
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environmentalexposuresin searchof thresholdtolerances(but still mustbe
instrumentedcarefullyif anyresultsaretobeinterpretable).

All informationavailableto dateindicatesthatmanadjustswellto zero
gravityfor theperiodshehasflown.Somereversiblephysiologicalchanges
havebeennoted,principallyin the cardiovascularsystem.To limit the
magnitudeof thosechanges,somecountermeasuresto weightlessnessmaybe
required,but thesemaybe no morecomplicatedthanthe provisionof
dietarysupplements.Withfewexceptions,adjustmentto weightlessnesshas
beeneffortless.

Informationaboutweightlessnesseffectshasbeengainedby increasing
man'sexposureto theweightlessenvironmentin cautiousincrementalsteps.
In theSkylabprogram,scheduledto commencein 1973,thisapproachwill
beexpandedandsystematized.TheSkylabspacestationwill permita much
higherlevelof complexityof medical/behaviorallaboratorytechniquesand
equipmentaswellas longermissiondurationsof 28to 56days.Missions
suchas thesewill pro',4dethe first stepstowarda soundbasisfor
committingmanto evenlongerstaysin space,perhapsupto severalyears'
duration.

Dataobtainedduringmannedmissionsin spacehavedonemuchto
dispelspeculationconcerningthepotentialhazardsof spacetravel.However,
somechangeshavebeenseenandalthoughtheydo notappearto suggest
that man is seriouslycompromisedphysiologically by spaceflight
experiencetheynonethelessmustbewatchedcarefullyto insurethatthey
are not progressivein nature.The necessityfor moredatais further
emphasizedby the smallnumberof individualsstudiedthusfar andthe
inevitableindividualvariabilitywhich exists.Increasingmissionlength,
however,increasestheimportanceof providinganenvironmentfor manin
spacewhichassureshissafeandsatisfactoryperformance.Spacevehicles
mustbedesignedwith all aspectsof operationin zerogravitytakeninto
account.

Effects of Weightlessness on

Physiological Systems

Prior to actual space flight experience, many legitimate concerns were
expressed about man's potential response to the space flight environment.
Table 8-1 lists a number of the effects predicted. Some of these involved

pure conjecture; others could be more reasonably expected on the basis of
early orbital animal flight experience and parabolic aircraft flight
experimentation involving both men and animals. Inflight and postflight
studies reported for individuals who have lived and worked in space indicate

that many predicted problems were baseless, at least for stays up to
2 weeks. Some physiological changes have been consistently noted, but none
have been permanently debilitating.
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Table 8-1

Predicted Human Response to Space Flight

Dysbarism

Disruption of circadian rhythms

Decreased g-tolerance

Skin infections and breakdowr

Sleepiness and sleeplessness

Reduced visual acuity

Disorientation and motion sickness

Pulmonary atelectasis

High heart rates

Cardiac arrhythmias

High blood pressure

Low blood pressure

Fainting postflight

Electromechanical delay in

cardiac cycle

Reduced cardiovascular response
to exercise

Sedative need

Stimulant need

Reduced blood volume

Reduced plasma volume

Dehydration

Weight loss

Bone demineralization

Loss of appetite

Nausea

Renal stones

Urinary retention

Diuresis

Muscular incoordination

Muscular atrophy

ttallucinations

Euphoria

Impaired psychomotor
performance

Infectious disease

F at igu e

Table 8-2 summarizes the responses of the United States astronauts and

Soviet cosmonauts to space flight exposure in the Mercury, Gemini, Apollo,

Vostok, Voskhod, and Soyuz missions. Observation and measurement of these

responses were made possible by a number of techniques, including preflight,

inflight, and postflight studies. Television, telemetry and voice communication

plus in flight sampling and, in one instance (Voskhod 1), inflight clinical evaluation

by a physician, permitted an assessment of real time physiological changes.

Table 8-3 lists the principal techniques employed to monitor minute-

to-minute inflight responses.

The sections which follow elaborate the physiological and performance areas

which have been or may be expected to be affected by weightless space flight.

Cardiovascular Responses and Hematological Effects

Oxygen and nutrients in the internal environment of the body would be
rapidly exhausted if they were not continually replenished by circulating blood.

Likewise, the end products of metabolism would soon build up to toxic levels

were they not removed from the tissues. This exchange is accomplished in

capillary beds. At the arterial end of the capillaries, hydrostatic pressure due to
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the heart's action drives oxygen and nutrient-bearing fluid into the spaces
between the tissue cells. The drop in pressure in the venous end permits depleted
fluid to return to the capillaries, thence to the central circulation. To effectively
balance these two operations, or maintain homeostasis, blood plasma must be
delivered in sufficient volume and with sufficient pressure. The cardiovascular

system and all the complex reflexes which govern its function are devoted to
maintaining this balance.

In advance of space flight experience, both plasma volume and blood
pressure changes were predicted on the basis of extrapolation from bed rest
studies (Deitrick, Whedon, & Short, 1948) and what could reasonably be
expected as a consequence of the reduction in hydrostatic pressure gradients at
zero gravity. Reduction of hydrostatic pressure gradients will, for example,
greatly diminish pressure exerted on blood vessels; the end result of which can
be a reduction in the reactivity or sympathetic tone of the vessels (particularly
the veins).

It was thus predicted that over long periods of time the reduced load upon
the heart, lowered blood pressure, and reduced hydrostatic pressure differences

experienced in weightlessness ultimately might become manifest as a malfunc-
tion of one or more of the cardiovascular control loops responsible for
homeostatic regulation. The pressure regulation and blood volume loops which
are susceptible to hydrostatic effects were expected to be the most likely to
deteriorate, if deterioration should occur, since these are subjected to minimal

stress during prolonged weightless space flight. The consequences of such
phenomena, might, it was thought, diminish or obliterate man's ability to
withstand the gravitational load associated with reentry accelerations.

Prior to actual flight, it was not possible to say with any reliability whether
weightlessness would alter other aspects of the cardiovascular system. Hence,
careful measurements were made to detect any changes in heart rate and
electrical conductance. Changes in the formed elements of the blood also were
watched closcly. The following section describes the principal findings.

Space Flight Results. Cardiovascular indices have been monitored during all
United States space flights and have been within expected physiological ranges.
No significant changes have been noted in blood pressure while heart rate has
tended to stabihze at a lower level. Only in the Apollo 15 crew have any
significant irregularities been noted in electrocardiographic recordings. Post-
flight, reduced orthostatic tolerance has been observed with regularity. It has so

far been the most pronounced and consistent finding. This phenomenon has also
been seen following Soviet space missions. Orthostatic intolerance accompanied
by elevated heart rate was first noted on capsule egress in the Mercury 8 pilot.
Cardiovascular function has therefore been extensively investigated following all
subsequent flights.

Cardiovascular Profile. The heart function profile has been as follows:

• Heart Rate. Peak heart rates (table 8-2) have been observed at launch
and at reentry, normally reaching higher levels during the latter. During the
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weightlessphaseof spaceflight,heartrateshavetendedto stabilizeat lower
levelsandhaveresponded,at theselevels,adequatelyto physicaldemands.
So_4etinvestigators(Akulinichevetal.,1964;Volynkin& Vasil'yev,1969)have
reportedthatnormalizationofheartrateoccurredinflightbutthattheperiodof
timerequiredtoachievepreflighthcartrateswasconsiderablyextendedbeyond
theperiodrequiredfor normalizationfollowingsimilaraccelerativestresseson
Earth.Postflightheart ratcs havebeenfoundto be elevated(Berry,
1967a;1970)and,hereagain,normalizationhasbeeninhibited.Following
UnitedStatesApollomissions,30to 50hoursweregcnerallyrequiredfor
preflightbaselineheartratesto bereestablished.

• Cardiac Electrical Activity. By far the most serious finding in the sphere
of cardiovascular response have been the aberrations in cardiac electrical activity
noted in the Lunar Module Pilot and the Commander of Apollo 15. The

Apollo 15 crew had engaged in strenuous activity on the lunar surface during
which time the arrllythmias were first noted. These were well outside the range
of normal. The Lunar Module Pilot experienced numerous premature ventricular
contractions both on the lunar surface and during the return to Earth. Twelve
bigeminis were recorded, as were premature auricular contractions. The mission
Commander experienced four premature ventricular contractions during a sleep
period on the morning of reentry when a heart rate of only 28 beats per minute
was recorded. This was followed by additional premature auricular contractions
and occasional premature ventricular contractions which lasted for about one
hour. ttowever, neither crewmember exhibited any evidence of arrhythmia upon
postflight examination (Berry, 1972). Extrasystoles had been noted during prior
United States and Soviet space missions but these occurred rarely and no
individual experienced more than an occasional arrhythmia (Berry, 1967;
Akulinichev et al., 1964; Yazdovskiy & Denisov, 1963). Postflight examinations
of the Apollo 15 crew revealed potassium deficits which were linked to the

irregular heartbeats. Supplementary dietary potassium and less strenuous work
schedules eliminated this problem for the Apollo 16 crew (Berry, 1972).

• Heart Size. During the Vostok flights, increases were noted in electro-
mechanical delay (Bayevskiy & Gazenko, 1964), while electric and mechanical

systole in tt_e Soyuz crews showed no significant difference from preflight
baselines inflight (Kakurin, 1971). This parameter has not been measured
inflight for U.S. crews. Study of pre- and postflight posterior/anterior chest films
from all U.S. flights reveal a decreased cardiac size postflight. Specific studies in
Apollo t6 correlating several X-ray views taken at the same time in cardiac cycle,

systole or diastole, revealed an apparent decrease in the cardiac silhouette.

• Blood Pressure Measurements. Blood pressure recordings, including
those taken at reentry, indicate that systolic and diastolic pressures have
remained within the envelope of normality (Berry, 1967a). Soviet experience
(Volynkin & Vasil'yev, 1969) indicates a definite overall decrease in pulse
pressure under the conditions of weightlessness. Pulse pressures following Apollo
flights have been found to be quite labile for up to 3 days postflight (Berry,
1970).
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• Orthostatic Tolerance. Significantly reduced orthostatic tolerance,

evidencing cardiovascular deconditioning, to the one g environment has been
observed in every United States space mission since the last two Mercury flights.
Soviet investigators have also reported the phenomenon in their Voskhod and
Soyuz missions (Petukhov et al., 1970; Volynkin & Vasil'yev, 1969; Kakurin,
1971). While there were no noticeable changes in any of the recorded parameters
after 2-day flights, all the cosmonauts showed signs of orthostatic instability
after 3-to 5-day flights (Kakurin, 1971).

In order to reveal the full extent of cardiovascular deconditioning to 1 g or

conditioning to 0 g, several types of postflight cardiovascular provocation are
employed while various indicators are monitored. The point of provocative

testing is that it often reveals changes otherwise undetectable in resting
individuals because compensatory mechanisms may mask any sign of

physiological decrement. Gemini astronauts, for example, showed no signs of
orthostatic hypotension prior to provocative testing. The methods employed
have included the application of lower body negative pressure and passive
orthostatic tests. In the U.S. static stand procedure, the subject demonstrates
stable heart rate and blood pressure in the resting, supine position for 5 minutes,
after which he is assisted to a standing position with minimum delay and
movement. He remains motionless in tile upright position for 5 minutes while
heart rate and blood pressure are again recorded each minute. The Soviet

procedure involves 10 minutes of tilting in a rotating chair to a vertical position
(88 °) after the subject has rested in a supine position for at least 20 minutes,
while hemodynamic, gas exchange and respiration measures are made.

Space crews have required, at the longest, 13 days postflight to reach
preflight baselines. The Soyuz 9 and Apollo 15 crews' recoveries were markedly
slower than those of previous Apollo crews who reached preflight levels within
3 days after space flight.

Whatever the factors causing orthostatic intolerance, heart rate remains the
most sensitive index (Berry, 1970). Postflight heart rate increases during tilt

table testing for Gemini crewmen were 17 to 105 percent greater than those
exhibited preflight. In the Apollo series, 90 ° passive standing revealed
significantly elevated pulse rates in all crewmembers tested. Figure 8-1 indicates

representative heart rate changes.

Blood pressure, on the other hand, has not proved to be a consistently
reliable index of deconditioning. Decreased pulse pressure has been noted in
15 of 21 Apollo crewmembers tested postflight (Rummel et al., 1972).

Hematological Profile. The folowing paragraphs describe all blood
changes for United States rmsslons to date. It should be noted that these changes
were completely reversible.

• Plasma Volume. Plasma volume changes associated with weightlessness
have been variable in direction and temporary, not lasting more than 10 days.

This is strikingly different from results of bed rest studies, in which decreases
continue for several weeks. Table 8-2 summarizes individual findings. A later
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10

discussion concerning endocrine and electrolyte response to weightless space

flight presents an explanation of this phenomenon.*

• Red Blood Cell Mass. Hematological changes have been compared in

three Gemini crews (4,5,and7) and the crews of Apollo missions

7, 8, 9, 14, and 15 by Johnson & Driscoll (1972). When tile Gemini crews were

compared with the Apollo crews on missions which did and did not employ the

lunar module, a statistically significant difference was noted in the percent

change of red blood cell mass (using 51Cr) among the groups; no such change
was seen in controls. These results are indicated in table 8-4. No difference was

found in the mean survival time of red blood cells, and no difference was found

between the two types of Apollo missions compared.

Blood studies of Soyuz 9 cosmonauts indicated increased hemoglobin 1.5 to

2 hours postflight (Molchanov et al., 1970).

Table 8-4

Red Cell Mass Percent Change

(Premission vs Immediately Postmission)

GEMINI APOLLO & LM APOLLO

Crew 15.6 +2.3 7.4 +1.2 -2.4 -+1.6

Controls -1.1 -+1.0 +0.1 -+1.6

(From Johnson & Driscoll, 1972)

*Plasma volume decreases are suggested hi the Soyuz crew by increases in hemoglobin and
red blood cell mass postfl,.'ght (Kakurin, 1971.)
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• White Blood Cells. Net increases in the number of white blood cells were

consistently noted in Gemini missions and continued to occur during Apollo

missions. Similar changes have been reported for Soviet cosmonauts (Molchanov

ct al., 1970). Soyuz9 results showed thrombocytopenia for two weeks

postflight. Although other leucocytes have decreased in number, substantially

elevated neutrophil counts account for the net increase (Berry et al.,

1966; 1970). Table 8-5 summarizes changes in hematological responses for the

Apollo 7 througtl 11 missions.

Table 8-5

Apollo Blood Profile Summary

Parameter

Red blood cells

Hematocrit

Hemoglobin

Reuculocytes

White blood cells

NeutrophHs

Lyrnphocytes

Monocyles

Eosinophils

Basophils

Platelets

Apollo 7 Apollo 8

o AA

o AA
o AA
0 0

AAb, AAA
AA AA

VV VV
o VV

Apollo 11 Overall

0 0

0 0

0

0

AAA AAA

AAA AA

VV VV
VV VV
VV V

0

0 0 0 0

Mission

Apollo 9 Apollo 10

VV AA

o AA
AA o

0

o AA
o AAA

o VV
0 0

VV

VV
0 0

LEGEND:

0 No occurrence

_t Significant trend (negative)

VV -20

VVV -30

AA +30

AA A +30"

Simulation Studies. As early as 1948, Deitrick, Whedon, and Shorr noted

that hypodynamia, produced by bed rest and standardized by cast immobiliza-

tion of the pelvic girdle and legs, brought about a definite deterioration in the

mechanisms essential for adequate circulation in the erect position. Figure 8-2

shows the percentage change from resting levels of pulse rate and pulse pressure

for their subjects during tilt table testing. Increases in pulse rate and decreases in

pulse pressure of 40 to 70 percent were noted prior to immobilization. During

immobilization, thesc changes exceed 70 percent. Syncope was also common.

4n7-_58 (_ 73 2 _,
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Figure 8-2. Effect of immobilization on the responses of pulse rate and pulse pressure to
tilting to 65 degrees feet downward for twenty minutes in four normal male subjects. (From
Deitrick, Whedon, & Short, 1948)

To examine to what extent bed rest parallels weightlessness, the flight data

obtained during the Gemini mission series were compared with data from bed
rest studies of equal duration. Figure 8-3 shows resting heart rate changes

(expressed as a percentage of preexposure values) for each. Although the two
conditions show very similar trends, the magnitude of change is markedly
different. This, perhaps, indicates that factors other than those simulated hy bed
rest are involved in the changes in heart rate noted after exposure to
weightlessness.

Conclusions. Cardiovascular deconditioning, as evidenced by diminished
orthostatic tolerance, is the most consistently observed and most profound of
the effects upon the cardiovascular system following exposure to up to 18 days
of weightless space flight. This condition is reversible and appears to have no
serious lasting implications. Rare irregularities have been noted in the electrical
activity of the heart. These appear to be controllable through maintenance of
electrolyte balance. An apparent decrease in cardiac silhouette postflight has
been consistently observed in U.S. flights.

The factors accounting for deconditioning of the cardiovascular system are
not yet clear. Soviet investigations (Volynkin & Vasil'yev, 1969) suggest that
relative hypodynamia and, possibly, physical fatigue observed inflight are related
and that these together might be responsible for decrease in myocardial

contractility., a breakdown of the mechanisms regulating coordinated activity of
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Figure 8-3. Gemini missions and bed rest; resting pulse rate change vs. time.

the heart and vessels, and a decrease in venous tone. Fatigue has not been a

feature of any significance during United States missions except when

inadequate rest had been obtained or when heavy workloads were imposed on

the lunar surface. Weightlessness per se appeared to reduce rather than increase

fatigue, since movement seems to require much less work in weightlessness than

in the unit gravity environment (Berry, 1970).

Examination of endocrine and electrolyte data offers clues to the nature of

the changes that present as orthostatic intolerance postflight. An hypothesis as

to tile mechanisms involved is pre_nted later in this chapter ill conjunction with

the discussion of endocrine and electrolyte responses to space flight.

Red blood cell mass decreases which have been noted may be explained by

one important difference among missions: the amount of residual nitrogen in

the space cabin atmosphere. Iiyperbaric oxygen (at 2 atmospheres or greater) is

known to have a hemolytic effect. Conclusive data are not available for

atmospheres of 100 percent oxygen delivered at 5 psi. A normal 51Cr red blood

cell half time indicates that hemolysis did not occur in the Apollo program. The

decrease in red blood cell mass noted in the absence of external bleeding suggests

that the probable cause for the decrease is inhibited erythropoiesis (Johnson &

Driscoll, 1972, cited in Berry, 1972).

The only persistent hematological change, transient increases in the white

blood cell count, is probably a consequence of increased blood epinephrine and

steroid levels associated with mission stre_ and is reversible by two days

postflight.
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Work Capacity (Exercise Tolerance)

In assessing the physiological cost of manned space flight, it is essential to

determine to what extent the many factors inherent in the weightless
environment affect the capability to do physical work. This capacity can be an

index of cardiopulmonary function. Significant deterioration in physical work
capacity is a phenomenon noted in individuals subjected to bed rest. For this

reason, exercise capacity tests are routinely performed before and after space
flights. For the most part, work capacity tests have employed an electronic
bicycle ergometer capable of producing a fixed workload. The load is increased
in regular increments until elevated heart rates, usually 160 or 180 beats per
minute, are reached. Oxygen uptake per kilogram of body weight and systolic
blood pressure serve as the indices, with oxygen consumption the more reliable
of the two. Cardiac output has also been estimated indirectly by the single
breath method requiring instantaneous gas composition and oxygen
consumption data.

Space Flight Results. A reduction in work capacity has been noted in both
Gemini and Apollo crews. In Gemini 7 work capacity was reduced 19 percent in
the Command Pilot and 26 percent in the Pilot. Twenty-five of 30 Apollo
astronauts tested have shown a significant decrease in exercise tolerance
postflight. Table 8-6 shows typical results, in this case for the Apollo 14 crew. In
general, preflight levels have been reattained within 24 to 48 hours postflight.
The single exception to this rule was the Apollo 15 crew. In this crew, preflight
exercise capacity was not reached in the Command Module Pilot until 3 to

5 days postflight; in the Lunar Module Pilot, until 9 days postflight; and in the
Commander, until 13 days postflight. Exercise tolerance was reduced in the
Apollo 15 crew by about 44 percent compared with a deficit of 20 percent in
the Apollo 16 crew.

Table 8-6

Work Capacity Indicators for Apollo 14 Crew

CDR

LMP

CMP

02 Consumption/ SystolicBlood
160 H.R. Pressure/160H. R.

Preflight 2.40 I/rain. 233 mm Hg
R + 0 2.48 238

Preflight 3.05 225
R + 0 2.86 207

Preflight
R+O

= statistically significant decrease,

(Barry, 1971)

2.40 216
1.81 _ 156 t
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In conducting a functional test consisting of 30 knee bends during the day
after the Voskhod 1 mission (Volynkin & Vasil'yev, 1969), all Soviet
cosmonauts showed a greater increase in pulse rate than they did during the

preflight period. Soyuz cosmonauts in all flights beyond 5 days' duration
exhibited decreased work capacity. In the Soyuz 9 crew, this was ascertained by

examination of postflight gas-energy exchange determined by the method of
Douglas and Hoiden and by minute volume determinations (using the Fick
method), as well as by bicycle ergometry (Kakurin, 1971).

Conclusions. Significant decrements have been noted in work capacity after
space flight. The physiologic mechanisms responsible for the changes observed
remain to be identified through further investigation. Hypokinesia leading to
decreased muscle tone appears, from Soviet findings, to play a part.
Supplementary U.S. data indicate that work performance decrements are not

due to altered pulmonary function or to dinfinished ability to extract oxygen
from the atmosphere (Berry, 1970). It is more likely that these changes are in
some way associated with cardiovascular deconditioning. To elucidate further
the physiological mechanisms underlying the reduction in work capacity, cardiac
output assessments are being made to determine whether a decrease in peripheral
resistance plays a part. Increases in cardiac output for given oxygen consumption
levels were noted in crewmen of Apollos 14 and 15 but not in Apollo 16. No
change in peripheral resistance was indicated in Apollo 16 results, and thus the
mechanisms still await further study.

Respiratory Responses

The aspects of respiratory function which have been of concern with relation
to prolonged weightless space flight include changes in lung volume and airway
conductance, and the possibility and consequences of atdectasis.
Hypothetically, pulmonary circulation and pulmonary gas diffusion might also
he affected. In an extensive review of respiratory physiology in the space
environment published in advance of the Apollo missions, the National Academy
of Sciences (1967) expressed the opinion that none of these would pose
problems of any real consequence.

Space Flight Results. Pulmonary function in weightlessness appears

completely unimpaired. Pre- and postflight X-rays during the Gemini mission
series have failed to reveal any evidence of atclcctasis. Peak respiratory rates
were noted during heavy workloads, but even when these rates have exceeded
40 breaths per minute, they have not been accompanied by symptomatology
(Berry, 1967a). No respiratory problems were noted during lunar surface activity
and Apollo pre- and postflight X-rays have shown no atelectasis.

During the Soviet Voskhod I and 2 missions, somewhat higher respiratory
rates were noted, as was also the case during preparation for and conduct of the
Soyuz spacewalk (Kakurin, 1971).

Conclusions. The weightless environment appears to have no significant
impact upon either respiratory mechanics or lung structure. Inflight pulmonary
function evaluation in Skylab should further clarify pulmonary status in
weightlessness.
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Skeletal Responses

Gravity and countergravitational muscular effort are important for the
maintenance of skeletal strength. In zero or reduced gravity conditions,
elimination or reduction of mechanical forces such as those produced by weight
bearing and muscle tension can result in the loss of calcium, and other related

elements, from the bones. If such losses were to continue unabated over a long
period of time, it is conceivable that demineralization, leading to loss of skeletal
strength, could ultimately occur. A 1 to 2 percent per month figure has been
predicted as reasonable for the rate of bone loss for persons in the weightless
state (Hattner & McMillan, 1968). It is possible, on the other hand, that

stabilization may occur at some point in time. Calcium balance does, for
example, appear to normalize after some years in paralyzed patient-subjects
(Heaney, 1962).

Space Flight Results. To minimize both muscle and skeletal deterioration

during weightlessness, rigorous exercise routines have been adhered to by United
States astronauts and Soviet cosmonauts. During the 18-day Soyuz 9 flight,
cosmonauts exercised twice daily, for 120 minutes a day. Rubber bungec cords
attached to tile cosmonauts' suits at one end and to the floor at the other

provided for increased load during simulated walking and running exercises. The
cosmonauts reported a feeling of "muscular exhilaration" after exercise which
lasted for the entire work day (Vorob'yev et al., 1970). Similar, but less

extensive, exercise routines were followed by United States astronauts. Despite
tiffs regimen, both groups experienced loss of bone mass.

Lo_es in bone mass were observed in the Gemini and Apollo missions. These

were directly demonstrable using a bone densitometric X-ray technique.
Tables 8-7 and 8-8 indicate bone density changes for the Gemini 7 crew and the

Apollo 7 and 8 crews, respectively. When compared with changes observed
during bed rest studies, calcium losses for Gemini 7 crewmen were far lower than

for Gemini 4 and 5 crewmen. This is illustrated graphically in the case of heel
bone density in figure 8-4. The figure also indicates the realtive calcium intake in

each nffssion. In addition to receiving supplementary calcium (approaching
1000 milligrams per day), the Gemini 7 crew routinely exercised.

Although loss of bone density varies considerably from site to site and in
individuals, none of the losses noted in either the Gemini 7 or the Apollo 7 and
8 missions approached the maximum 20 percent loss noted in the calcanei and

metacarpals of the Command Pilot and Pilot of the Gemini 5 voyage (Mack &
LaChance, 1966).

In contrast to earlier finding, Apollo 14 bone mineral content

determinations did not reveal bone demineralization. Pre- and postflight
examinations of the left central os calcis and the right distal radius and ulna by
means of a monoenergetic photon absorption technique revealed no significant
mineral losses during the 10-day mission.

Optical density studies of bone tissue of Soyuz 9 cosmonauts after their

18-day flight rew_aled effects similar to those seen for Genfini and Apollo crews
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Table 8-7

Bone I)ensity Changes in Gemini 7

(Percentage Decrease)

383

Conventional os calcis scanning section

Overall os calcis involving multiple

traces over 60% of bone

Section through distal end of talus

Multiple traces covering hand

phalanx 4-2

Multiple traces covering hand

phalanx 5-2

Greatest change in any section of

os calcis

Greatest change in hand phalanx 4-2

Greatest change in hand phalanx 5-2

(Mack, Vogt, & LaChance, 1966)

Command Pilot Pilot

- 2.91 - 2.84

- 2.46 - 2.54

- 7.06 - 4.00

- 6.55 - 3.82

- 6.78 - 7.83

- 5.17 - 7.66

- 9.11 - 8.00

-12.07 -14.86

Table 8 8

Bone Density Changes in Apollo 7 and 8

Skeletal Sites

Os calcis

Hand phalanx

4--2

Hand phalanx

5--2

Capit_te

Distal radius

Distal ulna

Individual Crewman Percentage Change During Flight

-5.35

9.30

4.07

--3.25

-3.02

Apollo 7

40.74

+2,04

+3.31

+3.34

+2.12

+2.27

--6.50

--3.44

-3.64

-3.41

--2.1 3

--2.19

--2.07

--9,60

--8.76

--6.42

Apollo 8

- 6.95

-- 2.41

--3,09

-1 2.11

- 11.06

--12.41

-- 2.93

+4.81

-- 1,00

- 6.65

--11.39

--16.17
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Figure 8-4. Loss of os calcis density on Gemini 4, 5, and 7 missions.

examined by application of the same technique. Table 8-9 summarizes these

findings. During the postflight period, optical density levels increased, but by

50-days postflight the initial status of the bone tissue had not yet been restored.

The decreases in optical densi_ noted compared to levels characteristic of 62 to
72 days of bedrest confinement. Biryukov and Krasnykh (1970) note that since

these decreases ill optical density were less than those found in the same bones

for the Gemini crewmembers and ahnost equalled tile decreases observed duriltg

the 4-day Soyuz 3 flight, some positive effect may have been associated with the

use of the inflight exercise routine. The differences between the findings for

each of the cosmonauts are thought to be attributable to age and the differences

in tile nature of the exercise loads performed by each.

Mineral balance studies conducted during tile Gemini 7 mission (Berry,

1967a) indicate a slightly negative calcium balance. Soviet investigators report

similar findings (Fedorova et al., 1964). Although no overall changes in calcium

or magnesium levels have been found, there have been individual instances of

clcvated urinary calcium and magnesium.

A less equivocal picture of dcmineralization has been providcd by an

exanfination of plasma and urinary hydroxyproline levels. Large amounts of

hydroxyproline arc present in collagen, which is found in connective tissue and

bone. An increased excretion of this substance, it was reasoned, might

accompany demineralization and dissolution of bone matrix (Berry, 1967a).

Bioassay revealed that bound plasma hydroxyproline levels immediately

following the 14-day Gemini mission were elevated, while larger quantities of

calcium were excreted later in the flight than during the early phases. Similar

changes were noted after the Apollo 8 mission.
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Table 8-9

Change in Optical Density of X-Ray Image of Bone Tissue

(In Percent of Initial Level) Postflight (Soyuz 9)
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Investigated Parts

Bone

2 phalanx (finger)

3 "

4 "

5 "

Heel bone

A. G. Nikolayev V.I. Sevast'yenov

Period of Investigatlion

Day 2 Day 22 Day 2 Day 22

--5.0

--3.1

-_1.7

-8.5

-2.5

4- 0

--1.6

--4.5

--4.1

-5.0

--4.3

--8.9

--9.6

4-0

--5.0

--1.4

4.4

-3.4

(Biryukov & Krasnykh, 1970)

Biochemical confirmation for bone demineralization, and partial restoration,

was also found for Soyuz 9 cosmonauts. Figure 8-5 indicates urinary calcium

excretion on the last day of flight exceeded the first day's level by 29 to

60 percent. During the postflight period, however, calcium excretion in the urine

decreased until preflight levels were reached.

mg/da,

400

300

200
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Figure 8-5. Renal excretion of calcium for Soyuz 9 cosmonauts. White bars---calcium

excretion for A.G. Nikolayev; shaded bars .... for V.I. Sevast'yanov. (Biryukov &
Krasnykh, 1970)



386 Bioastronautics Data Book

Simulation Results. A number of studies (cited in Hattner & McMillan,
1968) indicate that normal, immobilized humans have shown unabated negative
calcium balance. Deitrick, Whedon, and Shorr (1948) have demonstrated a net
calcium loss of up to 2 percent in healthy subjects immobilized in plaster casts
for up to 6 weeks. Their subjects also showed increased excretions of

phosphorus, sodium, and nitrogen. All of the changes noted were reversible
within about 6 weeks postexposure.

In a more recent study (Donaldson et al., 1969) of longer duration than most
previously reported, subjects were confined to bed for periods of 30 to
36 weeks. A regime of supine exercise failed to prevent negative mineral balance.
Space flight effects on bone tissue have been more severe than those changes
produced by equal periods of bedrest.

Conclusions. Overall, bone density has been minimally reduced after space
flight. The reason for the divergence of results is unclear. Mineral balance data
have shown a negative balance trend indicative of calcium loss from tile bones.
Further, although no overall changes in calcium or magnesium levels have been

noted, there have been instances of elevated urinary calcium and magnesium. In
addition, elevated bound plasma hydroxyproline levels immediately following
the 14-day Gemini mission are consistent with resorptive 'changes in bone
matrix. Subsequent mission data will be needed to clarify the reason for the

disparity in bone mineral data; it may be simply a matter of altered technique
(Berry, 1971a).

One final point regarding reduced bone mineral content should be made.

Although functional underloading of skeletal muscle and the decrease in energy
expended during muscular work in the weightless state are undoubtedly closely
linked to skeletal muscle changes, other possibilities must be taken into account.
Biryukov and Krasnykh (1970) suggest that "calcium metabolic mechanisms
associated with general impairment in regulatory processes under the influence
of space flight stress may be involved." These might include the endocrine
mechanisms responsible for regulating the general metabolism of the body. It is
possible, for example, that calcium ions are mobilized from the bone cation pool
in order to correct the electrolyte balance changes occurring in weightlessness.
Changes in parathormone and calcitonin levels will be investigated in subsequent
missions to further clarify the mechanisms of mineral loss from the bones
(Berry, 1971a).

Neuromuscular Changes

Muscle structure, like bone structure, can reasonably be expected to
deteriorate in the absence of gravity and counter-gravitational effort. Deitrick,
Whedon and Shorr (1948) noted increased urinary nitrogen excretion and
muscle atrophy from 2 to 12.5 percent in the arms and thighs of their bed rested
subjects. Because it was an area likely to manifest effects, the neuromuscular
system has been examined closely after all manned space flights.

Space Fl_,ht Results. Fourteen days of exposure to weightlessness did not
cause muscle atrophy or any impairment in coordination (Berry, 1967b).
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Mineralbalancestudiesfor astronautsexposedto twoweeksof spaceflight,
however,indicatedslightlynegativenitrogenbalanceswhichpersistedpostflight
despiteincreaseddietarynitrogenintake(Berry,1967a).After18daysofspace
flight,however,the picturechangedradically.Uponreturnto Earth,the
Soyuz9cosmonautsexhibitedextremechangesin the motorsphere.They
reportedthattheirlimbsfeltunusuallyheavyandtheyhaddifficultywalkingand
liftingobjects.Whenin theproneposition,theysensed"beingpressed"into
theirbeds.Onthesecondto thefifth daypostflight,musclepainwasreported.
Muscletoneandstrength,aswellasthecircumferenceof thelowerextremities
werediminished.Reflexexcitabilityof theneuromuscularsystem,determined
byrecordingthebioelectricactivityof musclesduringkneetendonreflexes,was
increased.

Conclusions. Cherepakhin and Pervushin (I970) surmised that the principal
cause of decrease in muscle tone during 18 days of space flight is weightlessness
per se, since this condition makes it unnecessary to maintain posture, and, as a
result, the tonic stress of the muscle tissue through application of effort. This,
they feel, is confirmed by the fact that muscle groups subjected to a lesser load
showed the highest degree of change. Since neuromuscular tone plays an
important part in regulating many body functions, these authors conclude,
deterioration of tone following exposure to weightlessness plays an important
part in determining the characteristics of the readaptation period. Apparently,
too, the longer the space flight the more stressful will be the adaptation to
Earth's gravity. Exercise is undoubtedly helpful, but other techniques, for
example preventive medications may, these authors suggest, have to be explored.

Vestibular Responses

Information related to body orientation is relayed to the brain via
innervation from two structures in the inner ear: the semicircular canals and

the otohth apparatus. The semicircular canals respond to angular accelera-
tions, and the otoliths to linear acceleration. In the absence of gravitational
force, there is "physiological deafferentation" of the otolith apparatus, but
no corresponding dramatic effect on the semicircular canals. Movements of
the head will, in weightlessness as in unit gravity, generate angular accelera-
tions sufficient to stimulate the canals. However, the linear accelerations

caused by head movement and occasional changes in spacecraft velocity and
attitude might not, it was feared, provide sufficient stimulation for the
otoliths under extended 0 g (Graybiel et al., 1967). In fact, there was some
question'as to whether otolithic stimulation would be adequate to provide
an appropriate cue concerning the upright of the spacecraft. There is much
evidence to indicate that visual cues compensate for vestibular and kinesthetic
cues that normally contribute to orientation. Moreover, disorientation rarely
occurs without reduction in vision (Clark & Graybiel, 1955), and this does not
occur in space. On the other hand, the relationship between the gravity
dependent vestibular apparatus and motion sickness is well established. In view
of these considerations, close attention has been paid to the function of the

vestibular apparatus in weightless space flight.
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Space Flight Results. In the Gemini mission series, no disorientation was

noted. Crews adjusted easily to the weightless environment and did not observe
aberrant sensations during head movements. Visual orientation was achieved
with reference to the spacecraft interior and to the Earth. During extravehicular
activity, the sky and Earth provided reference points. There were no instances of
motion sickness. Apollo crewmen, however, experienced motion sickness
symptoms which ranged from mild stomach awareness to nausea and vomiting.
Symptoms lasted from 2 hours to 5 days, after which time adaptation occurred

(Berry, 1970). Orientation illusions have also been reported. These symptoms,
along with the history of motion sickness for Apollo crewmembers, are listed in
table8-10. It should be noted, howcver, that despite the reported symptoms,
specific tests for alteration of vestibular function have been negative (Berry, in
press; Graybiel et al., 1967).

Vestibular and vestibular-related aberrations in Soviet cosmonauts have been

reported to occur with greater frequency than for United States astronauts.

"Space sickness," characterized by a decrease of appetite followed by nausea,
has been reported for nearly every Vostok and Voskhod mission (Volynkin &
Vasil'yev, 1969, Yuganov, 1964). Illusions of inverted position have also been
noted (Volynkin & Vas_i'yev, 1969). These were said to affect cosmonauts when

Table 8-10

Illusions and Motion Sickness Symptoms Experienced by Apollo Astronauts

Aission Astronaut

1t

13

14

15

Motion Sickness History

In Land, Air In Zero-G

and Sea Vehicles Parabola

A X

B X X

C X

D X

E X X

F X X

In StC Egress Tumbting

or Egres_ Training Illusions

X

X X

X

G

H X X

I X X X

J X

K X

L X

N X X X

0 .X._ X

X

×

X
!

X

*Concomitant illness.

(Adapted from Berry, in press)

Illusions/Motion Sickness

Symptoms in Space Flight

Stomach
Awareness Nausea

X x

x X

X

X

X X

X

X X

X

i i

X

Vomiting

X"
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their eyes were both open and closed and reportedly lasted for the duration of
the effect of weightlessness, disappearing completely only with the onset of
reentry accelerations. Changes in the function of ti_e vestibular apparatus are

thought to be implicated.

Electrooculograms recorded during the flights of Vostok 3 and 4, sometimes
simultaneou_y with the administration of special tests, revealed no asymmetry
of oculomotor reactions or nystagmus (Akulinichev et ai., 1964). The otolith
apparatus' threshold of sensitivity to galvanic current, examined after the flight
of Voskhod 1 (Volynkin & Vasil'yev, 1969) was unchanged.

Soyuz 9 crewmembers reported some Coriolis-like sensations in the earlier

portion of their flight which disappeared after the normal adaptation period
(third to fifth day). They found, as did Apollo astronauts, that taking care to
make no abrupt hcad movements during this period lessened symptoms. Analysis
of the writing of vertical letters inflight, a test of vestibular function, revealed
the magnitude of slope angles to be increased threefold over groundbased
baselines, indicatiltg an increase in reactivity of the cupuloendolymphatic system
of the vestibular analyzer to Coriolis acceleration under weightless conditions
(Kakurin, 1971). Postflight, increases were noted in the indices of general center
of _avity (GCG) oscillations and the frequency of cardiac contractions when the
eyes were closed (Petukhov et al., 1970; Kakurin, 1971).

No perceptual-motor impairment has been observed in conjunction with U.S.
space flight. Soviet investigators have noted some changes. During the
Voskhod 1 mission, the accuracy of carrying out slight coordinated movements
was found to decrease (Volynkin & Vasil'yev, 1969), and in the Soyuz 3 flight, a
subjective increase was reported in the pause between the decision to perform a
motor activity and the act itself (Kakurin, 1971).

Conclusion. Both Apollo astronauts and Soyuz cosmonauts have reported
sensations resembling sea sickness during spaceflight. On the whole, however,
U.S. astronauts do not appear to be excessively plagued by motion sickness
symptoms. A clue to the ease with which the vestibular system of these
individuals appears to adapt to the zero-g environment may be provided in the
results of a study conducted by Clark and Stewart (1972). These investigators, in
attempting to establish the relationship between reports of motion sickness and
_lectcd vestibular tests, found that pilots as a group clearly report less
experience with motion sickness thau do nonpilots. The pilot's less frequent
experience with motion sickness may well be an important contributing factor in
his selection of flying as a profession. The U.S. astronaut population to date is
comprised entirely of pilots, most of whom have extensive experience as test
pilots (Berry, 1972).

Metabolism

Metabolism in the broad sense may be defined as tissue change. This tissue
change is the end product of the conversion of small molecules into larger ones,
for example, amino acids to proteins, and the breaking down of larger molecules



39O Bioastronautics Data Book

into smaller ones. In the former process, anabolism, encrgy is consumed; in the

latter, catabolism, energy is given off. All energy used by the body (except that

for outside work) finally appears as heat. Since oxygen is used in the process of

breaking down nutrieuts to yield carbon dioxide and water, oxygen

consumption and carbon dioxide production are useful indices of metabolic rate.

Direct metabolic measurements have not been nmde during actual space

flight. Metabolic costs }lave been infcrred from examination of total carbon

dioxide production by chemical analysis of spent lithium hydroxide canisters.

This technique established an average heat production rate during multiman

missions. Other, more direct techniques have been used to assess metabolic costs

duriltg lunar surface activities. Metabolic rate has been determined from

telcmetry data by use of three methods: thermal balance, oxygen consumption,

and heart rate. Thermal balance was determined by comparing the inlet and

outlet temperatures in the water cooled undergarmenl_ during lunar surface

activity; oxygen usage from the portable life support system was measured; and

heart rate during lunar activity was compared to that on an energy cost

"'calibration curve obtained preflight by bicycle ergometry. (For detailed

treatment of these methods, the reader is referred to Carson, 1972).

Space Flight Results. Inflight metabolic data from both Soviet and U.S.

space flights show close agreement. Figure 8-6 compares the average metabolic

rates for the Vostok, Mercury, and Gemini missions. The higher rate observed

during the Gemini mission, graphed at the far left of the figure, undoubtedly is

duc to the fact that these were short flights during which crewmen did not sleep.

Metabolic rate, based on carbon dioxide output, for the longest American

mission (Gemini 7) was estimated to be 2219 calories per day (figure 8-7). This

expenditun; was adequately provided for by tile diet (2333 calories per day).
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Fignlre 8-6. Average metabolic rates during actual space flight.
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Comparative techniques for metabolic assessment used during Apollo lunar
surface activity indicated that monitoring of the temperatures at the inlet and
outlet of the liquid cooled undergarment (thermal balance method) was best
suited for estimating energy production. For the Apollo 11 mission, the thermal

balance and oxygen use methods yielded similar data and accurately reflected
the physical activity observed by telemetry, tleart rate data proved the least
reliable method for determining metabolic rates (Berry, 1970).

Average expenditure for each task varied for each crewman, with the average
hourly energy production between 900 and 1200 BTU's. Table 8-11 compares
lunar extravehicular times and metabolic rates for Apollo hmar surface crews.

Conclusions. The techniques used for determining metabolic expenditure
inflight admittedly are gross. Nevertheless, the expenditures calculated by this
technique indicate that the diet provided for missions is more ttlan adequate for
living and working in space for up to 2 weeks. Refined techniques for assessing
metabolic costs during lunar surface activity yield accurate data which provide a
sound basis for life support system and mission plannilrg.

Endocrine and Electrolyte Responses

Extensive biocilemical studies have been a feature of space flight programs.

Data gathered through these studies are essential for determining the etiology of
clinically demonstrable changes. Attention has been focused in areas where
earlier experience has indicated most physiological changes occur, and in areas
where it might be reasonably expected that zero gravity exposure could have
significaI_t impact. Accordingly, attempts have been made to elaborate the
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Table 8-11

Lunar Extravehicular Activity Times and Metabolic Rates

Average
Launch EVA time, metabolic

Mission Crewman Date rain rate, Btu/hr

Apollo 11 Armstrong 6169 168 777
Apollo 11 Aldrin 168 1118
Apollo 12 Conrad (EVA-l) 11[69 241 925
Apollo 12 Bean (EVA-l} 241 930
Apollo 12 Conrad (EVA-2} 235 840
Apollo 12 Bean (EVA-2) 235 950
Apollo 14 Shepard (EVA-l) 1170 288 750
Apollo 14 Mitchell (EVA-l) 288 900
Apollo 14 Shcpard (EVA-2) 275 900
Apollo 14 Mitchell (EVA-2} 275 1050
Apollo 15 Scott (EVA-I) 6]71 393 1050
Apollo 15 Irwin (EVA-I} 393 1050

Apollo 15 Scott (EVA-2) 432 950
Apollo 15 Irwin (EVA-2) 432 800
Apollo 15 Scott (EVA-3) 290 1000

Apollo 15 Irwin (EVA-3) 290 850
Apollo 16 Young (EVA-l) 4/72 431 800
Apollo 16 Duke (EVA-l) 431 1050
Apollo 16 Young (EVA-2} 443 750
Apollo 16 Duke (EVA-2) 443 850
Apollo 16 Young (EVA-3) 340 850
ApoLlo 16 Duke (EVA-3) 340 900

mechanisms involved in weight loss, demineralization, stress, and cardiovascular

deconditioning. Insight has been gained into several of these phenomena as a

result of analyses of urine and blood samples collected before, during, and after

space flight.

Space Flight Results and Conclusions

Electrolytes. Urine and plasma electrolyte studies have revealed

postfligbt retention of electrolytes. Decreases have been noted in potassium

levels, indicative of decreases in total body potassium, and in urinary sodium and

chloride levels. These changes have paralleled the time course of body weight

changes.

Figure 8-8 shows the results of urinary potassium studies for the Gemini 7

pilot. In flight, potassium excretion appeared depressed, and this depression was

s_till apparent by 24 hours postflight. Similar decreases were found in both serum

and urinary potassium levels for Apollo crewmen. These changes were, in fact,

suggestive of a decrease in total body potassium, an hypothesis that was

supported by K40 evaluations in the Apollo 13 and 14 crews. Total body gamma

spectrometry indicated a significant decrement of total body potassium for

Apollo 13 crewmen compared with preflight values. In Apollo 14 crewmen,

6milar decreases in total body potassium were seen 17 days after recovery versus

the astronauts' preflight values. These decreases were noted when control

subjects showed increased total body potassium levels. This potassium loss is



Weightlesssness 393

,.2

,,=
E

3E
i

lOO -

m

50 -

0 n

m

f
|

!

|

!

i

m

J
i

i
J

m

i

PREFLIGHT

i] COLLECTION PERIOD< 24 HRS.

I

l
i r • im

!

i --li _ I

i i
i i i .J

INFLIGHT POSTFLIGH'
URINE SAMPLES

Figure 8-8. Urine potassium, Gemini 7 pilot.

presumptive evidence of intracellular water and cation loss, for which there is

other supporting evidence. Decrements in total exchangeable potassium (10 to
15 percent) also were seen in Apollo 15 crewmen when evaluated postflight by
K42. No decrements were noted in Apollo 16 crewmen.

Consistently diminished excrctions of sodium and chloride have also been

observed in the immediate postflight period. Figure8-9 indicates urinary
electrolyte levels for the Command Module Pilot of the Apollo 14 mission. This
figure also shows his pre- and postflight potassium levels. Although some
individual variation i_as been observed, these urinary electrolyte measures are
typical following space flight exposure and clearly indicate efforts on the part of
the body to retain fluid to compensate for inflight fluid volume loss.
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Figure 8-9. Urinary electrolyte leve]s pre- as](] postflight
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Endocrine Responses. Endocrine responses have been evaluated prin-

cipally t0_e(erminc whetl_ llormones related to body fluid regulation reflect

the observed postflight fluid and electrolyte changes.

Attempts have also been made to evaluate stresses related to space flight by

measuring certain postflight steroid levels. These results, based on very limited

data, appear to indicate that the reentry and recovery periods may be the most

stressful. Infligbt steroid levels are, in contrast, low. Figure 8-10 indicates a

typical response, noted in the Gemini 7 Command Pilot. Apollo astronauts have

exhibited similar responses.
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Figure 8 10. Urine lT-hydroxycorticosteroids, Gemini 7 Command Pilot.

It is, however, admittedly difficult to evaluate "stress" on the basis of

endocrine assay since many hormones witich are believed to be indicative of

certain stresses are also related to other physiological functions, for example,

vasoconstriction or vasodilation and electrolyte regulation.

Pre- and postflight measures of hormones related to electrolyte and fluid

balance support the hypothesis that readily recoverable weight losses

immediately postfligilt are primarily the result of inflight water loss. Postflight

elevations have been noted for (1) antidiuretic hormone, (2)aldosterone,

(3) plasma angiotensin which indicates renin activity, and (4) catecholamines.

Increased levels of antidiuretic hormone, which regulates water resorption

through the distal renal tubule, and increased aidosterone levels resulting in

resorption of sodium in the proximal tubule are consistent with the electrolyte

retention noted and the rapid weight gain postflight. Plasma angiotensin levels,
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an index of renin activity, show significant increases postflight. Since renin

stimulates the adrenal gland to secrete aldosterone upon sensing decreased blood
volume or salt concentration (which is uncertain) in the kidney, the elevations in
aldosterone levels observed postflight are consistent with cardiovascular and

fluid/electrolyte findings.

Aldosterone excretion triggered by exposure to zero gravity may explain

why elevated plasma volume is not noted in longer duration missions but is in
shorter missions. If the high urinary aldosterone excretion is associated with an
increased aldosterone secretion rate, one would anticipate elevated plasma

volume during longer duration missions since aldosterone expands circulating
plasma volume as potassium is diuresed and sodium is retained. If increased
aldosterone secretion occurred after plasma volume had been lost in response to
an initial redistribution of body fluid volumes upon entering the weightless state,
the net result would be a near normal plasma volume (Johnson & Driscoll, 1972,
based on data of Lutwak et al., and Leach). Near normal plasma volumes were
found postflight in the Apollo 14 and 15 crews (they were not measured for
Apollo missions 11, 12, and 13). In fact, these crewmen exhibited plasma
volume levels that were slightly elevated above their preflight mean. Apollo 16

crewmembers, however, averaged plasma volume decreases of 9 percent.

Weight Loss

All hut one U.S. astronaut has lost weight in space. Weights recorded

immediately postflight have ranged from 2 to 14 pounds below preflight levels.
The Apollo 14 Commander alone gained 1 pound during his stay in space.
Because most astronauts have regained about 60 percent of their weight loss
within the first 24 hours after splashdown, it has been presumed that the weight

loss is principally a water loss. Soviet cosmonauts exlfibited similar weight loss
patterns. The Soyuz crews lost 2 to 4 pounds postflight. These body weight
losses were rapidly recoverable in all but the Soyuz 9 (18-day) crew. Because
postflight urinary nitrogen excretion did not increase, it was presumed that

weight loss reflects water loss and not tissue catabolism. After the 18-day flight,
some urinary nitrogen excretion was noted although this was within
physiological limits. This coupled with the slow reattainment of preflight body
weight indicates the possibility of some tissue catabolism (Kakurin, 1971).

Apollo 16 astronauts, like all crews before them, lost weight (the
Commander, 7.5pounds; the Lunar Module Pilot, 5.5pounds; and the
Command Module Pilot, 6.5 pounds). Various indirect measurements made on

the Apollo 16 crew, including estimates of the amount of food and drink taken
and the amount of excreta produced, coupled with weighings on the recovery
ship by scales calibrated with those used before launctring, appear to indicate
that the astronauts' weight losses did not result from a diuresis alone. Further
studies apparently will be needed to clarify all the factors underlyi_tg weight loss

(Berry, 1972).

Weight losses observed postflight for the Apollo 7 through 16 mission
crewmen are shown in table 8-12. The rapidity with which the average weight
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loss was regained (and a consistent pattern of retention of electrolytes

postflight) indicates that of the average 6.2 Ib loss, 3.1 lb may be attributed to

water loss. Aitiiough slightly negative water balance has been maintained, the

situation is within manageable bounds.

The Nature of the Adaptive Response to Space

Flight: An Hypothesis

Much information has been gained in American biomedical programs

concerning the effects of space flight on man. A number of consistent findings
have been observed: some imply a possible alteration of the structure of

physiological systenrs while others indicate merely a change in capacity. These

changes, while dealt with as discrete events, undoubtedly are individual dements

in a basic adaptive response of the human organism to the unique stresses of

space. Sufficient information is presently available to begin to piece together at

least a tentative hypothesis concerning the nature of the adaptive process and

the manner in which the various changes may be interrelated.

Table 8-13 is a greatly simplified illustration of the hypothesis now being

developed and shows the major classes of body response during the period of

adaptation. Figure 8-11 presents the same hypothesis in diagrammatic form. In

each case, the part of the hypothesis presented is that intended to describe

factors influencing fluid shifts within the body.

Table 8-13

Overview of Current Hypothesis Concerning

Processes Involved in Man's Adaptation to Zero Gravity

Event

Entry into zero graviW. Redistribution of

circulating blood volume.

Loss of water, sodium, potassium (loss of

body weight ).

Increased sodium. Potassium loss

continues. Cell; acidotic; extracellular

fluid: alkalotic.

Respiratory and renal compensation. Halt

to weight loss trend. 0

Responseof Body

Body attempts to reduce volume. ADH

decreases, aldosterone production
decreases.

Decrease in plasma volume. Aldosterone

produced.

Intracellular exchange of potassium and

hydrogen ions. Decrease in bone density

and muscle mass, possibly including
cardiac muscle.

Stabilizes with new cardiovascular load.

New body fluid and electrolyte balance.
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STAGE
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WEIGHTLESSNESS
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REDISTRIBUTION OF TOTAL CIRCULATING
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ALDOSTERONE ADH DECREASE

DECREASE IGAUER-HENRY REFLEXI
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l T 1
TOTAL BODY RENAL Na + PLASMA VOLUME

WATER LOSS AND K* LOSS DECREASE

ALDOSTERONE CELLULAR :RED CELL MASS

AND AOH EXCHANGE OF DECREASE-

SECRETION H _ FOR K + IONS DUE TO HYPEBOXiA_

TENDS TO [ l

INCREASE

RENAL VENTILATION DECREASE IN
COMPENSATION INCREASES BONE AND

Na + R TAINEO PLASMA MUSCLE MASS

CO 2 DECREASES

WATER LOSS NEW CELLULAR WORK CV DECON-

CEASES FLUID AND CAPACITY DITIONING

WEIGHT ELECTROLYTE DECREASES NEW CV

STABILtZES BALANCE LOAD

Figure 8-11. Diagram of the hypothesized course of adaptation to weightlessness (Adapted
from Leach, Alexander, and Fischer, 1970; used by permission of Academic Press, New
York, copyright 1967 by Academic Press, lne.)

Upon initial entry into weightlessness, an immediate redistribution in the
total circulating blood volume occurs. The body interprets the resultant increase
in right atrial filling as an indication of a need to reduce total fluid volume by
increasing urine output. This event is governed by a decrease in antidiuretic
hormone and a decrease in aldosteronc production. The result is a loss of water,
sodium, and potassium through the kidneys with a resultant loss in total body
weight. The concomitant decrease in plasma volume tends to reverse the initial
aldosterone decrease. At this point, the body is believed to enter a phase of
electrolyte and fluid imbalance in which sodium retention increases while
potassium loss continues. Intracellular fluid and potassium loss results in a
cellular acidosis with a mild (compensated) hypokalemic alkalosis of
extracellular fluids.

In essence, the body's response to lowered total body potassium is an
intracellular exchange of potassium for hydrogen ions. Associated with the
potassium deficit may be a decrease in bone density and muscle mass. Loss of
cellular potassium can include the heart muscle, with resultant increased
irritability and tendency toward disorders of cardiac rhythm. This was very
likely the series of events which led to the cardiac arrhythmias experienced by
the Apollo 15 crew. Postflight decreases of total exchangeable potassium in tiffs
crew offer support of this supposition.

In the final phase of the adaptation loop postulated, hyperacidity of the cell
stimulates the respiratory system to decrease plasma carbon dioxide by
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increasingventilatoryrate.Renalcompensationcommencesastherenaltubules
beginto reabsorbpotassium.The bodyweightnow stabilizesat a new
equilibriumpoint.Thispartof thebody'soveralladaptationprocessnow
becomescomplete.Thenewequilibriumestablishesanoptimaltotalcirculating
bloodvolumeor "newload"onthecardiovascularsystemandanewfluid and
electrolyte balance state. It is reason_le to presume that the new stabilized
eomlition is appropriate for long-term performance under space flight
conditions, provided it is unperturbed. If factors such as workload, thermal
stress, or emotional stress are introduced, the system may be driven beyond the
point of equilibrium: The conceptual model postulated here will be further
tested and amplified as new flight data warrant. Information collected in
conjunction with the Skylab experiments should be valuable in elucidating the
mechanisms of man's response to space flight.

Microbiological Changes

Under Earth's gravitational conditions, airborne particulate matter remains

suspended in inverse proportion to its settling velocity: larger particles (a few to
several hundred micrometers in diameter) settle out rapidly. In the gravity free
environment of the spacecraft, on the other hand, it is presumed that no
sedimentation will occur. As a consequence, a considerable range of particles of
biological interest on earth, that is >0.5g and <10/_ will be stabilized (National
Academy of Sciences, 1967). The tremendous number of particles shed by man
into the spacecraft atmosphere (talking alone expels 1000 infectious nuclei into

the air per minute) will remain suspended. This is of particular significance in
future spacecraft where leakage rates will be low. Because this set of

circumstances can produce untoward effects, microbiological studies have been
conducted before and after space flight missions. In addition to weightlessness,
other aspects of the space environment, radiation, for example, have the
potential to produce microfloral alterations.

Space Flight Results. Microbiological studies during the Apollo mission
_ries have shown that growth of opportunistic organisms appears to be favored
in the space environment (Berry, 1970). In one case, staphylococcus aureus
obtained at onc preflight sampling site on one crewman, spread to most sites on
all tllrce crewmen and produced some chnical infection. Soyuz 9 cosmonauts
also exhibited microflora shifts with a number of organisms less resistant to

antibiotics postflight (Kakurin, 1971). The etiology of these changes is unclear
and factors other than weightlessness, confinement, for example, may be
involved.

The Effects of Zero Gravity Upon Performance

The nature of the null gravity environment produces two kinds of change in
the human space traw_lcr. Adaptive changes, or those changes which take place
in the physiological systems, have been discussed. The second type of change
may be referred to as operative or habitational change. Stated simply, when the

Sin the Apollo 15 crew, this was evidenced by an 'absolute rather than relative loss of
potassium as well as the 1o_ of s_Mium measurable postflight.
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unit gravity force is removed, the things that man is accustomed to doing one
way on Earth must be done quite differently in space. Sleeping, eating, and
moving about in zero gravity both inside and outside the spacecraft are all
affected in some measure.

Sleep

It is difficult to isolate weightlessness per se as a factor influencing the
quality o'f sleep. Sleep disturbances have been common during space flight
missions but these appear to be much more profoundly affected by operational
factors than by the weightless element of tile environment. Cyclic noise
disturbances from events such as thruster firings, communications, movement in
the spacecraft, staggered sleep periods, alterations from preflight diurnal cycles,
and the so-called "command pilot s_ndrome" all contributed to sleep
disturbances during the Gemini missions. Similar problems were experienced by
Apollo mission crew members until the time of the Apollo 11 lunar landing
flight, when increased confidence in spacecraft systems permitted scheduling of
simultaneous sleep periods for crew members. This resulted in rest periods which
were close to ideal prior to lunar orbit insertion (figure 8-12). These sleep
periods, described only from the study of telemetered heart and respiration rates
and crew reports, were deemed adequate for medical approval of earlier
extravehicular activity on the lunar surface than was originally planned.
Environmental aspects of the lunar module, however, once again disrupted sleep.
This has been the case for astronauts on missions subsequent to Apollo 11 and
has in some cases necessitated the prescription of sleeping medication.
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Sleeping in the weightless environment is accomphshed by many astronauts
most comfortably if a fetal position is assumed. Consistent reports of backache
among astronauts may well be linked to the tendency to assume the fetal
position. The use of improved sleep restraint systems on future missions may
alleviate this problem.

Mission constraints have thus far precluded the collection of inflight EEG
sleep data, although pre- and postflight baseline data were obtained for the
Apollo 16 crew (Berry, 1972). Sleep experiments scheduled for the Skylab
program will permit the first inflight monitoring of sleep patterns by EEG and
EOG and undoubtedly help to clarify the effects of weightlessness on sleep
(Berry, 1971a; 1972).

Kakurin (1971) reports that after several days of adaptation during the
I8-day Soyuz 9 flight, sleep lasted 7 to 9 hours and "always brought freshness
and good humor." Crewmembers fell asleep rapidly in about the same manner as

on Earth. One crewmember appeared to adapt so well to sleeping in the
weightless condition that he preferred to sleep without being tied into his cot.

Eating in Weightlessness

Space diets have consisted principally of freeze dehydrated food that is
easily reconstituted inflight with both cold and hot water. This diet has been
augmented by the inclusion of thermostabilized meat dishes of high moisture
content as well as drinks and snacks containing dietary potassium supplements.
Initially, these foods were eaten through tubes incorporated into the food
container, but it was later found that eating foods with sufficient moisture could
be easily accomphshcd in zero gravity with a conventional spoon utensil.

Regardless of the diet provided for any given mission, space crews have
indicated in postflight debriefings that hunger occurred less frequently in space
and that food requirements are only about two-thirds of "normal." Based on
these observations, menus have been designed to provide approximately 2300 to
2500 kilocalories per man per day in U.S. missions. Soviet space dietary
allowances are considerably higher; 2800 kcal were provided in the daily diet for
the Soyuz 9 crew members (Kakurin, 1971). These latter diets which initially
comprised principally freeze dehydrated foods have, like American diets, been
supplemented by other types of foods because of the "low rating" given by
cosmonauts to dehydrated food products. With consideration given to individual
tastes, these diets have been reported to satisfy cosmonauts' requirements
"completely" (Kakurin, 1971). Sensations of thirst have been reported to be

slightly reduced in Soviet cosmonauts during flight and increased considerably
postflight.

lntracabin Movement

The absence of gravity has been found to represent a bonus for locomotion
within the spacecraft cabin. Locomotion in zero g appears to require much less
work than in the unit gravity environment. Movement is accomphshed with
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minimal effort, frequently in a swimming manner. Acrobatic maneuvers, such as
rolling, tumbling, and spinning, are done without difficulty. An additional
feature of the zero gravity environment, the capability to impart minimal
velocities to objects, also has been used repeatedly by crewmen as an aid in
performing inflight activities.

The ability to move freely through all parts of a space cabin during

weightlessness has implications for general vehicle habitability. Apollo astronauts
have commented that the Command Module, which seemed rather cramped

during ground tests, was more comfortable in flight due to the increase in usable
living and working space. This observation has raised the question of the validity
of volumetric studies which attempt to extrapolate from habitation in other
confined areas such as submarines or low pressure chambers the volume of living
space required for astronauts in long duration missions. Locomotion in three
dimensional space, as opposed to two, appears to be a positive factor in

determining vehicle habitability.

Extravehicular Activities

The first extravehicular activities, performed by cosmonaut Meksei Leonov
in March 1965, and by astronaut Edward White in June 1965, demonstrated that
man is capable of reasonable activity in space while operating without the
protection of a space capsule. These first ventures, while quite short, clearly
were the forerunners of later periods of lunar exploration and of useful
maintenance and equipment assembly operations during longer space missions.
In subsequent EVA attempts during Gemini flights, however, astronauts
experienced considerable difficulty in actually aceomplislfing what had been
considered to be a normal EVA work assignment prior to launch. As matters
stood at that time, the demands of EVA exceeded the capabilities of an

astronaut. It was not until the final flight of the Gemini series that these
difficulties were resolved through intensive study that resulted in partial redesign
of EVA work stations and support equipment. This series of events provided
very dramatic demonstration of the requirement that information concerning
human capabilities be reflected in the design of space equipment. At the root of

the problem was a paucity of useful data concerning the effects of weightlessness
on man's performance capabilities. Subsequent flight experience, however, has

done much to provide the information needed by space system designers.

EVA History. Table8-14 summarizes extravehicular activity in United

States space missions. Problems associated with early EVA were eradicated,
principally through the development of energy saving techniques and work aids
and the opportunity for rehearsal afforded by underwater simulation experience.

Energy Expenditure in Extravehicular Activity. The principal problem with
early EVA flights was, as noted earlier, the exhaustion which was suffered by the
astronaut, at times even before the completion of the assigned tasks. This
exhaustion was due pmlcipally to the unique character of working in the

weightless environment where difficulties are.encountered in producing reactions
to actions once momentum had been imparted and maintaining position in the
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Table 8-14

U.S. Extravehicular Summary Free Space and Lunar Surface

Time of Principal

Mission Exposure Tasks Problems Comments

(hr:min) Accomph_ited

(_¢mini 4 0:36 Dynamics of 25-ft tether

evaluated; hatch lngress

and egress assessed

(_emini 9-A 2:07 AM U* evaluates photo-

grap_y

Gemlrn 10 1:29 Experiment package

retrieved: photography.

CP assisted by EVP in

formaUon flying w ith

Agena vehxc h,

Gemin_ It 2:43 lOO-ft tether attached

bet,_een spacecraft and

Agena vehicle photo-

graphy

Gemini 12 5:30 Restraints and workl_md

assoc, wits phoio£raphy

and equipment use evalu-

ated; experiment package

retripved

Apollo 9 0:37 5ystrm tests

Metaholic heat output EVA successful although

exceeded cooling capacfty energy required exceeded

of ventilation; control anticipated levels

module

Overheating. exhaustion; EVA terminated due to

attitude maintenance visor fogging and fatigue

diIIicuIL loss of traction,

visor fogging

Grip difficult to main- Eye irritation believed

rain, eye irritation. 50-ft due to use of both 02

umnilical difficult to compressors

control

Overheating, exhaustion EVA terminated due to

fatigue

N,me EVA completely success-

ful as a result of under-

water simulation practice

and body restraints

None EVA successfuJ

Apollo 15 0:35 12 lnftight EVA pprl,,trn('d

out ,f Earth orbit

None EVA successful

Apollo 16 1:24

ApoLlo 11 5:36

kuna, Surface

First manned lunar landing;

photography, survey, sam-

phn_ ol lunar soil

N_J major pr_dAen/_ _._*ping _l,it used

A [×,lk, 12 h, 52

AIn,li_, 14 18:46

Apollo 15 37 i0

Apollo 16 40:28

Demonstrated point landing N,, mabn J,l.dAt m_

capability, sampled more

area. deployed ALSEP,

mvosugated _urv,,y,,r 3

spacecrafL and _utained

ph_,t,,_ raphs c_f candidate

rxph*l ailon_ _ktes.

Ex_,er_.ellt ],a_ k_l_,, dE,ph,y- I ¸ L_st Lr_d3_ L_l_,,,t ,,l

M..tah,di_ production

values h '._,.r than l,re-

d:, t,d

<)x,,_,l[ i ,,tM>,,h_ /,r,,-

h_E,its

First to carry Lunar l,unar su_la_ r _q kload EVA sutl esshll

ffovmg Vetucle: extended overtaxed cre_

cxploration (a rrhythmias)

Mosl comprehensive None EVA successful

san,ldmg

* AMU : Astronaut Maneuvering Unil



Weightlessness 405

absence of traction. Additional problems were imposed by the increased effort
involved in moving in a pressurized space suit (3.5 psi). This created a heat load
in the space suit and unacceptably high carbon dioxide levels.

Reduction of effective work load in the Gemini 12 mission EVA was due, at

least in part, to realistically simulated weightlessness training and, in part, to
improved work aids. Additional energy conservation resulted from the
astronaut's ability to condition himself to relax completely on occasion within

the neutral position of the space suit (Kelly and Coons, 1967). The Gemini 12
astronaut reported that he systematically monitored each muscle group. When a

group of muscles was found to be tense while performing no useful work, he was
able to relax these muscles consciously. All of his movements were slow and
deliberate. When a task could be performed by small movement of the fingers,
he would use only those muscles necessary for this small movement.

Planning for EVA missions in either 0 g or 1/6 g and the development of
equipment for use during these missions has and must continue to take into
account work load. The Lunar Roving Vehicle is one example of equipment
designed for conservation of energy.

Counteracting the Physiological Effects of Weightlessness

Considering the trepidations expressed a decade ago about possible effects of
long term exposure to weightlessness, man has weathered his entry into this new
domain in surprisingly good shape. Not only have most of the predicted
problems been negligible, but certain benefits have been found to be associated
with living and working in zero gravity. However, certain changes in major body
systems have been observed. Space flight results to date tend to substantiate the
belief that these changes are largely adaptational responses to the new
environment. However, one can not be absolutely certain that some of these
changes do not in fact represent the first stages of a gradual deterioration
process. Countermeasures to weightlessness have therefore been and are
continuing to be investigated. Table 8-15, from a survey by Vinograd and
Manganelli (1972), lists approaches which have been explored with mixed
results. _

A limited number of countermeasures to weightlessness effects have been
employed in conjunction with past space missions. Inflight exercise regimes have
been a feature of both U.S. and Soviet space missions. These regimes and their
effects have been discussed in an earlier section of this chapter. Because it was
believed that potassium deficits were responsible for the arrhythmias suffered by
the Apollo 15 crew, dietary countermeasures were employed during the
Apollo 16 mission. A diet high in potassium was provided (105 milliequivalents,
versus a normal 70, in the command module diet, and 135 milliequivalents in the
lunar module diet). Potassium enriched beverages and snack supplements were

*This survey, entitled Literature Summary on Countermeasures, may be consulted for
details on experiments which have been attempted and for efficacy rating. (See References
for full citation)



406 Bioaslronautics Data Book

Table 8 15

Potential Countermeasures to Weightlessness

Exercise

Medication

Diet

LBNP

Gradient positive pressure

G-Suit

Venous occlusion cuffs

Positive pressure breathing

Valsalva maneuver

Bone stress

Double trampoline

(Vinograd & Maganelli, 1972)

Tumbling

Electrical stimulation of muscles

Exercise and LBNP

Exercise and venous occlusion cuffs

Exercise and positive pressure breathing

Exercise and bone stress

Exercise and hypoxia

Venous occlusion cuffs and medication

Venous occlusion cuffs and leotards

Hypoxia, LBNP and exercise

Centrifugation

also stocked. Potassium enriched meals were also consumed for 72 hours prior to

launch to guarantee adequately high potassium levels at launch time. The

provision of a high potassium diet, coupled with better planned work-rest cycles,

proved to be a successful technique for countering the cardiac problems

experienced by the prior crew. Lower body negative pressure was used by the

Salyut crewmen inflight.

Another approach which has been suggested for countering the effects of the

weightless environment is the provision of some system of artificial gravity in

space vehicles. Two approaches have been suggested: rotation of the entire

space vehicle or station and inclusion of an onboard centrifuge.

Table 8-16 shows the rotation radii and angular velocities necessary to

achieve 3 gravity levels currently considered acceptable. The Coriolis force

created is also indicated. A maximum Coriolis force of 20 percent of man's

apparent weight is thought to be the limit which can be obtained without

resulting discomfort. With higher angular velocities than those shown and shorter

radii of rotation, even simple head movements can cause severe Coriolis forces

with the associated discomfort. In addition, with a short radius of rotation, a

gravity gradient (a difference in gravity between head and feet) exists which, if

sufficiently large, can also produce discomfort. The Coriolis forces indicated in

the table are based on a man's moving at a velocity of 3 feet per second.

It should be pointed out that medical and performance data available at the

present time do not support a requirement for artificial gravity systems in

spacecraft. In the view of space crews to the present time, artificial gravity

systems are unnecessary for task performance. Crews have learned to live in a

zero gravity environment and feel very confident in this state. Many have, in

fact, expressed a preference for a zero g environment since the absence of gravity
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increases the effective volume of what would otherwise be rather confined work

spaces. On the other hand, the provision of artificial gravity would undoubtedly

increase the habitability of spacecraft. Eating would become a simple affair, and

locomotion could proceed nearly as it does in the Earth-bound environment.

Everyday activities could be carried out about as easily and simply as they are in

one's own home. Where engineering considerations are concerned, design tasks

would be simplified in that restraint systems and locomotion aids would no

longer be required. On the other hand, the engineering tasks associated with

designing the artificial gravity system itself are formidable and could be costly.

The issue of the need for artificial gravity in spacecraft of the future is no

more clearly resolved among Soviet scientists than it is in the United States.

Valyavski (1969) states that until it becomes clear whether man forms adaptive

mechanisms in the weightless state, technology will continue in the Soviet Union

to attempt to create artificial gravitation. This is a problem which is "much in
the forefront of modern cosmonautics." Members of the Soviet medical

community had indicated to the author that they find no basis for requiring

artificial gravity, but that it is still a question of concern to Soviet space system

designers. _
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CHAPTER 9

IONIZING RADIATION

by

Shields Warren, M.D.

New England Deaconess Hospital

Boston, Massachusetts

and

Douglas Grahn, Ph.D.

Argonne National Laboratory

Argonne, Illinois

Concern over the effects of exposure to radiation is uniquely a product of
the twentieth century. Within this period, machines capable of producing or

releasing many kinds of radiation particles have been developed. Man also has
taken the first steps into space, a radiation environment altogether different
from that found on Earth. Medical and dental personnel now use radiation
sources as diagnostic and therapeutic tools. It is with respect to space travel,
however, that the most dramatic issues concerning radiation exposure have been
raised. It has been known for some time that the Earth's atmosphere shields man
from higher levels of solar and galactic radiation. Only now is information being
obtained as to the effects of deliberate penetration into these regions of
increased radiation. The findings from these early space missions will aid in
determining the feasibility of long-term space voyages. Also, and perhaps of even
greater importance, these findings will aid in determining the tolerance of man
to the ever-proliferating radiation sources now being encountered on Earth.

The penetrating ionizing space radiations are extremely diverse in the energy
range of both their particulate and their electromagnetic components. The
particulate radiation component includes all subatomic particles such as protons,
neutrons, electrons, atomic nuclei stripped of orbital electrons (the heavy
primaries), mesons, etc. The pi meson is a charged or neutral particle and reacts
to form new mesons with release of energy which in turn form electrons or
positions with release of energy. K-mesons are also present in cosmic radiation.
The electromagnetic portion includes the X-and gamma radiations. The

417
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radiation energies lie betweem 10 .3 and 10 13 million electron volts (MeV). The
identifying term "ionizing" is used because these radiations penetrate matter
and, in their interactions with matter, cause pairs of positive and negative ions to
be formed along the path of the incident particle or photon by loss or gain of an
electron. The less energetic radiations may penetrate only a fraction of a
millimeter, while the more energetic can penetrate many inches of dense
material such as lead. Penetration implies entry to at least 10 microns, which is
slightly beyond the thickness of most cells.

This chapter introduces the reader to the ionizing radiations in space and the
general biological effects of ionizing radiation, but makes no attempt to establish
or recommend standards of operational safety. Similarly, shielding against
radiation, being an operational problem, is not discussed, though the matter is
introduced because of the perturbations produced in any radiation field by any
mass. (See also Radiobiological Factors in Manned Spaceflight, Langham, 1967.)

The space radiations can be broadly defined as falling into one of three
categories: the primary cosmic radiations, the geomagnetically trapped
radiations (Van Allen belts), and the solar flare events. The solar events vary
considerably from one event to the next in the differential energy spectrum and
the intensity of the protons of which they are predominantly composed. The
energy spectrum of solar flares also varies with time. The reader is referred to the

Solar Proton Manual (McDonald, 1963) and Webber (1963) for a more thorough
treatment of these potentially hazardous radiation events.

The profuse and various secondary radiations generated when primary
particles are stopped, and the importance of these secondaries are discussed.

Common terms in radiation are defined and the concept of relative biological
effectiveness (RBE) or the related quality factor (QF) is introduced. A word of
warning here is appropriate. By definition (National Committee on Radiation
Protection Handbook 59,1954), the biologic response to radiation is
standardized to the effects produced by 200 kVp X-rays. Radiations that have

the same effect are said to have an RBE of unity. Radiations with a greater
effect per rad (radiation absorbed dose)-such as neutrons, low energy protons
and alpha particles-are said to have an RBE greater than unity in accordance
with the ratio of doses that produce the same response.

RBE values are shown later, some of which are quite firmly established.

Since they are generally to be applied to occupational radiation safety
considerations, additional safety factors have been built in. Thus, they may be of
only limited value for the evaluation of space radiations. There is also, at

present, some controversy concerning the "best estimate" RBE for protons of
energies equal to or greater than 100MeV. These vary from about
0.6 (Sondhaus, 1962) to 1.6 (Picketing, 1963). The higher figure, derived from
primate studies, may be more like that for man, since the exposure "geometry"
is more typical. The reader is advised, however, not to accept any RBE value as
rigorous.

Attention also is given to the question of tissue depth dose, since a
heterogeneous or heterochromatic radiation flux will not penetrate any mass
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uniformlyat all depths.In addition,everysolarflareeventwill haveitsown
characteristicdepthdosedistribution.In thisregard,it is suggestedthatthe
meandosetothebonemarrowbeestimatedwhereverpossible,andemployedas
abestestimateof thebiologicallysignificantdose.

Tile balanceof the radiationeffectssectionspresenta ratherbroad
delineationof theexpectedhumanresponseto theionizingradiations.The
dataassumethatdepthdosageis nearlyuniformandthatexposureof the
wholebodyhasoccurred.Thesummaryof acuteradiationillnesshasbeen
derivedfroma numberof sources,asindicatedin thelegends;but for the
mostpart, well-documentedaccidentcases,casestreatedwith therapeutic
radiation,andthe Hiroshima-Nagasakisurvivorsform the bulk of existing
experience.Doseestimatesare, therefore,uncertain.Individualbiologic
variationsin responsealso occur.Therefore,indicateddose-response
relationshipsmustbe consideredto haveat leasta 20percenterrorof
estimatein eitherdirection.A fieldwhereasyetfigurescannotbeprovided
for the engineeris that of the behavioralaspectsandthe possibilityof
effectsof damageto the centralnervoussystemby radiationaloneor
radiationcombinedwithemotionalandphysicalstress.

All existing experiencesupportsthe assumptionthat man is
comparativelyradiosensitive.Hehasa lowermedianlethaldose('_450R)
thanobservedin mostrodents(500-750R) but is somewhatmoreresistant
than the averagecanine(250400R). Manshowsa longslowcourseof
eventsin the typicalhematopoieticor bonemarrowsyndrome.Injury
developsslowly,andreachesa maximumin 3 to 6weeks.Thetestis,highly
sensitiveto radiation,is damagedpromptly,butsincethisinjuryisdoneto
immaturecellsthedamagemaynot appearfor somedaysandif not too
severewill slowlyrecover.Recovery,in general,from the moreacute
manifestationsmaybe protractedovermanymonthsor evenyears.Some
effortshavebeenmadeto evaluateresidualor long-terminjury,but these
haveto employmanysimplifyingandthereforeinaccurateassumptions,
becauseof ourgeneralinabilityto detectcriticalrecoverymechanismsand
rates.TheERD(equivalentresidualdose)conceptis presentedlater,but thc
usershouldnot attempt to employ any derived values for engineering design
criteria. The concept is given more to enable the nonspecialist in radiation
effects to gain better appreciation of the nature of the time-intensity dose
variables in radiation biology. In general, if doses are kept small enough and
sufficient time is allowed for recovery from earlier injury, the radiation
"status" of an individual can be kept in a fairly steady state.

Dose-response estimates for the eyes and skin are largely based on clinically
determined responses to standard radiation sources. The space radiations are
more difficult to evaluate for these effects for several reasons. Ttley include

(a) particles that produce very dense ionization tracks which arc more effective
in inducing lens damage, (b)large numbers of low energy particles that can
produce high surface doses with negligible deep tissue dosage, and (c)the
capability of inducing diverse secondary particulate and bremsstrahlung
radiations that can add significantly to the burden of surface-damaging
ionization.
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It is not yet possible to present a clear picture of the expected effects of
partial-body exposure. Any degree of partial-body shielding and any protraction
or fractionation of exposure can be advantageous. It is particularly beneficial to
shield the sensitive organs or tissues, such as the gastrointestinal tract, eyes, and
significant portions of the bone marrow. It should be understood that

dose-response estimates of the acute radiation syndrome following partial-body
exposures are impossible to make at this time; but if the major portion of the
main torso is in the exposure field, the response would probably grade toward
the whole-body exposure case.

Lastly, some consideration is given to the general questions of long-term
effects-both for the exposed individual and for subsequent generations. With
the exception of the leukemia incidence estimate, the data are all based on
animal experimentation. Errors of estimate are therefore unknown, and could

certainly involve a factor of 2. Long-term injury is also a population
phenomenon in many respects, and all statements must, therefore, be given in
probability terms. Probability statements for selected individuals are thus not
appropriate and can be extremely misleading.

Basic references that will be found useful are: D. E. Lea, Actions of
Radiations on Living Cells (1955); W. D. Claus, editor, Radiation Biology and
Medicine (1958); A. Hollaender, editor, Radiation Biology (1954); U.S. Atomic
Energy Commission, Proceedings of the Symposium on the Protection Against
Radiation Hazards in Space (1963); United Nations Scientific Committee,
Report on the Effects of Atomic Radiation (1962); United Nations Scientific
Committee, Ionizing Radiation: Levels and Effects (1972).

Radiation Terms and Measures

Basic Units

There are several units in use for describing radiation intensity and human
exposure. These are interrelated as follows (Nuclear Radiation Guide, 1962):

Roentgen. The basic indicator of quantity of radiation is the roentgen unit.
Inasmuch as radiation cannot be measured directly, its magnitude is determined
by the ionization produced by the passage of radiation through a medium. The
roentgen refers to the ionization produced in air by the passage of X- or gamma
radiation, specifically, that amount of radiation required to produce
0.001293 grams of air ions carrying one electrostatic unit of electricity of either
sign.

Rad. The rad (radiation absorbed dose) is the measure of exposure in most
common use. One rad of any type of radiation corresponds to the absorption of
100 ergs per gram of any medium. Because the rad does not specify the medium,
a medium should be stated unless clearly implied. For example, the term
"tissue rad" should be used in the case of exposure of soft human tissue.
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Biological Effectiveness

The RBE (Relative Biological Effectiveness) expresses the effcctiveness of
a particular type of radiation in producing the same biological response as
X-or gamma radiation having a linear energy transfer (LET) equivalent to
3 kilovolts per micron of water and delivered at the rate of about 10 rads
per minute. For applied radiation protection, QF (quality factor) is the
preferred term under most practical circumstances.

Figure9-1 shows the manner in which the RBE factor is used to
translate an exposure expressed in rads into one expressed in REM's. The
REM (Roentgen Equivalent, Man) is the most accurate unit for expressing

exposure of man. The REM refers to the absorbed dose of any ionizing
radiation which produces the same biological effects in man as those

resulting from the absorption of 1 roentgen of X-rays. As seen in figure 9-1,
each type of radiation must be converted by a specific factor, the RBE, in
order to equate the biological effects.

"ROENTGEN HAD REM

83 ergs/gram dry air. 100 etgs/gr'am _'_ x R}_b: _"_I'_ AppNed t_, man, a[_d

Used in measuring dose any medium _--_ _orrects fur spe( lfi<

from X and gamma ionization of the

radiation nnly. r adiatiun.

Radiation Relative Roentgen

Absorbed Biological Equivalent

Dose Elf el tiveness Man

Figure 9-1. Relationship among principal units used in describing radiation exposure.

Table 9-1 presents RBE factors for a number of types of radiation. The
standard RBE values are based on the most detrimental chronic biological

effect (for example, cataract induction by neutrons) for continuous low
dose exposures that might be met in industrial situations. However, the
RBE for many acute high dose rate exposures may be very much lower.
The RBE for a large acute lethal dose of fast neutrons may be less than
1.0 for man, as against the values of 5 to 10 shown in table 9-1. Also, as a

given particle degrades in tissue, rite RBE will rise as its energy transfer per
micron (LET) rises. At the same time, a hetcrogeneous beam of protons
will have an average RBE that tends to drop with increa_ing depth in tissue
as the lower energy component becomes fully absorbed and the higher
energy component continues its traverse. Figure 9-2 shows instantaneous and
mean RBE's for protons of different energies, corresponding to the
instantaneous linear energy transfer at energy E, and the mean RBE for

dissipation of the entire energy from E down to zero.

Table 9-2 illustrates the manner in which the RBE (QF) value changes as

a result of increasing power of X-rays or electron radiation. The relation
between RBE (QF) and LET in terms of keV/pin water can be employed
for virtually all end points to compen_te for differences in radiation

quality.
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Table 9-1

RBE Values for Various Types

of Radiation

12

10

0
.1

Type of Radiation RBE

X-rays 1

Gamma rays and bremsstrahlung 1

Beta particles, 1.0 MeV 1

.... 0.1 MeV 1

Neutrons, thermal energy 2.8

" 0.0001 MeV 2.2

" 0.005 MeV 2.4

" 0.02 MeV 5

" 0.5 MeV 10.2

" 1.0 MeV 10.5

" 10.0 MeV 6.4

Protons, greater than 100 MeV 1-2

" 1.0 MeV 8.5

" 0.1 MeV 10

Alpha particles, 5 MeV 15

.... 1 MeV 20

(From Barbiere et al., 1958; U.S. Atomic Energy Commis-
sion, 1962; Saenger, 1963.)

KINETIC ENERGY (mev)

2 4

Figure 9-2, lnstaneous and mean RBE's for protons

of various energies. (Schaefer, 1961; Sondhaus & Evans, 1969)

8 10



Ionizing Radiation

Table 9-2

Values of RBE (QF) for Late or Delayed Effects

as a Function of Average LET

423

LEToo {keV//din Water) RBE (QF)

X-rays and electrons of any LET 1

3.5 or less 1

3.5-7 1 --2

7 -23 2-5

23-53 5-10

53-175 10-20

(National Committee on Radiation Protection and Measurements, 1954)

Equivalent Residual Dose (ERD) is a concept used in estimating what

residual acute radiation injury persists for a period of weeks and months

after an exposure to radiation. Thus a person exposed to radiation on

Monday can be said to have a certain amount of that injury on the next

Monday, something less on the next after that, and so forth. The ERD at

any time, t days, after onset of exposure can be calculated on the basis of

the following assumptions:

1. 10 percent of the injury attributed to the dose is considered to be

irreparable.

2. The body repairs the remaining 90 percent at the rate of 2.5 percent per

day.

3. Recovery is continuous during protracted exposure. The ERD at t days

may be expressed as:

ERD = Do[O.1 + 0.9(1.000-0.025) t-4 ] _ l)f4t [0.1 + 0.9(l.000-O.025)tldt,

where

D o

b
= brief dose in r received during first 4 days,

= protracted daily dose at a constant rate, r/day, received after

the 4th day, and

= time in days after onset of initial exposure.
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Classes and Sources of Ionizing Radiation

The radiation encountered in space, and to a lesser extent on Earth, may be
attributed to three principal sources: geomagnetically trapped radiation, galactic
cosmic radiation, and solar particle radiation. Space radiation levels vary
substantially both with time and with distance from the Earth. These temporal

and spatial fluctuations must be taken into account in the planning of space
missions if radiation exposures are to be held to an acceptable level. Table 9-3
shows the nature and location of electromagnetic and particulate ionizing
radiations found in space. As indicated, most of the various radiations can be

found within each of the three radiation sources noted above. Principal
exceptions are alpha particles and heavy primary nuclei which are not generally
associated with the radiation emanating from solar events.

Table 9-3

Nature and Location of Electromagnetic
and Particulate Ionizing Radiations in Space

Name Nature of Radiation Charge Mass

Photon Electromagnetic 0 0

X-ray Electromagnetic 0 0

Gamma ray Electromagnetic 0 0

Electron Part icl e --e

Positron Part icl e +e

Where Found

Radiation belts, solar

radiation (produced by

nuclear reactions and by

stopping electrons), and

everywhere in space

1 me Radiation belt and else-
- where

1 m e Cosmic rays, radiation
-- belt, solar flares

Proton Particle +e 1840 m e
or 1 a-_u*

Neutron Particle 0 1841 mee

Pi meson Particle +,-, 273 m e
or 0

Alpha particle Particle +2e 4 amu

Primary cosmic rays, radi-

ation belt, solar flares

Secondary particles

produced by nuclear

interactions involving

primary particle flux

Cosmic rays, radiation

belt, solar flares

Primary cosmic radiation

(nucleus of helium atom)

Heavy primary Particle _+3e _>6 amu

nuclei

*ainu = atom mau unit

(Newell & Naugle, 1960; Sondhaus & Evans, 1969; Glasstone, 1958)

The following sections describe the sources of the
radiation of biological significance in space.

Primary cosmic radiation

(nuclei of heavier atoms)

principal ionizing
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Primary Radiation

Geomagnetically Trapped Radiation. There are two belts of geomagnetically

trapped radiation around the Earth, as shown in figure 9-3. These belts, known

as the Van Allen belts, are separated by a region of relatively low intensity.

Figure 9-3 shows the relative intensities of both electrons and protons within the

trapped radiation belts. Electrons are shown to the left, protons to the right.

Both, of course, are intermingled and are separated only for clarification of the

values.

E LECTRONS/CM2/SEC

I J I I 1 I

6 5 4 3 2 I O

DISTANCE FROM CENTER OF EARTH (earth radii}

PROTONS/CM2/SEC

I 2 3

Figure 9-3. Representation of the radiations trapped in the Earth's magnetic field,
known as the "Van Allen belts". (Adapted from White et al., 1969)

The Van Alien radiation belts are not entirely symmetrical. In the South

Atlantic Anomaly, extending from about 0 to 60 degrees west longitude and

20 to 50 degrees south latitude, the trapped proton intensity for energies more

than 30 MeV is the equivalent at 100 to 200 miles altitude to that at 800 miles

altitude elsewhere. This is due to a perturbation or asymmetry of the Earth's

geomagnetic field. For trajectories of space vehicles of 30 degrees inclination

from the equator or greater, there will be approximately five traverses through

this anomaly in each day. Experience with earth orbital missions to date

indicates that nearly all of the accumulative radiation exposure has been

attributable to passage through this geomagnetic anomaly.

Table9-4 compares the total radiation exposures for Apollo missions

7 through 14. Most of this exposure, it is believed, took place during the period
while the vehicle was within the Van Alien belts, h is apparent that the Apollo

14 crew received a higher radiation dose than crews on any prior Apollo mission,

487 85F, O - 73 - 28
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but still a dose of no hazard or biological significance (Berry, 1971). In fact, the
crewmembers on this flight received the largest dose experienced on any manned
mission to that point in time. The Apollo 14trajectory, particularly the
outbound portion, took the spacecraft close to the heart of the trapped
radiation belts. Since the mission occurred at a time of solar minimum, the
cosmic ray flux was relatively higher than for previous missions.

Table 9-4

Radiation Exposure for Apollo 14

Comparisonof Apollo Missions

Rad Rad

Apollo 7 .16 Apollo 11 .18
8 .16 12 .58
9 .20 13 ,24

10 .48 14 1.14

Apollo 14 Exposure(Rad)

Chest Thigh Ankle

CDR .996 1.095 1.073
CMP 1.126 1.145 1.279

LMP 1.078 1.204 1.248

(Berry, 1971)

Galactic Cosmic Radiation. Galactic cosmic radiation, frequently referred to
simply as galactic radiation, originates outside the solar system. This radiation
consists of atomic nuclei which have been completely ionized and accelerated to
very high energies. Protons of 1018 electron-volt energy have been identified
from this source. Protons (hydrogen nuclei) constitute about 85 percent of this
radiation; alpha particles (helium nuclei), about 13 percent; and heavier nuclei
ranging up to fin, the remaining few percent (Jones, 1968).

Cosmic activity in space is reasonably constant. Measures obtained with
deep-probe rockets show little difference in intensity between 1.0and
1.5 astronomical units from the sun. This would indicate that cosmic ray
intensity in tile vicinity of planets such as Venus and Mars is quite similar to that
found near the Earth.

The galactic cosmic radiation received on Earth varies substantially both as a
function of the level of solar events occurring at that time and as a function of
position on the Earth's surface. Figure 94 shows the galactic radiation received
at varying altitudes up to 120 000 feet during periods of minimum and

maximum solar activity. The two curves are based on estimated whole-body dose
to an unshielded man at about 40 degrees north latitude. These curves show
that, whereas the dose rate is essentially negligible at sea level, at higher altitudes
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during periods of solar minimum is approximately twice that
solar maximum.

!

20 40 60 80 I00 I/0

Altitude. I000 Feet

Figure 94. Altitude prof'desof galactic radiation level
in the atmosphere. (Foelsehe et al., 1969)

As seen in figure 9-5 distance from the equator has a very significant effect
on exposure to galactic radiation at altitudes above 30 000 feet. Highest
exposures are recorded in the polar region. At polar latitudes and at altitudes in
excess of 70 000 feet, radiation levels are more than triple those found at a

latitude of 30 degrees.

Solar Particle Radiation. Solar activity increases in rather regular 11 year

cycles and is characterized by giant eruptions from the surface of the sun,
termed "solar flares." Solar flares develop rapidly and generally last only 30 to
50 minutes, during which time intense radiation activity occurs. Table 9-5 shows
the major solar events occuring during the period from 1956 through 1961. The
peak events of this solar cycle were recorded in 1958 and 1959. This was the
period showing the greatest solar particle radiation reaching the Earth.

The electromagnetic radiation from a solar flare is emitted only during the
visible activity. However, the solar particles continue to arrive near the Earth for
a few hours to several days after the visible activity has ceased. High energy

protons, alpha particles and a few heavy nuclei of Z up to 9 or 10 emitted
during the flare activity constitute the radiation hazard to space travellers
outside of the trapped radiation (Van Allen) belts. Neutrons have not been

detected in the primary solar flare radiation.
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Figure 9-5. Altitude profiles of galactic radiation level

at _lar minimum. (Foelsche el al., 1969)

Table 9-5

Major Solar Cosmic Ray Outbursts
Occurring 1956 - 1961

Solar Flare Data integrated
Skin Dose (rad)

Date Importance >30 MeV > 100 MeV

1956 Feb 23

1957 Jan 20

Aug 29

to 31

1958 Mar 23

Jul 07

Aug 22

Aug 26

1959 May 10

Jul 10

Jul 14

Jut 16

1960 May 04

Nov 12

Nov 15

1961 Jul 18

3+

3+

Uncertain flare,

possibly two events)

t 20

60

15

(Modified from McDonald, 1963)

3+ 50

3+ 80

3 20

3 17

3+ 440

3+ 14_

3+ 177

3+ 125

3+ 16

3÷ 205

3+ 100

3÷ 27

28

1.2

0.7

1.0

0.15

10

11

7.4

19

0,07

33

12

3
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Evidence indicates that two classes of protons are produced during flare

activity. The highest energy particles, 200 to 300 MeV, arrive first, within
5to 20minutes after the onset of the optical flare, and consist of

high-velocity particles, about 0.6 times the velocity of light.

After about one-half hour, the second class of protons arrives, the

average energy of which has fallen to below 100 MeV. Maximum intensity is
reached one-half hour to one day after the beginning of the solar
disturbance. The intensity slowly decreases over a period of several days.
The variation with time of the spectral energy distribution and the flux
density (number of particles/cm2) is unpredictable.

During the period of solar activity between 1956and 1962, about
30 flares occurred which would have produced a total tissue dose of more
than one rad (as measured with plastic phantom material placed behind

approximately 0.5 gm/cm2 of aluminum) at 3000 kilometers or greater above
the surface of the Earth. In four events, the potential tissue dose

approached 1000 rads and exceeded 200rads in 13 other flares. With the
thickness of shields on present day spacecraft, the probability of a
crewmember receiving a tissue dose of greater than 100 rads during a
manned 30 day mission appears to be between 5 and 10 percent. However, this
calculation must be tempered by the fact that crewmembers of all manned space
missions to date have received total doses considerably less than this (see

table 94).

The matter of variable solar particle radiation is of great importance for the
selection of launch dates, particularly for long-term space missions. Table 9-6
shows the maximum and minimum doses calculated as a function of mission

duration for the worst and best launch dates during a single period of solar
activity. Fortunately, the selection of dates so far has been quite good since
astronauts have received only nominal radiation exposures.

With the thrust presently available for spacecraft, it is impractical to provide
the extensive shielding which would be required against high-energy protons.
Thin shielding is of little value, inasmuch as protons and other charged particles
give up increasingly more energy as they are slowed. The most intensive zone of
ionization is at the end of their path, where it may be up to several orders of
magnitude greater than at the beginning. The proton does not produce
ionization having about the same LET (linear-energy-transfer) throughout the
irradiated material, as would be produced by X-or gamma rays, but would
produce a LET value a hundred times greater at the end of its path than at the
beginning. The solar electrons encountered in space, as well as most of the

remaining electromagnetic radiations, are of sufficiently low energy that they
should not present a great hazard inside a vehicle, but could be hazardous during
extravehicular activities.

The radiations that are constantly being given off from the sun, between

periods of flare activity, consist of a large number of protons and electrons
of low energy, ranging from a few electron volts for the electrons to
approximately 5 MeV for the protons. The protons do not exist as simple
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monoenergetic sources. They are found in complex spectra of energies and
intenfities.

Table 9 6

Maximum and Minimum Mission Doses*

for Best and Worst I,aunch Dates During Active Period of Cycle 19

Mission Duration Maximum Dose (rads) Minimum Dose (rads)

4 years 3492 2439

3 years 3229 974

2 years 2781 526

1.5 years 2415 176

1 year 2110 15

9 months 1963 2

6 months 1963 0

3 months 1962 0

1.5 months 1492 0

1 month 1452 0

2 weeks 1452 0

1 week 1452 0

*Surface dose inside 1 g/cm 2 uniform aluminum shielding.

( Langham, 1967)

Secondary Radiations

One of the principal problems in developing effective shielding for the

occupants of space vehicles concerns secondary radiations. Whenever primary

particles strike a spacecraft and its shielding material, secondary radiations

are produced. Figure 9-6 illustrates the fates of particles meeting a manned

vehicle. Electrons and positrons are stopped by the vehicle wall, which then

emits the bremsstrahlung (gamma rays). Protons and heavy ions may hit a

target in the wall, or within the cabin, or may pass right through the

structures. Wherever a target is hit, these particles produce characteristic

showers of secondary particles as shown. Whenew_r a primary particle with

an energy of 300MeV or greater hits a nucleus of target material,

secondary particles and electromagnetic radiations are generated in great
variety, as shown in figure 9-7.

The absorption of radiation in matter involves the transfer of all or some

portion of the incident radiation energy to an electron or nucleus in the absorber

mass. This may lead, as illustrated in figure 9-7 to the production of recoil

protons, neutrons, electrons, X- or gamma radiation, or many other secondary

particles. The space radiations are not qualitatively different from conventional

radiations in this regard, but quantitatively the production of secondaries is

somewhat unique. This is due to the presence in space of particles of unusually
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high energies that can generate a cascade of secondary photons and particles.
The exact nature of the secondaries will be a function of the incident particle

and its charge and energy, the density of the absorbing or shielding material and
its thickness, and the proximity of masses of different composition or elemental

form (i.e., laminated shielding, capsule wall, and black boxes).

PROTONS

ELECTRONS

IEAVY IONS

•ASSUMED WALL
0ENSITY : 2 _mlc mz

Figure 9-6. The fates of radiation elements striking a manned spacecraft.
(Modified from Grahn, 1964)

Several studies have been initiated on the shielding problem, and these can

be reviewed in the Proceedings of the Symposium on the Protection against
Radiation Hazards in Space (1963). The biological importance of the problem is

illustrated in figure 9-7 which demonstrates the buildup of secondary radiation
dose in shielding material. In other words, while shielding is certainly an
effective countermeasure, it does modify the quality of the radiation, which
must then be considered the radiation of interest for biological consideration

(Keller, 1962).

The complexity of the secondary radiation and shielding problem is
illustrated further in figures9-8a and 9-8b. These show the differential
effectiveness of aluminum shielding against trapped protons and solar protons.
Even heavy shielding is seen to be inefficient with regard to trapped

protons although fairly effective with regard to solar protons. Still other
shielding problems arise with intracapsular radiation sources such as might
be found with isotopic power units or small reactors.
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Figure 9-7. Generation of secondary particles and electromagnetic radiations

following nuclear collision. (Saylor et al., 1962)
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Figure 9-8. Effectiveness of aluminum shielding
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Whole Body Radiation Effects

There is only limited information available concerning the effects of whole
body radiation on man. Data on Japanese victims of World War II nuclear
explosions constitute one source, although the relationship between exposure and
aftereffects is in this case not a simple matter to interpret. Many other factors, such
as the medical condition of the survivors at the time of exposure plus the

complications of other injuries, make the issue a difficult one. Other data, from
accidents involving radiographic equipment, industrial X-ray machines,
cyclotrons, and nuclear reactors, are easier to interpret but are quite sparse.

In examining the whole body radiation effects, it should be noted that
reliable information has been obtained for doses from 52 to 100 rem. As the

dose increases from 200 to 600 rem, the data from exposed humans decrease

rapidly and must be supplemented by extrapolations based on animal studies.
Nevertheless, the conclusions drawn can be accepted with a reasonable degree of
confidence. Beyond 600 rem, however, observations on man are so sporadic that
the relationship between dose and biological effect must be inferred or
conjectured, almost entirely from observations made on animals exposed to
ionizing radiations (Glasstone, 1962).

Radiation Intensity

Figure 9-9 shows the relationship between median survival time and acute
radiation dose for mice, rats, monkeys, and man. It can be seen that man is

slightly more resistant to radiation effects than the animals until the dose rate
reaches a level where death is a certainty within several days or less.

! ! i t LIII I I I I I Ill[ I l I I I Ill.

////X///_- suaV,VALT,_E
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_"N_ DEATH IN MAN

,,, 10 2 _

I--

: _\ :

_E

t Hemotopoietic ! G.I. Tr=ct /Cen ol Ne you
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Disruption
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Figure 9 9. Relationship between median survival time and acute radiaUon dose

for different species. (Langham, 1963)
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Figure 9-10 shows the probability of death, for man, within a finite period

(60 days) as well as the probability of initial symptomatology (nausea and

vomiting). The relation is plotted for whole body radiation dosage and first

symptoms of death. For exposures in the mid-lethal range and above, nearly all

persons will experience severe nausea and vomiting within 5 hours of the time of

exposure with a mean time of onset of about 2 hours. These probability plots

are estimates based on accumulated experience from Japanese casualties,

accidental exposure to fallout, reactor incidents and clinical experience.
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Figure 9-10. Relationship of whole body radiation dose
and first symptoms of death. (Langham, 1967)

99.9

Changes in the probability of death as a function of radiation dose level and
dose rate are shown in table 9-7. This table also shows the difference in the dose

level producing a given probability" of death as the time during which the

radiation is received ranges from I day to 1 year.

The short term effects to be expected from acute whole body radiation

are described in table9-8. Dose levels discussed range from lOrads, an

easily survivable one-time event, to 5000 rads, an event in which ensuing

death is certain for all individuals exposed. In examining table 9-8, it is of
interest to note that doses of 100 to 200 rads were common in survivors of

the Hiroshima and Nagasaki nuclear attacks, particularly among persons who

were at some distance from the nuclear explosion (Glasstone, 1962).
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Table 9-7

Some Conjectured Human Tolerances

435

OayI Wee I MonthI4MonthsI Year
A. Exposure dose (midline rads), Subcommittee No. 14 (NCRP)

!
LD0/time period 100 100 ] 135 200 250

LD5_ 10/t ime period 165 165 I 200 270LD50/time period 300 300 340 370

B. Dose* rate (R/rain), Subcommittee No. 14 (NCRP)

LD0/time period

LD5_10/time period

LDs0/time period

0.069

0.115

0.208

0.0099

0.0164

0.0298

• Dose = R in air in phantom midline.
(National Council on Radiation Protection, 1962)

0.0031

0.0046

0.0079

0.0012

0.0016

0.0021

Table 9-8 shows that vomiting is one of the principal reactions to acute

whole body radiation. A more clear definition of the incidence of vomiting

as a function of dose level is shown in figure 9-11. The line represents the

most likely given dose in hundreds of rads following acute exposure and

indicates the 10 percent incidence when the radiation has been protracted

over one day.

An idealized description of the time course of symptomatology of acute

radiation illness following a mid-lethal acute exposure is shown in

figure 9-12. The symptoms shown in this figure are predicated upon a radiation

level of 250 to 500 rad. Of particular interest in figure 9-12 is the period around

10 days following exposure when an individual for a short period may be en-

tirely free of any symptoms of radiation illness.

Rate-Effectiveness Factors

It is apparent that a low radiation close rate, if received over a sufficient

period of time, can have consequences as severe as those following a high dose

rate for a short period of time. Table 9-9 presents rate-effectiveness factors (fr)

which can be used to equate radiation exposures for the production of three

classes of symptomatology: erythema and skin desquamation, prodromal signs,

and hematological depression and lethality. In general, this table shows that

a low dose must be administered for 2 to 3 times as long as that considered

a high dose rate if the same biological effects are to be produced.
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Table 9 8

Expectcd Short-Term Effects From Acute Whole-Body Radiation

Dose in Rads Probable Effect

10 -- 50

50 -- 100

100 - 200

200 - 350

350 -- 550

550 - 750

1000

5OOO

*Author's change.

(Langham, 1967)

No obvious effect, except, probably, minor blood changes.

Vomiting and nausea for about I day in 5%-10% of exposed

personnel. Fatigue, but no serious disability. Transient reduction in

lymphocytes and neutrophils.

Vomiting and nausea for about 1 day, followed by other symptoms

of radiation sickness in about 25%-50% of personnel. No deaths

anticipated. A reduction of approximately 50% in lymphocytes and

neutrophils will occur.

Vomiting and nausea in nearly all personnel on first day, followed

by other symptoms of radiation sickness, e.g., loss of appetite,

diarrhea, minor hemorrhage. About 20% deaths within 2--6 weeks

after exposure; survivors convalescent for about 3 months, although

many have second wave of symptoms at about 3 weeks. Up to 75%

reduction in all circulating blood elements.

Vomiting and nausea in most personnel on first day, followed by

other symptoms of radiation sickness, e.g., fever, hemorrhage,

diarrhea, emaciation. About 50% deaths within 1 month; survivors

convalescent for about 6 months.

Vomiting and nausea, or at least nausea, in all personnel within

4 hours from exposure, followed by severe symptoms of radiation

sickness, as above. Up to 100% deaths; few survivors convalescent

for about 6 months.

Vomiting and nausea in all personnel within 1-2 hours. All dead

within days.

Incapacitation almost immediately (minutes to hours). All personnel

will be fatalities within 1 week.
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Figure 9-11. Incidence of vomiting as a function of radiation dose.
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Table 9-9

Suggested Dose-Rate or Rate-Effectiveness Factors (fr)
for Early Responses Following Exposu_ to Low-LET Radiations

High Dose Rate

Duration of exposure for maxi-

mum effectiveness

Low Dose Rate

Duration of exposure for mini-

mum effectiveness

Ratio of total doses to produce

same response level (B/A)

Rate-effectiveness factor (fr)

Duration of Exposure

to Produce Same Response Level

Erythema

and Skin

Desquamation

1 --2 hr or less

4 --6 days or

longer

1/3

Prodromal

Signs

2-4 hr or less

2-4 days or

longer

2.5

1/2.5

Hematological De-

pression and

Lethality

1 -2 days or less

3-4 weeks

1/2

(Adapted from National Committee on Radiation Protection and Measurements, 1962;

Langham, 1967)

Radiation Effects on Specific Body Systems

Ti$glle

When radiation particles are "absorbed in human tissue, there is an irradiation

effect as a particle is slowed. Figure 9-13 presents a longitudinal section of the
isodose line field in tissue for the terminal section of a cosmic ray heavy nucleus

of Z = 20 (Ca). In this figure, the section from 280 to 0 micron residual range is
the "thindown" part.

Figure 9-14 shows the calculated dose which might have been received from
protons at various depths in tissue from Inner Van Allen belt and the solar

proton event of 12 May 1959, assuming a spacecraft cabin providing only
2 gm/cm2 of shielding. The greater drop of tissue depth-dose from flare protons
as compared to inner belt protons is a function of the differences in the

integral energy spectra; the greater frequency of higher energy protons in
tile inner belt increases the dose rate in deep tissues. Note the importance
of knowing the integrated energy spectrum of the proton radiation when
considering the critical targcts-i.e., bone marrow, spleen, and intestinal
locations beneath the surface.
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Blood System

Radiation exposure produces a number of significant changes in the various
elements of the blood. The extent of these changes is shown dramatically in
figure 9-15 which presents average values of blood elements for five individuals

exposed to estimated doses of 250 to 350rads at the Oak Ridge Criticality
Accident of 16 June 1958. Note that, whereas initial changes are seen in
virtually all blood elements, the full extent o. the damage may not be apparent
until 25 to 40 days following the event. In view of the observed drops in red cell
mass assumably due to oxygen effect, the effect of radiation on hematocrit and

hemoglobin shown in figure 9-15 may be exaggerated.
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Figure 9-15. Change in blood elements for five individuals exposed to 250 to 350 rads.

(Saenger, 1963)

The response of one individual to a brief whole body exposure of about
130 rads of fission gamma radiation is shown in figure 9-16. The curves in
this figure emphasize the long persistence of radiation injury in man. The
cellular elements of the blood show an early rapid decline in number, but
do not reach a minimum for 4 to 5 weeks. The blood cell count remains at

about 50% of normal for over a year, yet the affected individual, in this
case, expressed no outward signs or symptoms of this injury. The individual

was, undoubtedly, more susceptible to infection and his general response
capability to any additional stress was probably depressed throughout the
period of observation. Although no direct test was made for this individual,
victims of other radiation accidents have complained of a persistent fatigue
for mauy months after exposure.

Figure9-17 shows the limits for receipt of radiation by a human

without clinically detcctablcdamage to the hematopoietic system. Individuals
receiving continuous dose rates indicated on figure9-17 would be expected
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to show no overt symptoms relating to injury of blood forming tissues at
the accumulated doses, dose rates, and times shown on the figure.
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1967)

Radiation injury, by virtue of its effect on specific blood elements, could
make an individual more susceptible to disease. This is shown in figure 9-18
which shows the depression of normal neutrophil count following exposure
to acute radiation. Schematized levels of ncutrophils in the blood are shown

for varying exposures and are related to the times when infections are most
prevalent. Only neutrophils are shown here as the predominant white blood
cell involved in combating acute infections. Other white blood cells
(lymphocytes and monocytes) also would be depressed as a result of

radiation damage.

487-858 O - 73 - 29
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Figure 9-18. Sehematized levels of blood neutrophils following different radiation exposures.
(Adapted from Cronkite et al., 1956; Andrews, 1962; and Langham, 1967)

The effect of radiation on platelets formation is shown in figure 9-19.

These curves indicate, for various exposure levels, the observed course of

platelet counts over a 180 day period. Whenever platelet count falls below

40 to 50 percent of normal, bh:eding and oozing from minor wounds and

scrapes is hard to stop and hemorrhage is likely from such radiation-

damaged tissues as the intestine.
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Figure 9-19. Observed course of platelet counts following different radiation exposures.
(Latgham, 1967)
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Oneof themostdramaticdemonstrationsof theeffectof radiationon
bloodsystemscomesfrom theincreasein casesof leukemiarecordedfor
survivorsofthetliroshima nuclear explosion, as shown in figure 9-20. This figure

shows that leukemia in Hiroshima rose from a number of approximately one

case per 100 000 people in 1946 to almost 18 per 100 000 by 1951, but has

decreased in recent years (Ishimaru, 1971). This can be compared with only a

slight increase (about double in 1960) in leukemia incidence for the rest of the

Japanese population.
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Figure 9-20, The incidence of leukemia cases reported in Hiroshima in thc period 1946 to
1962. (Modified from data of Watanabe, 1961 by Brill et al., 1962; United Nations
Committee on the Effects of Atomic Radiation, 1964)

A calculated probability of death from leukemia is about 106/R/year for

the first 15 to 20 years after brief exposure to whole body radiation. This

probability is based on experience at rather high exposure dose rates

(>25 RJmin). Animal data clearly indicate that the response is less at low dose

rates (<R/min), and assumably man would respond in a like manner. Experience

of. the A-bomb survivors suggests that most cases of leukemia develop within

15 or 20 years of exposure.
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Since the astronauts are healthy adult males, their susceptibility can be
assumed to be less than that of the general population. The probability of
achieving doses high enough to induce cancer other than leukemia or cancer of

the thyroid in astronauts is slight. With doses of 50 R and above, the probability
of induction of leukemia is on the order of lO'6/rad/year; that for cancer of the
thyroid is in the same range, and that for other cancers is less by at least a factor
of 10 (Brill etal., 1962; United Nations Committee on the Effects of Atomic
Radiation, 1964).

The Skin

Radiation damage to the skin is of interest since this is the initial point of
penetration for the radiation and also since changes are easily assessed. In
general, it is found that higher radiation dose levels are required to produce
demonstrable damage to the skin than is the case for the hematopoietic system.
Table 9-10 shows four levels of damage occurring from acute exposure to X and
gamma radiation. Note that approximately 350 rads must be received before
significant changes begin to appear. In all cases, with the exception of extreme
levels ill excess of 2000 rads, the principal effect is not immediate but appears
instead after an interval of several days to several weeks.

Table 9-10

Acute Radiation Damage to the Skin From
X- and Gamma Rays

Wet dermatitis and

Epilation Erytherna (first blistering (second Ulceration (third

- loss of hair degree burns degree burns) degree burns)

Rare at less

than 200 r

Partial epilation

at 350-450 r

Complete eptlation

in 16-18 days

at > 450 r

Permanent epilation

at > 700 r

Hesponse is dependen!

on energy, dose rate,

area exposed, & corn-

p[exion Of the individual,

Full effect in 1 to 3

weeks after:

200-400 r (<150 key)

500-600 r (200-400 key)

800-1000 r (>400 key)

Response in first hours

at 1000 r

Effect in 1-2

weeks at

> I000 r

Rapidly progressive

effect at > 2000 r

Note: 1 r _ 1 radsincethesestatementsarebasedon air doses.
(From Grahn, 1964,adaptedfrom Saenger,1964 & Cronkiteet al., 1956.)

Table 9-11 shows the dose level of high intensity radiation necessary to
achieve a given probability level for the production of erythema and
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desquamation of the skin. Note that with each of the clinical signs it is necessary
to essentially double the dose rate in order to progress from a 10 percent proba-

bility of the symptom appearing to a 90 percent probability level. In either case,

a high dose rate is required in order to produce the given symptoms. Figure 9-21

shows the effect of single and fractionated radiation in producing erythema and

also moist desquamation, either of which would be partially or completely

disabling, particularly in the wearing of a space suit.

Table 9-11

Estimated Absorbed Doses of High-Intensity Reference Radiation

for Production of Erythema and Desquamation of the Skin*

Clinical Sign

Erythema

Desquamation

Absorbed Dose for Probability of Response (rads)**

10% 50%

400 575

1400 2000

9O%

750

2600

*See Early Skin Effects, p. 60, Langham, 1967.
* *Site of interest for dose estimation, 0.1 mm depth; area exposed, 35 - 100 cm2.
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Figure 9-21. Effect of single and fractionated radiation
in producing erythema and moist desquamation. (Modified from Langham, 1967)
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Skin effects produced by exposure to electron radiation are indicated in
figure 9-22. Electron radiation is of importance during extravehicular activity,

the wall of the capsule being sufficiently dense for shielding. The space suit
alone provides some protection. However, the abrasive and pressure effects of
the space suit may make the skin more susceptible to radiation injury as is
indicated in the figure (Langham, 1967; U.S. Air Force-National Aeronautics
and Space Administration, 1969).
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Figure 9-22. Skin effects produced by exposure to electron radiation.
(U.S. Air Force-National Aeronautics and Space Administration, 1969)

Visual System

Data regarding the effect of ionizing radiation on the visual system
come largely from reactions noted clinically following exposure to standard
radiation sources. These data, as noted earlier, may underestimate the

impact of space radiations for several reasons. First, solar or cosmic ray
particles can produce very dense ionization tracks which would cause greater
lens damage. Second, there are in space large numbers of low energy
particles that can produce high surface damage. Third, there is the matter
of induced secondary particulate and bremsstrahlung radiations that can
augment the damage pattern. Figure 9-23 shows the incidence of lens
opacities in man as a function of dose for X-and for gamma radiation
delivered over a period of 3 weeks or less. This could be considered an
acute exposure. Figure9-24 shows the time-dose relationship for the
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production of both cataract and non-cataract changes in the ocular lens for

chronic exposures in which the exposure time is extrapolated for periods as

long as 3 years.
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Reproductive System

The extent to which radiation exposure produces temporary or lasting
damage to the reproductive system is an issue of concern for the planning of
long duration space missions. Table 9-12 presents a summary of observations
concerning the effects of high intensity X-ray exposure on spermatogenesis. In
essence, it appears that at exposures of 15 to 100 rads, the response will
probably be reduced fertility. From 100 to 300 rads, there will probably be
temporary sterility for approximately one year or longer. Over 500 rads, the
individual will probably not survive but, if so, permanent sterility would
probably result.

Table 9-12

Summary of Observations of Effects of ttigh-Intensity Doses
of X-Rays on Spermatogenesis

D ose (fads) Observed Effecton Sperm Count

15 Moderateoligospermia

20 Moderateoligospermia

50 Pronouncedotigospermia

10t3 Markedoligospermiaandazoospermia

200 Azoospermia

300 Azoospermia

400 Azoospermia
600 Azoospermia

(From Heller,1966)

There is little information available on the effects of protracted radiation,

but it is probable on the basis of studies in dogs that a dose of 0.5 rem/day will
produce radiation damage within one year. Exposure at an average daily rate of
0.2 rem continued for 2 to 5 years will probably produce some temporary
infertility. However, this would be without effect on libido or potency.

Late Effects of Radiation

It is characteristic of radiation damage that significant effects may not be
evident for long periods of time, frequently years after the event or, as would be
the case with genetic damage, even into subsequent generations. One of the most
important long term features of radiation damage is a shortening of life
expectancy. Figure 9-25 shows the estimated life expectancy of a 20-year old
population exposed to fixed daily doses of whole body radiation, continued
until time of death. Deaths would be from natural causes. While comparisons
have been drawn between the effects of radiation and the normal process of
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aging, the analogy is not complete. When radiation is delivered over a long
period, there will be approximately a 1% shortening of tile life spml per 100 fads

of exposure. For short periods of exposure at ratcs above 2 rads per hour, the

life shortening effect will be multiplied by 5 (Storer, 1969).
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Figure 9-25. Estimated life expectancy of 20-year old population exposed
to fixed daily doses of whole body radiation. (Adapted from Sachet & Grahn, 1964)

The effect of radiation intensity on life shortening is shown in figure 9-26.

These projections, based on accumulated doses of penetrating ionizing radiation,

show that high intensity radiation is appreciably more damaging than is low

intensity with respect to anticipated life span.

Of a special concern with respect to radiation damage are possible genetic

effects. Figure 9-27 shows the frequency of anticipated mutation for a total

exposure dose delivered at two dose rates. The genctic effect is expressed as the

probability of induction of recessive mutations in the male germ cell, since

dominant lethals have relatively limited clinical significance in this selected

population. Two probabilities are given: (a), for high dose-rate exposure,

25 X 10-8/R/gene; (b), for low dose-rate exposure, 5 X 10-8/R/gene. Although

these data were obtained from mice, man is expected to respond similarly. If he

has 104 genes per germ cell, then the probability of occurrence of a new

recessive mutation is that shown in the figure. Additional information on

mutation rate estimates is presented in table 9-13. Again, these estimates are

derived from data obtained from the mouse and extrapolated to the human.
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Table 9-13

Mutation Rate Estimates for Males

(Derived from tile Mouse)

Germ iell StageMutation Type Mature Immature

A. High dose rate (>25R/min)

Dominant

Lethal

Recessive

Visible

Recessive

Lethal

1 X lO-3/R/gamete

5 X 10-7/R/locus *

1 X 10-4/R/gamete

25 X 10--8/R/locus *

-- 1 X 10--4/R/gamete

B. Low dose rate (< 1 R/min)

Recessive

Visible

Recessive

Lethal

No_ applicable

Not applicable

5 X 10--8/R/locus *

2 X 10--5/R/gamete

*Based upon 7 selected recessive visible mutant loci. The range of induced mutations is
estimated to be on the order of 6-40 X 10--5/gamete/R.

(Adapted by Grahn from available data}
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CHAPTER 10

TOXICOLOGY

by

J.D. MacEwen, Ph.D.

SysteMed Corporation

Dayton, Ohio

Rapid advances in the United States manned spacecraft programs have
emphasized the importance of careful environmental control of space cabin
atmospheres. The need for control applies not only to the concentrations of
breathing gases at various cabin pressures but also to the levels of contaminants
present in the environment. A unique aspect of toxicology has been developed in
an attempt to provide the information necessary for the establishment of safe
levels of space cabin contaminants.

Both facilities and techniques have been developed in recent years to explore
the toxicological problems of space flight under simulated flight conditions, with
the exception of weightlessness. These research programs are designed to
establish safe limits for environmental contaminants under continuous exposure
conditions of space flight and to define emergency tolerance limits for accidental
situations. The information derived from these programs unfortunately lags
behind the general advances of the space program and consequently many
atmospheric limits have had to be established by committee action to provide
engineering guidelines. The _lection of limits by any committee is based on
available toxicological information for each material considered. This
information, frequently sparse, has been based on acute exposures of short
duration or, at best, chronic daily exposures simulating industrial working
conditions. The circumstance of the immediate need for contaminant limits for

non-comparable conditions frequently causes selection of limits having
extremely large safety factors for use until better information can be obtained.
Provisional limits for a number of space cabin contaminants, with such safe_ +
factors, have been established for 90 and 1000 day continuous exposures by the
Panel on Air Standards for Manned Space Flight (1968).

A discussion of tile terminology of the units of contaminant concentration is
in order since the conventional units of parts per million (ppm) is applicable

Reviewed by Ralph Wands, M.D., National Academy of Sciences.
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onlyat thenormalatmosphericpressureof 760mmHgexperiencedhereon
Earth.NASAhaschosentodefinecontaminantconcentrationsasmillimolesper
25cubicmeters(mmole/25M3)sincethenumberbeforetheunitisessentially
the_measfor ppm,whicbis basedonstandardtemperatureandpressure
conditions.In additionto otherreasons,theuseof molaritypermitsdirect
interpretationof thestandardsin thelightof availablebiochemicalknowledge.
Othergroupshaveselectedtheunit of milligramspercubicmeter(mg/M_)
whichexpressesthe concentrationin termsof volumeregardlessof absolute
pressure.Thelattertermalsoiscomparablewithunitsinusebytoxicologists for
setting industrial threshold limits on contaminants. The experimental data
presented in this chapter are given with units of ppm or mg/M 3 wherever
applicable since these are the terms used in the research cited.

Oxygen Toxicity and The Effects of Variations

In Oxygen Partial Pressure on Toxicity

The advent of manned space flight brought about a need for information
concerning the physiological and toxicological response of animals and humans
to prolonged exposure in enriched oxygen environments at reduced pressure.
While considerable information had been obtained concerning the toxicity of
oxygen at atmospheric pressure by Bert (1878), Bean (1953), Comroe and
Dripps (1945), Ohlsson (1947), and Weir et al. (1965) and at hyperbaric

pressures by Bean (1945) and Smith ct al. (1932), little was known concerning
the toxic response of man or other species to oxygen under hypobaric
conditions.

Herlocher et al. (1964) measured the physiological response of men exposed
to essentially pure oxygen at 258 mm Hg pressure (5 psia) for a 30-day period.
Their clinical observations indicated that no significant changes occurred which
were not associated with the prolonged confinement of these men. Robertson et
•M. (1964) described respiratory studies conducted on the human subjects used in
the experiment reported by Herlocher. The most significant result of this study
was that vital capacities decreased on depressurization to 250 mm Hg. The entire
gas supply to the chamber was essentially pure oxygen, which resulted in an
•alveolar pO2 of 177 mm Hg as opposed to the normal alveolar pO2 of
100 mm Hg cited by Dittmer and Grebe (1958). These investigators found that
the vital capacity of the individual test subjects returned to normal immediately
upon repressurization to ambient atmospheric conditions.

Since hematopoietic decreases at increased partial pressures of alveolar
oxygen tension had been previously reported (Helvey et al., 1963, Mammen et
al., 1963, and Morgan et al., 1963), Zalusky et al. (1964) studied the

hematopoietic parameters of the subjects included in the study reported by
tlerlocher et al. (1964). These investigators found that no significant decreases
occ/,rred during a 30-day exposure period with the exception of a slight change
in hematocrit values.

Continuous exposure studies on animals conducted in reduced pressure
chambers at Wright-Patterson Air Force Base showed increased mortality in rats
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exposed to 100 percent oxygen at 5 psia pressure. McNerney and MacEwen

(1965) reported that the rodent mortality was uniform in all chambers whether

a contaminant was present or not. Ambient air control rats did not exhibit a

similar mortality pattern. Subsequent experiments conducted by MacEwen and

Haun (1966) determined that this was a strain-specific effect of the Wistar rats

used and was not related to reduced pressure-enriched oxygen environments.

The more important finding of those studies was the clearer understanding of

oxygen toxicity at near ambient pressures. The mortality observed at various

absolute oxygen pressures is illustrated in figure lO-1. While dogs and mice

exhibit essentially a similar pattern of oxygen toxicity response, the albino rat is

shown to be much less susceptible to oxygen toxicity than any of the other

three species tested, as had been reported earlier by Smith et al. (1932) and by

Boycott and Oakley (1932). Rhesus monkeys were not as consistent as the other

species in their mortality response but no mortality was seen at total oxygen

pressures below 600 mm Hg.
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Figure lO-l. Oxygen toxicity mortality at varying absolute
near-ambient pressures in experimental animals,

Kistler et a1.(1967) described the pathological picture of oxygen toxicity at

760 mm Hg pO 2 to be one of pulmonary edema with resolution of the edema

resulting in morphometic changes in the air-blood barrier. Death appears to

result from the acute pulmonary edema formed. Dickerson (1964) and Kydd

(1967) have shown that tile lowest oxygen pressure that will produce acute

pulmonary edema in the rat is about 650 mm ttg although rats surviving a

30-day exposure to oxygen at 516mm Hg pressure were found to have

thickening of the walls of small blood vessels of the lungs associated with

pulmonary hypertension. Kydd (1968) showed that precxposure of rats to

518mmitg total oxygen pressure decreased the mortality expected at

487-858 0 - 73 - 30
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760 mm Hg pO 2. He postulated that this protective effect was due to
development of maximal lymphatic drainage of lung fluids formed at the lower
pressure so that drainage was still in excess of fluid formation even at
760 mm Hg pO2.

Continuous long-term exposures of four animal species to 100 percent
oxygen at 5 psia pressure was reported by Kaplan et al. (1968). This exposure of
dogs, monkeys, mice, and rats, conducted for 8 months, produced no evidence
of systemic oxygen toxicity. Electron microscopy showed changes in the lungs
of these dogs and rats that could be related to the oxygen exposure as reported
by Lewerenz et al. (1967). The change seen was minimal in nature and could not
be associated with any apparent pulmonary functional deficit.

A similar study of continuous exposure of the same animal species to a
mixture of 68 percent oxygen and 32 percent nitrogen at 5 psia was described
by Fairchild (1967). In these studies, verified by a second 8 month continuous
exposure to the same conditions one year later, the only significant and
repeatable finding was the depression of growth of male rats in the test

environment. The prolonged breathing of pure oxygen at near ambient or
hyperbaric pressure has been shown to produce pathologic changes, such as
pulmonary edema, and death. However, none of the controlled laboratory
experiments with animals or humans breathing pure oxygen at reduced pressures
(pO 2 less than 400 mm Hg) has shown any harmful effect.

Effects of Oxygen on the Toxicity of Ozone and

Nitrogen Dioxide

The effect of variation in oxygen partial pressure upon the acute toxicity of
inhaled ozone and nitrogen dioxide has been reported by MacEwen (1966).
One-hundred percent oxygen at 258 mm Hg was shown to be protective against
the acute effects of ozone exposure. Table 10-1 shows the results of a series of
experiments in which animals were exposed continuously to 8.0 mg/M 3 ozone

for a 14-day period. Increased partial pressure of oxygen resulted in reduced
mortality among mice, rats, dogs and monkeys. Differences were also observed

in the lung weight to body weight ratios, shown in table 10-2 for the various test
environments. The intermediate pO 2 of the mixed gas environment resulted in
the highest weight ratio while exposure of monkeys at near ambient pressure
resulted in an essentially normal pattern.

These studies demonstrated differences in time of onset and severity of toxic
responses in animals to 03 and NO2. While a beneficial protective effect of
increased 02 partial pressure against 03 toxicity was shown, it was only
demonstrated up to a pO2 of 260 mm Hg. Higher 02 concentrations may not be
protective,.as shown by Mittler (1958), and in fact, may be synergistic in action.

A protective action of 02 against NO 2 toxicity was not clearly shown,
although increasing pO2 to 260 mm Hg appeared to prolong the life of animals
exposed to lethal concentrations. There was, however, a reduction of mortality
response in both mixed gas and 100 percent 02 reduced pressure (5 psia)
environments compared to ambient pressure conditions.
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Table 10-1

Mortality Produced During 14-Day Continuous Exposure
to Ozone - 8.0 m_M3-

g:7

459

Exposure Conditions

I

Total pressure (ram Hg)J 700 260
I

pO 2 (ram Hg) J 140 175

Gas supply I Air 68% O 2-

I 32% N 2

260

26O

100% 0 2

720

260

36% 0 2

64% N 2

700

260

36% 0 2-

64% N 2

Species (No. deaths/No. Controls)

Mice

Rats

Guinea pigs

Dogs

Monkeys

33/40

50/50

8/8

5/5

214

32/40

45/50

9/9

6/8

1/4

33/40

45/50

818

2/8

0/4

0/8

0/4

16/40

15/50

2/8

0/9

Toxicity of Fuels and Oxidizers

One criterion for the selection of compounds as suitable propellant fuels and
oxidizers is that their combustion exhaust gases consist of low molecular weight
species since the specific impulse (thrust/unit mass of fuel) is an inverse function
of that molecular weight. Therefore compounds selected as fuels must be highly
reactive materials containing elements of low atomic weight. Usually the more
reactive fuels and oxidizers are more reactive with one another than they are
with biological materials. This high reactivity generally results in a high order of
toxicity in the more useful fuels and oxidizers.

Hydrazines

Hydrazine and its mcthylated derivatives meet the criteria for propellant

fuels and are used as such. The Titan II rocket uses a mixture of hydrazine and

unsymmetrical dimethylhydrazine (UDMH) as a fuel while both the Gemini and
Apollo space vehicles use monomothylhydrazine (MMH) in their attitude control

systems.

A comprehensive review of research on the pharmacology and toxicology of
propellant hydrazines by Clark et al. (1968) reports 273 studies on these
compounds. Further studies on MMH toxicity have been reported by Itaun et ai.

(1968) and MacEwen and Vernot (1970).

The acute toxicity of all the proilellant hydrazines manifests itself on the
central nervous system resulting in convulsions and death. Death usually occurs
during or immediately following a severe convulsive seizure. The principal
difference between these compounds in their acute effects is the dose required
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to initiate the convulsive action. Jacobson et al. (1955) reported the relative

order of toxicity for hydrazine and its methylatedderivatives as shown in

table 10-3. Similar data were reported by Weir et al. (1964). MMH is

approximately twice as toxic as UDMH and symmetrical dimethylhydrazine

(SDMH) and is at least five times more toxic than hydrazine. In general, there is

a species gradient for the acute toxicity of the propellant hydrazines with rats

and monkeys least susceptible and mice and dogs most susceptible. Since

susceptibility of the various species to these compounds does not show a

consistent pattern based on progression in size, it is impossible to predict where

man falls in this order. Therefore, any use of such toxicity data in establishing

safety standards must utilize the results of the most susceptible species.

Table 10-3

LCs0 Values of Rats and Mice Exposed

Four Hours to Hydrazine Derivatives

Compound

Hvdrazine

Methylhydrazine

uns-Dimethylhydrazine

s-Oimethylhydrazine

Species

Rats

Mice

Rats

Mice

Rats

Mice

Rats

LC50

(ppm) (mg/M 3)

570 750

252 330

74 139

56 105

252 618

172 423

280-400 _*

* Lower limit is not calculable from the data.

** Rough estimate.

(Jacobson et al., 1955)

19/20
Confidence

Limits

(ppm)

71- 78

50 -- 110

219 - 290

150- 194

Slope

7.32

3.79

28.50

4.96

8.65

8.52

S.E. of

Slope

1.8

1.6

7,9

2.2

2.8

1.9

Subacute exposures to monomethylhydrazine have been shown to produce

decreased performance in trained primates at subconvulsive doses by Reynolds

and Back (1966). Similar changes in the learned performance of cats have also

been reported by Sterman et al. (1968). Reynolds and others (1963, 1964)

reported changes in primate learned behavior and discrete avoidance tasks.

Kidney damage has been reported from hydrazine exposure by Weatherby and

Yard (I955) and by Krop (1954). MMH-indueed kidney damage was described

by Pinkerton et al. (1967), George et al. (1968), and Sopher et al. (1968). A

decrease in renal blood flow resulting from hydrazine exposure was also
described by Coe and Korty (1967).
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Acute cffccts and death from severe propellant hydrazine exposures may be
prevented by rapid therapeutic treatment using barbiturates or barbiturates in
combination as suggested by Azar et al. (1970). Phenobarbital or other
barbiturate preparations will suppress the convulsant seizures and provide
protection through the acute intoxication phase until the propellant hydrazine
has metabolized. It has been shown that pyridoxine, a form of vitamin B, will
prevent fatty liver changes from hydrazine. A method of pyridoxine treatment
has been recommended by Back et al. (1963).

The chronic effects of UDMH exposure have been reported by Rinehart et

al. (1960). They exposed three dogs daily to a 5 ppm UDMH concentration for a
6-month period. The exposed dogs were lethargic throughout the exposure
period and exhibited a mild hemolytic anemia (approximately a 15 percent
depression of hematologic values) which persisted. A similar 3-month exposure
of dogs to 25 ppm UDMH resulted in a more profound hemolytic anemia with
one death. The 6-month exposure of the dogs to 5 ppm UDMII is the basis for
the current threshold limit value (TLV) of 0.5 ppm used for occupational health
conservation as cited in the Documentation of the Threshold Limit Values

(1971).

A recent 6-month chronic toxicity study on MMH (TLV of 0.02 ppm) was
reported by MacEwen and Vernot (1970). This study exposed dogs, rats, mice,
and monkeys to 5 ppm and 2 ppm concentrations on a 6 hour/day, 5 day/week
basis. Definite dose-related responses were shown in mice with 29 percent
mortality at 5 ppm and 17 percent at 2 ppm. Similar dose-related effects were

seen in rats with significant depression of growth rate and increased liver and
kidney organ-to-body weight ratios. Both dogs and monkeys exhibited
methemogiobinemia and Heinz body formation. A moderate hemolytic anemia
was seen in dogs (approximately 15 percent depression of hematologic values)
arid increased red blood cell fragility. Only a marginal hemolytic response was

seen in monkeys. The response seen in these chronic exposures of dogs to MMH
was almost identical with that seen by Rinehart with UDMH. Most important, a
no-effect level was not achieved, which suggests that further consideration
should be given to the safety margin of the industrial TLV values.

Propellant Oxidizers

The oxidizers of most interest in propellant reactions that have been used or
have a high potential for use are oxygen, fluorine, nitrogen trifluoride (NF3) ,
chlorine trifluoride (CIF3) , chlorine pentaflouride (CIFs), oxygen difluoride
(OF2) and the dimer of nitrogen dioxide, nitrogen tetroxide (N204). Since
oxygen toxicity is primarily a function of 02 partial pressure (and total
pressure) creating biological damage only when either too high or low, it will not
be discussed further.

Fluorine. Fluorine and FLOX (a mixture of fluorine and oxygen) have been
used as oxidizers for rocket fuels. The acute toxicity of fluorine in animals has
been described by Stokinger (1949), Eriksen (1945), and Keplinger and Suissa
(1968). ltuman experience with this compound has been reported by Machle
and Evans (1940). Lyon (1962), Rickey (1959), Belles (1965) and Keplinger
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(1969).The signs of fluorine toxicity below lethal concentrations are irritation
of the eyes, nose and lungs. According to Keplinger, this effect begins at an air
concentration of approximately 25 ppm F 2. When lethal exposure occurs, the
degree of irritation is increased with coughing, wheezing, and severe lacrimation.
Death usually occurs within 12 to 18 hours after severe exposure from
pulmonary congestion. Experimentally, animals that survived any exposure level
for 48 hours went on to recovery.

Repetitive animal exposures to fluorine at sublethal levels have produced
increased fluoride content of the long bones in all species tested. Thus the signs
associated with chronic fluorosis may be expected to occur if toxic levels of
fluoride are built up and released systemically. The industrial TLV is based on
this effect.

Oxygen Difluoride. An important member of the family of fluorine
containing gaseous oxidizers is OF2 which has been reported to be a severe
pulmonary irritant. Rodent exposures to as little as 10 ppm for 10 minutes have
been shown by LaBelle (1945) and Lester and Adams (1965) to cause death.
Death results from asphyxiation subsequent to severe pulmonary edema and
hemorrhage. The odor of OF 2 resembles garlic and is perceptible somewhere
between 0.1 and 0.5 ppm. Since a TLV for this gas has been established at
0.5 ppm, its odor is thought to be a safe warning property. There have been
reports of OF 2 exposure of research chemists at three different industrial plants.
All of these people were sufficiently aware of the hazard of breathing OF 2 and,
when its odor was noticed, they immediately left the exposure area. Each of the

men exposed to OF 2 complained of soreness of the chest which disappeared
within 3 days with no further effects. Their estimated exposure levels were
below 10 ppm in each case.

A human exposure to OF 2 was investigated by MacEwen and Vernot (1969)
who concluded that the man had been briefly subjected to an air concentration
of approximately 1000 ppm. His survival and complete recovery after several
days of severe respiratory distress were inconsistent with the toxicity data
derived from rodent inhalation exposures. Therefore, more comprehensive
studies on OF 2 toxicity were undertaken. These studies reported by MacEwen
and Vernot (1970) showed that dogs and monkeys were less sensitive to the
effects of OF 2 by a factor of 10, having a 1.hour LCs0 * value of 26 ppm as
compared with approximately 2 ppm for rats and mice. If this difference in
toxicity levels is related to the difference in size, then it would help to explain
the survival of the man exposed to 1000 ppm OF2.

Chronic exposures of rodents to 0.1 ppm OF 2 for 5 weeks were conducted
by LaBelle (1945) with no measurable effect.

Chlorine Trifluoride. Chlorine trifluoride (CIF3) is a highly reactive
compound with strong oxidizing properties approaching that of fluorine itself.
This compound, characterized by Grisard et al. (1951), has been successfully
used as a fluorinating agent in numerous reactions which customarily require
elemental fluorine.

*Lethal concentration which kills 50 percent of animals by inhalation route.
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One of the earliest studies on the toxicity of CIF3 was made by Horn and
Weir (1955). Chronic inhalation studies were made on dogs and rats exposed to
sublethal concentrations of the gas for periods up to 6 months. Acute effects of
CIF3 on rodents have been reported by Dost et al. (1968). The reactivity of
CIF3 is such that it is highly unlikely that it reaches the lung of exposed subjects
unchanged. One of the major breakdown products of this chemical compound in

air is hydrogen fluoride (HF), and their biological effects are identical. CIF 3 is
very irritating to the eyes and nose and, in animals, has been shown to produce
pulmonary edema, hemorrhages, and emphysema, frequently leading to death.
Experiments reported by MacEwen and Vernot (1970) showed essentially no
difference in response between animal species and a reasonable correlation
between LC50 levels for HF and CIF 3 on an equimolar fluorine basis. It is
reasonable, then, that the health and safety limits for CIF 3 are one third those of
flF.

Nitrogen Trifluoride. The acute toxicity of nitrogen trifluoride (NF3) has
been shown by Ruff (1931), Torkelson et al. (1962), Dost et al. (1968), and
Vernot and Haun (1969) to be due to massive formation of methemoglobin,
with death ensuing from the resulting anemia. Death seldom occurs unless the

methemoglobin level exceeds 75 percent, beyond which the oxygen carrying
capacity of the blood is reduced below that required to supply the needs of
body tissues, particularly the brain. Animal experiments conducted by Vernot
and Haun showed that survivors of near-lethal exposures (50 to 75 percent
methemoglobin formed) have a Heinz body type of hemolytic anemia with
destruction of approximately 35 percent of the red blood cells (RBC). In
healthy animals the RBC loss stimulates reticulocyte activity and new cells begin
forming. The time of lowest RBC values occurs ',about 10 days after exposure,
and full recovery to normal RBC levels requires approximately 40 days. There is
little species variation in respon_ to NF3 exposure, as shown in table 10-4, with
the exception of the dog which is more susceptible to lteinz body anemia

regardless of etiology than the others.

Table 10-4

Nitrogen Trifluoride LCs0 Values for Various Species (ppm)

Time(min) Rats Mice Dogs Monkeys

15 26 700 19300 38800 24 000

30 11 700 12300 20 200 14 100

60 6700 7500 9600 9200

From a toxic hazard point of view, NF3 is probably thc safest of the
fluorinated oxidizers and would be the chemical of choice if other factors, such
as specific impulse, were equal.

Chlorine Pentafluoride. There is very little known about the biological
action of chlorine pentafluoride (CIFs). Dost and his associates (1969) have
studied its effects on plants and fish and report it to be chemically less reactive
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with air and water vapor than CIF 3. It is also slightly less toxic than CIF 3 to
plants, microorganisms, and fish. The only animal exposure data available,
reported by Weinberg and Goldhamer (1967), is limited both in the variety of
species tested and in the scope of inhalation toxicity studied. From the data
available, it may be estimated that CIF 5 is slightly more toxic to animals than
CIF 3. Necropsy results were similar to those seen from most strong oxidizing
chemicals, marked pulmonary edema and hemorrhage with congestive changes in
other visceral organs. During the subacute exposure of rats to 100 ppm CIF 5 for
15 minutes per day for 6 days, respiratory enzyme activity (glutamic oxaloacetic
transaminase) was absent in the lungs, but all other criteria of physiological
status were normal. Ten-minute exposures to CIF5 of 400 ppm concentration
produced 100 percent mortality, while 200 ppm produced only a partial lethal

response in rats.

Nitrogen Tetroxide. Nitrogen tetroxide is an equilibrium mixture of
nitrogen tetroxide (N204) and nitrogen dioxide (NO2). This equilibrium shifts
toward NO2 at lower pressure and increased temperature, and NO 2 is, therefore,
the more common form to which man is exposed. Health and safety limits for
N204 are one-half what they are for NO 2 since the dimer form is exactly twice
as reactive with biological materials. Nitrogen dioxide can be identified by its
distinct odor in concentrations as low as 5 ppm, its current threshold limit value.
It is mildly irritating to the eyes, nose, and upper respiratory mucosa at
concentrations of lOto 20ppm, and, unfortunately, higher concentrations

cannot be distinguished since no further irritation is experienced until significant
pulmonary injury has been produced.

Concentrations of NO2 above 100 ppm will cause death after a relatively
short exposure. Death results from asphyxia subsequent to massive pulmonary
edema. Exposures to concentrations of NO 2 as low as 40 ppm for periods of
4 to 6 hours have produced death in all common experimental animal species.

NO 2 is probably the most dangerous to man of all irritant gases because it is
so commonly found. Its release in industrial accidents has caused many deaths.
As is often the case in accidental exposures to toxicants, the NO 2 concentrations
producing death in man have never been quantitatively identified but have been
estimated to be slightly in excess of 100 ppm. Experimental evidence of acute
NO2 toxicity in primates and other species suggests, however, that exposure to

50 ppm for 6 to 8 hours might be fatal to man. It is because of the increasing
evidence that NO 2 acute toxicity effects may occur at such low atmospheric
concentrations that the threshold limit value has been reduced several times

since it was first established at 25 ppm, to the current 5 ppm level. A _fety
factor of 10 below the lethal dose level is relatively small, when one considers

that the safety factors used for many other industrial chemicals or contaminants
are greater than 10 below nonlethal effect levels. It should also be noted that
persons with chronic respirator), disease-asthma, chronic bronchitis, and
emphysema-are more adversely affected by NO2 than are healthy individuals.

There are many conflicting reports regarding the effect of NO2 on animals
under conditions of either repeated or continuous exposure. Wagner et al.
(1965) exposed six species of animals 6 hours per day, 5 days per week to three
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concentrationsof NO2 (1,5and25ppm)for18monthswithoutproducingany
demonstrablemorphologicchangesor significantchangesin anyof theusual
indicesof normalphysiologicalstatus.Greyet al. (1952),however,reported
emphysemaandpneumonitisin ratsexposed4hoursperday,5daysperweek
for6weeksto9to 13ppmNO2.

Theresults of reported continuous NO2 exposures are also conflicting.

Freeman and Haydon (1964) exposed rats to 25 ppm of NO 2 for about
150 days and produced strikingly voluminous lungs, a 50 percent reduction in
growth rate, and eventual death. At 12.5 ppm, these investigators reported an
l l percent mortality after 213 days which was associated with 20 percent
decrement in growth and increased respiration rate in the survivors. Haydon et
al. (1965) reported no mortality or evidence of pulmonary disease or
abnormality in body or lung weight in rats exposed for 16 weeks to 4 ppm,

although the rats sacrificed exhibited the early histopathologic changes
associated with higher concentrations. Rats exposed for 90 weeks to 0.8 ppm
showed only a dight increase in respiration rate. Freeman et al. (1968) reported
continuous 3 ppm NO2 exposures of rats for 2 years produced pulmonary
changes. Terminal and bronchiolar epithelium was affected by a loss of
exfoliative activity, loss of cilia, and the appearance of crystalloid cellular
inclusion bodies. They believed that the morphologic evidence suggested a
reduction of the pulmonary cleansing function of the lungs particularly in the

peripheral regions.

Continuous exposure to 0.5 ppm NO2 for 3 months or longer has been
_lown by Ehrlich and Henry (1968) to significantly increase the susceptibihty of
mice to airborne Klebsiella pneumoniae. Henry et al. (1969) also reported that a

single 2 hour exposure of mice to 3.5 ppm NO 2 either before or after the
inhalation of an aerosol of Klebsiella pneumoniae resulted in significantly
increased mortality.

A significant epidemiologic study of the effects of exposure to NO2 was
reported by Shy et ai. (1970a, b). They found an increased rate of respiratory
illness in families and a reduced forced expiratory pulmonary volume in children

exposed to an average NO 2 concentration ranging from 0.062 to 0.109 ppm.

Conversely, Steadman et al. (1966) exposed animals continuously to five
concentrations of NO 2 ranging approximately from 0.5 ppm to 11.5 ppm for a
period of 90 days. ±Mthough 20 to 50 percent mortality was seen in several
species at the higher concentration, 0.5 and 5 ppm exposures produced no

significant effect on any biological parameters measured (nor were any
morphologic changes attributable to the NO 2 exposure seen). Similar 90 day
continuous exposures of rats, mice, monkeys, and dogs to 5 ppm NO 2 were
reported by MacEwen and Geckler (1968) in which only transient signs of stress
were seen with no significant morphologic or biochemical changes.

Data from chronic human exposure are equally confusing. Patty (1963)
reported that exposures of men to average NO 2 concentrations ranging from
10 to 20 ppm for 18 months produced no ill effects. Vigdortschik et al. (1937),
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on the other hand, reported symptoms of NO2 toxicity after 5 years of daily
exposures at approximately 2.Sppm. The symptoms included possible
bronchitis and emphysema.

There are numerous other liquid propellant fuels and oxidizers that have

either been used or seriously considered for use that are not discussed in this
chapter. For the convenience of the users of this handbook, some of the physical
and chemical properties of these compounds, along with toxicity data and safety
hmits, are listed in table 10-5, in increasing order of toxicity. Additional
information on the properties and handling procedures for these propellant
chemicals may be found in the report of the JANNAF Hazards Working Group
(1970).

Table 10-5

Some Physical and Toxic Properties
of Propellant Fuels and Oxidizers

Compound

Nitrogen Trifluoride (NF 3)

Hvdrazine (N2H 4)

Hydrogen Fluoride (HF)

1, 1-Dimethylhydrazine

(UDMH)

Chlorine Pentafluoride

(CIF 5)

Chlorine Trifluoride (CIF 3}

Nitrogen Dioxide

(NO 2 -- N20 4}

Monomethylhydrazine

(MMH)

Fluorine (F 2)

Diborane (B2H 4)

Oxygen Difluoride (OF 2)

Pentaborane (B5H 9)

Boiling

Point

(°C)

-129

113.5

19.7

63

-13.1

11.8

21.2

Vapor Pressure
at 80°F

(ram Hg, approx)

87.5

- 188

-- 93

- 145

6O0

104

3790

1375

1158

52

207

Rat 60 Min

LC50
(ppm)

-- 6700

16 2280

985 1275

1410

<400

3O0

120

245

185

160"*

2.6

10

Industrial

TLV

(ppm)

10

1

3

0.5

0.1 _

0.1

0.2

0.1

0.1

0.05

0.005

*Proposed.

** Estimated from partial data.

Carbon Monoxide

This colodess and odorless gas is still the subject of scientific controversy,
even though it was one of the earliest of the toxic gases to be recognized. The
toxicity of carbon monoxide (CO) arises from its great affinity for hemoglobin
(approximately 200 times greater than is the affinity of hemoglobin for oxygen),
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resulting in oxygen starvation of body tissues. The concentrations of CO that are

dangerous to life are shown in figure 10-2. It is not the lethal effects that are the

basis of the scientific controversy, however, but the level of CO which will

produce impairment of human mental functions. It is generally believed that

subjective symptoms of CO intoxication rarely occur below blood carboxyhemo-

globin (COHb) levels of 20 percent, while acute signs of central nervous system

embarrassment occur at COHb levels greater than 30 percent (Haldane, 1927).

Figure 10-2. Effects of CO on man as a function of concentration and exposure time.
Lightly shaded band shows region of milder effects; heavily shaded band, dangerous or
lethal region. Solid lines indicate exposure limits set by militaw services for aircraft. The
point marked at 0.005% CO (50 ppm) and 480 min is current TLV for 8-hr/day exposure in
industry. (Department of Defense, 1958; ttaldane, 1895; Henderson & Haggard, 1922;
Sayers et al_, 1922)

Reccndy, a number of investigators have suggested that the central nervous
system is impaired at COHb levels as low as 2 to 5 percent. MacFarland et al.

(1944) demonstrated impairment of visual discrimination with COHb levels of

4percent. Trouton and Eysenck (1961) reported decrement in limb

coordination at the same COHb levels. Schulte (1963) reported consistent

impairment in cognitive and psychomotor performance at COHb levels of
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5 percent with beginning tendencies for disLuption as low as 2 percent COHb,
while Beard and Wertheim (1967) reported a decrement in auditory discrimina-

tion of tone signal duration at estimated COHb levels from 4 to 5 percent.

Contradictory findings have been reported by equally competent scientists.
Clayton et al. (1960) found no association between COHb level and automobile
accidents, although Rockwell and Ray (1967) reported a possible effect of CO
exposure on estimation of distances between following automobiles in fatigued,
CO-exposed drivers with COHb levels of 5 to 10 percent. Mikulka et al. (1969)
reported no observable impairment on a battery of psychomotor performance
tasks in young men with COHb levels up to 12 percent. These findings were

confirmed by Hanks (1970). Stewart et al. (1970) found no untoward effects on
central nervous s2cstem function in sedentary males at COHb levels below
15 percent, while exposures resulting in higher blood COHb levels caused
delayed headaches, changes in visual evoked response, and impairment of manual
coordination.

Current standards for emergency exposures to carbon monoxide are bascd
on air concentrations which will not produce COHb levels greater than
15 percent. When sufficient data are accumulated to settle the controversy on
the possible influence of lower COHb levels, these standards may be lowered. In
order to clarify the relationship between CO atmospheric concentrations and
COHb blood levels, blood saturation rate curves are shown in figure 10-3 for rest

and light work. An increase in work effort decrea_s the time required to reach
the equilibrium level. Both sets of equilibrium curves originate from 0.5 percent

COHb, which is about the normal level resulting from catabolism. An increase in
CO concentration will produce a corresponding increase in CO|tb to a new
equilibrium value that is not additive with the previous level.

Prolonged exposures of experimental animals to CO have shown that
environmental adaptation occurs. Back and Dominguez (1968) and Back (1969)
reported a series of experiments in which monkeys were continuously exposed
to CO for periods up to 105 days to CO concentrations of 50, 200, and
400 ppm. No detectable effect on learned performance was seen in reaction time

to visual and auditory signals or in work output of the monkeys. The failure of
CO to impair these functions in monkeys having COHb levels up to 33 percent
was thought to be due to a concomitant increase in red blood cells and total
hemoglobin, which was shown by Vernot et al. (1970) to occur in other species

as well. The increase of total hemoglobin resulted in sufficient oxygen delivery
to tissues to prevent cellular hypoxia.

While sudden exposures to high atmospheric concentrations of CO may
cause impairment of human ability to perform tasks critical for survival, it is
believed that the slow buildup of CO concentration in a closed environment,
such as a spacecraft, while not desirable, will cause an adaptive increase in
hemoglobin and red blood cells that will permit normal functioning at elevated
COHb levels and, more important, survival.
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Figure 10-3. Carbon monoxide uptake in man.
(Derived from data of Forbes et al., 1945)

Spacecraft ThreshoM Limit Values

Experimental data for establishing spacecraft continuous exposure limit
values are extremely limited. The continuous exposure of animals to
contaminants is a difficult and expensive task and therefore has been done only
with a few materials. The needs and problems associated with this type of
research has been described by Back et al. (1962) and Thomas (1968). The first
reports of results of continuous prolonged exposures of animals to probable
spacecraft contaminants were given by Sandage (1961a,b) and by House (1964).
Additional studies have been reported by MacEwen and Geckler (1968) and by
Jones et al. (1970).

As a beginning step in establishing spacecraft exposure limit values, the Panel
on Air Standards for Manned Space Flight of the Space Science Board-National
Academy of Sciences proposed provisional limits for a few materials identified as
spacecraft contaminants. The provisional long-term exposure limit values are
shown in table 10-6. The panel decided that U.S. Navy submarine standards were
suitable as guidelines for space mission limits for 90-day exposures but could not
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be extrapolated for longer missions since interplanetary flight is not easily
aborted, and return to Earth may take weeks or months. A list of chemical
contaminant submarine TLV values is given in table 10-7. For simple alaphatic
hydrocarbons not listed, the 90-day limit is 60 mg/M 3 and for simple aromatic
hydrocarbons other than benzene, it is 10 m,,ffM3. MacEwen and Geckler (1968)
recommended 90-day spacecraft exposure limit values of l ppm for NI)2,

0.01 ppm for ozom_ and 0.5 ppm for carbon tctrachloride.

Table 10-6

Provisional l,imits for Space Cal_in (_ontaminants

for 90 and I 1)()() I)ays

Air Contaminant

n-Butanol

2-Butanone

Carbon monoxide

Chloroform

Dichloromethane

Dioxane

Ethyl acetate

Formaldehyde

2-Methylbutanone

Trichloroethylene

1,1,2-Trichloro, 1,2, 2-

trifluoroethane & re-

lated congeners

Air Limit in PPM

90 1000

Days Days

10 10

20 20

15 15

5 1

25 5

10 2

40 40

0.1 0.1

20 20

10 2

1000 200

(Data from National Academy of Sciences, Space Science

Board, 1968)

Emergency Exposure Limits (EEL)

Provisional emergency limits for spacecraft contaminants were established by
the NAS Panel on Air Standards for Manned Space Flight for five materials as
shown in table 10-8. These limits are intended only as guidelines for a single
exposure which does not reoccur during the flight.

Emergency exposure limits for use in fuel manufacturing, storage, and
handling have been established by the NAS/NRC Committee on Toxicology for
a number of chemicals including some propellant fuels and oxidizers. Some of
these EEL values are shown in table 10-9. EEL values are intended only as
guidelines for selection of engineering criteria for storage limitations. By
definition, an EEL is a limit for an accidental exposure which would normally

not be repeated in a lifetime. It is based on a contaminant dose which is not
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expected to produce any irreversible physiologic changes and will permit the
conduct of emergency duties and escape from the environment. EEL's are
closely related to specific circumstances of exposure and should not be used for
different conditions without first verifying their applicability. These values
should never be exceeded since they contain little or no safety factor.

Table 10-7

U.S. Navy Submarine Contaminant Concentration Limits
(ppm)

1 Hr 24 Hr 90 Day ACGIH TLV*

Acetone -- 2000 30 1000

Acetylene - 2500 2500 2500

Ammonia 400 50 25 50

Benzene - 100 1 25

Carbon Monoxide 200 200 25 50

Chlorine - 1 0.1 1

Dichlorodifluoromethane 30 000 20 000 1000 1000

1, 1, 2, 2-Tetrafluoro-

1,2-Dichloroetha ne 30 000 20 000 1000 1000

Ethyl alcohol - 500 100 1000

Hydrogen - 3000 3000 -

Hydrogen Chloride 10 4 1 5

Hydrogen Fluoride 8 1 0.1 3

Methane - 5000 5000 -

Methyl alcohol - 200 10 200

Methyl Chloroform 350 1000 500 200

Monoethanolamine 50 1 0.5 3

Nitrogen Dioxide 10 1 0.5 5

Ozone 1.0 0. I 0.02 0.1

Phosgene 1.0 0.1 0.05 5

Sulfur Dioxide 10 5 1 200

Toluene - 100 - 200

1,1,1 -Trichlorethane 1000 500 200 350

Xylene - 100 -- 100

*American Conference of Governmental Industrial Hygienists, 1966.

Spacecraft Contaminants

The appearance of contaminants in space cabins during flight is caused by

_veral factors, none of which can be completely eliminated. The factors are:

(l) outgassing of cabin construction materials under reduced pressure

conditions, (2)volatile metabolic waste products of the crew, (3)volatile
components of spilled food, and (4)leaks from the environmental or flight
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control systems. Contaminants found in submarines differ only in the area of

outgassing from construction materials but have additional sources due to the

increased amount of operational machinery. Many of the contaminants found in

manned spacecraft simulation tests were also found in some of the Mercury and

Apollo space flights.

Table 10-8

Provisional Emergency Limits

for Space Cabin Contaminants

Air Contaminant

2-Butanone

Carbonyl fluoride

Ethylene glycol

2-Methylbutanone

1, 1,2-Trichloro, 1,2,
2, 2-trifluoroethane
and related congeners

Air Limit for 60 Min

(ppm} I (rag/M3)100 294

25 68

1O0 254

1O0 352

30 000 2320

(Data from National Academy of Sciences,Space Science
Board, 1968)

A type of spacecraft contaminant which has received little notice consists of

particulate pollutants which are not easily removed from the air under

conditions of weightlessness. Although a spacecraft cabin is cleaned many times

before use, some dust may remain in inaccessible places and become airborne by

mechanical means during flight. Other sources of particulate contamination are

foodstuffs, abraided flight uniforms, and powdering from painted surfaces.

Particles have been seen by astronauts in flight but information is lacking on

particle size and concentration. Particulate removal is accomplished to a limited

degree in the filter section of tile air handling system. Additional sources of

particulate contamination in future space flights may be found when

regenerative life support systems are placed ill operational spacecraft.

A comprehensive list of contaminants found in space flight to date, in

submarines, and in some of the simulated space flight tests conducted at the

USAF School of Aerospace Medicine is given in table 10-10. This list also

includes the contaminants found ill Sealab II and in the McDonnell Douglas

Corporation_ 60-day manned test of a regenerative life-support system (1968).

This list, although not complete, contains 88 contaminants that were common

to many of the space flights and spacecraft simulator runs and are also found in

cabin material off-gassing studies. Although the presence of these contaminants

has been verified, httle or no information is yet available about the

concentrations present in the spacecraft. Until the contaminant concentrations

can be a_essed, no judgments can be made concerning the toxic hazard of a

space cabin environment.

487-858 O - 73 - 3i



474 Bioastronautics Data Book

Table 10-9

Emergency Exposure Limits of the Committee
on Toxicology NAS/NRC

(ppm)

Compound 10 Min 30 Min

Acrolein

Aluminum fluoride 25 mg/M 3 10 mg/M 3

Aluminum oxide 50 " 25

Ammonia (anhydrous) 500 ppm 300 ppm

Boron trifluoride 10 5

Bromine pentafluoride 3 1.5

Carbon disulfide 200 100

Carbon monoxide

(normal activity) 1500 800

(mental acuity) 1000 500

Chlorine pentafluoride 3 1.5

Chlorine trifluoride 7 3

Diborane 10 5

1, 1-Dimethylhydrazine 100 50

Ethylene oxide 650 400

Fluorine 15 10

Formaldehyde - -

Hydrazine 30 20

Hydrogen chloride 30 20

Hydrogen fluoride 20 10

Hydrogen sulfide 200 100

JP-5 5 mg/I 5 mg/I

Monomethylhydrazine

(MMH) 90 ppm 30 ppm

Nitrogen dioxide 30 20

Nitrogen trif luoride - 100

Oxygen d if luoride 0.5 0.2

Perchloryl fluoride 50 20

Sulfur dioxide 30 20

Sulfuric acid 5 mg/M 3 2 mg/M 3

Tellurium hexafluoride 1 ppm 0.4 ppm

1,1,2-Trichloro-1,2,

2-trifluoroethane

(Refrigerant 1 13)

50 Min

0.2 ppm

7 mg/M 3

15 "

300 ppm

2

0.5

5O

400

20O

0.5

1

2

30

250

5

3

10

10

8

5O

2.5 mg/I

1 5 ppm

10

50

0.1

10

10

1 mg/M 3

0.2 ppm

1500 ppm
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Table 10 -10

Contaminants Found in Confined Spaces

During Actual or Simulated Space Flights

Contaminant

Acetaldehyde

Acetic Acid

Acetone

Acetylene

AIIvI Alcohol

Ammonia

Amyl Acetate

Benzene

1-3 B utadiene

n-Butane

2-Butanone

1-Butene

2-Butene cis, trans

n-Butyl Alcohol

iso-Butyl Alcohol

iso-Butylene

Butyraldehyde

Carbon Disulfide

Carbon Monoxide

Chlorobenzene

Chlorofluoroethylene

Chloroform

Chloromethane

Cyclohexane

Cyclopentane

1-2, D ichloroethane

2-2, D imethylbutane

2-3, Dimethylbutane

Dioxene

Ethane

Ethanethiol

Ethyl Acetate

Freon 12

Freon 22

Freon 113

Freon 114

Furan

n-Heptane

n-Hexane

Hexene

Ethyl Alcohol

Ethyl benzene

Ethylene

Ethyl Ether

_urces*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

XX XXXXXXXX X

X XX XXX

XXXXXXXXXXXXXXXX

XXX X X

XXX

X X x

XX

X XX X xxx XXXX

X X x

XXXX X x XXX xx

XX X XXXX xx

X X X X X X

XX X X X

XX X X XX

X X XXX X

X X X X

XXX

X X X

XX XXX

XXX

X X

x X XXX

x XX X

XXXX XXXXX

XX XX

XX XXXXXXX

XXX X XXX

XXX

XXXX

XXXXXXXX

X X X x

X

X

X x X X

X

X

X

x x X

XXX X XXX xxx

X XX X X

XXX XXX X

X x X

XX XXX X

x xXx

X XXX XXX

XXX XXXX xxx

X x

XXXXXXXXXXXXXXXXX

XXX XXX

XX X XXX X X

XX XXXX

*See notes at end of table.
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Table 10-10 (Continued)

Contaminants Found in Confined Spaces
During Actual or Simulated Space Flights

Contaminant

Ethyl Formate

p-Ethyl Toluene

Formaldehyde

Freon 11

Hydrogen

Hydrogen Fluoride

Hydrogen Sulfide

I ndene

Isoprene

Isopentane

Methane

Methyl Alcohol

2-Methylbutanone-3

Methyl Chloride

Methyl Chloroform

Methyl Cyclopentane

Methylene Chloride

Methyl Cyclohexane

Methyl Ethyl Benzene

Methyl Ethyl Ketone

Methyl Isobutyl Ketone

Methanethiol

2 or 3-Methyl Pentane

Methylsiloxane Polymers

Methyl Thiophene

Nitrogen Oxides

Pentafluoroethane

Pentane

iso-Pentane

iso-Pentene

Perchloroethylene

Propane

Propene

Propionic Acid

n-Propyl Alcohol

iso-Propyl Alcohol

Propylene

Sulfur Dioxide

Toluene

1, 1,1-Trichloroethane

Source*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

X X

X X x

X

XX

XXX

xxxx

x

X

X

X X

X X

X x

X X

X X

X

x

X X X

X

X XXX

X

X

X X

X XX

X XXX

XXX

XXXXX

X XXXXX

X

XX X

XXX

X

XXXXXXX

XXX

X

X XXXX

XXX

X XX

XX

XXX

x x

X

x X

xxx

XXXX

X x

xxx

XX XXXXX

X X

XX

XX XXX

XXXX XXX

xx XXX

X

XXXX X

x

X X X

X X X

X

x X

X X X X

x

X X

x

X

X x

x X

X X X

x

X

X

X x

X X

X x

X X

X X

X X

X X

X X

X x

x X

X

X

x

X

X X

X

X X

X X X X X

X

*See notes at end of table.
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Table 10-10 (Continued)

Contaminants Found in Confined Spaces

During Actual or Simulated Space Flights

SOUFCe*

Contaminant
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Trichloroethylene x x x x x x x x
Trimethyl Pentane x x x

Vinyl Chloride x x x x x x

Xylene x x x x x x x x

*Note: Data originally reported in publication of the National Academy of Sciences' Space
Science Board (1968) from the following sources:

SOURCE LIST

1. Mercury Spacecraft: Saunders (1962), Samonski (1967)

2. Apollo GT-3: Panel on Air Standards for Manned Space Flight (1968)

3. Apollo GT-4: Panel on Air Standards for Manned Space Flight (1968)

4. Apollo GT-5: Panel on Air Standards for Manned Space Flight (1968)

5. Apollo GT-7: Panel on Air Standards for Manned Space Flight (1968)

6. Apollo GT-10: Panel on Air Standards for Manned Space Flight (1968)

7. Apollo GT-12: Panel on Air Standards for Manned Space Flight (1968)

8. SAM-I: Conkle et al. (1967)

9. SAM-II: Conkle (1966)

10. SAM-Ill: Adamsetal.(1966)

11. MESA I: Saunders (1967A), Cotton et al. (1966)

12. MESAII: Cottonetal.(1966)

13. Integrated Life Science Systems Tests: Hodgkiss et al. 11967), Toliver et al. (1966)

14. Offgassing Tests: Hodgson et al. (1966), Pustinger et al. (1966)

15. Submarines: Naval Research Lab Reports
16. SeaLab I1: Saunders (1967B)

17. Life Support System: McDonnell Douglas (1968)

Another possible source of future contaminant generation may be the

thermal reaction products formed by small electrical fires or contaminant

removal systems. One such material was identified in a manned life support test

(MESA I) when 1, 2-dichloroacetylene was found to result from the reaction of

trichloroethylene with lithium hydroxide. The lithium hydroxide is used as a

scrubber for removal of metabolically produced CO 2. The production of

dichloroacetylene caused the experiment to be stopped with resulting loss of

time and money. This contaminant has caused other expensive delays (Saunders

& Williams, 1969) and the circumstances causing its formation should not be

allowed to reoccur. Specifically, trichloroethylene shouM not be introduced into

a spacecraft in any form at any time.

Outgassing studies have been conducted on a large number of spacecraft

construction materials to identify possible coataminants. Animal experiments

also have been conducted to screen the candidate space cabin materials used in
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the Apollo series. Results of the, screening studies made under reduced
pressure-10Opercent oxygen conditions have shown the outgassed con-
taminants of most cabin materials to be nontoxic under the test condition used,
as reported by Culver (1966) and Haun (1967). Of several hundred tested, one
material proved to be toxic when heated. Carboxynitroso rubber, which was
selected as a candidate spacecraft material because it was nonflammable, was
found to decompose at 300°C and to form highly toxic decomposition

products. MacEwen (1968) estimated that the decomposition of 15 grams of
carboxynitroso rubber in an Apollo space cabin would be fatal if inhaled for
2 minutes.

Water Quality Standards for Space Missions

Standards for the quality of potable water aboard spacecraft are as
important as those for air quality. The amount of water needed for drinking and
person'M hygiene is sufficiently great on extended space missions to make storage
prohibitive. Therefore, water used by the crew for personal or cabin hygiene and
body waste water and water produced by spacecraft equipment must be
collected, treated, and reused.

Water quality standards need not be as stringent as those used for municipal
water supplies since the latter are established to protect a broad population,

including young and old, and sick and healthy, for a lifetime, not just a limited
period. However, whereas it is true that spacecraft water will not be

contaminated by soil leachates and industrial pollution, it may contain
concentrated impurities (because of recycling) released by the water treatment
_Tstem and the crew itself.

The requirements for spacecraft water quality standards are based on
aesthetic or physical criteria, trace chemical content, and microbiological
impurities. From the crew viewpoint, the aesthetic criteria may be most
important since unpleasant odors or taste may discourage normal use of the
water which may in turn cause adverse effects on health. The aesthetic standards
recommended by the National Academy of Sciences' Space Science Board
(1967) are listed in table 10-11. Chemical standards are listed in table 10-12.

Table 10-11

Spacecraft Water Quality Standards for Physical Properties

Quality SpacecraftLimit MunicipalLimit

Turbidity (Jacksonunits) Not to exceed10 Not to exceed5

Color (platinum -- cobaltunits) Not to exceed15 Not to exceed15

Taste Noneobjectionable -

Odor Noneobjectionable Odor No.3

Foaming Nonepersistentmore than -
t5sec

(National Academyof Sciences,SpaceScienceBoard,1967; PublicHealthService,1962)
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Table 10-12

Spacecraft Water Quality Standards for Chemical Content

(rag/i)

479

Chemical Spacecraft PHS
Limit (Upper Limit)

Arsenic

Barium

Boron

Cadmium

Chemical Oxygen Demand
(dichromate method)

Chloride

Chromium (hexavalent)

Copper

Fluoride

Lead

Nitrate and nitrite (as nitrogen)

Selenium

Silver

Sulfate

Total sol ids

0.50

2.00

5.00

0.05

100.00

450.00

0.05

3.00

2.00

0.20

10.00

0.05

0.50

250.00

1o0o .o0

0.05

1.00

0.01

250.00

0,20

1.00

1.00

0.05

0.001

0.01

0.05

250.00

(National Academy of Sciences, Space Science Board, 1967; Public
Health Service, 1962)

Recirculation or reuse of bodily and hygienic waste waters requires

consideration of biological contamination. The nature of a water reclamation

system is such that microbiological organisms of body of air origin may find

many suitable physical and nutritional support sources. Although the biological

forms of bacteria, molds, fungi, and viruses would be limited to those with

which the bodies of the crewmembers are familiar, there is ample opportunity

for overgrowth which may overwhelm the normal tolerance to small numbers of

these organisms. Furthermore, biological growths in the water system may add

byproduct toxins or unwanted taste and odor. The recommended standard of

the National Academy of Sciences' Space Science Board (1967) is stated as follows:

Because of the diverse natures and modes of hazard of possible

biological contaminants in water-recovery systems for space use, the

Panel found no justification for the establishment of standards based

on individual types of microorganisms. It was considered that the

goal should be essential sterility and that total counts of aerobic,

facultative and anaerobic organisms would be the best indications of
attainment of this condition. A maximum of 10viable micro-

organisms per milliliter was considered to be a realistic criterion for

"essential sterility."
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It was considered essential, moreover, that this criterion of

e_ential sterility be applied to all parts of the recovery system

beyond the initial phase _paration step and not simply to the

finished product water.

The Panel felt strongly that some positive form of sterilization

was needed at some point in the recovery-storage-delivery system

immediately after phase separation. In addition, it was felt that there

should be provision for periodic heat treatment of the subsequent

portions of the system to forestall hazards of possible bacterial or

fungal growth.

It will be difficult to monitor the quality of the drinking water under actual

space flight conditions. Therefore, any water reclamation system should be

thoroughly use-tested in simulator runs to establish that it meets required

chemical, biological, and physical standards. Some sampling may be feasible

during flight but could by necessity be limited to simple indicator tests of single

ions and simple biological cultures on multipurpose media. Research from the

Apollo program has produced rapid techniques for identifying the presence of

living forms through the reaction of their ATP content with the "fire fly"

enzymes to giw_ a visible signal. This test will not distinguish pathogenic

organisms from nonpathogens but would be applicable to the Space Sciences

Board's recommendation of 10 microorganisms per milliliter without regard to

their identity or pathogenicity.
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CHAPTER 11

RESPIRATORY SYSTEM

by

Roscoe G. Bartlett, Jr., Ph.D.

International Business Machines Corporation

This chapter presents a treatment of the topic of human respiration
intended primarily for use by persons who are not professionals in the biologic
sciences, It discusses developments in the field where these are relevant to
problems faced by engineers and designers of life support equipment. Essentially
all of the relevant data concerning respiration have been known for some time;
the problem has been one of application, not acquisition of information. There
is a growing appreciation of a gap in effective dialogue between biologists
(including those in medicine) and engineers and physical scientists. This chapter
represents an attempt to present material in a form that should bridge this gap in
the area of respiratory physiology. To the skilled biologist, the presentation will

perhaps appear condescending and to the theoretical engineering scientist the
engineering and physics naive; the presentation is not really meant for either of
these. Rather it is meant for the engineers and designers who must face and solve
the myriad of small and large problems in the development of any man-rated
system.

It is beyond the scope of this book to present a description of the basic
anatomy of the respiratory system, and length constraints also necessitate an
abbreviated treatment of the physiology of respiration, For a better
understanding of the data presented, it is recommended that the reader who is
unfamiliar with these topics consult any one of the following texts for
background material:

Best, C. H., & Taylor, N. B. The physiological basis of medical practice.
(8th ed.) Baltimore: The Williams & Wilkins Company, 1966.

Comroe, J. H., Jr., Forster, R. E.,ll, Dubois, A. B., Briscoe, W. A., &
Carlsen, E. The lung: clinical physiology and pulmonary function tests. (2nd
ed.) Ehicago: Year Book Medical Publishers Inc., 1962.

Ruch, T. C., & Fulton, J. F. (Eds.) Medical physiology and bio-
physics. Philadelphia: W. B. Saunders Co., 1960.
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The followiug list of ternrs may 'also be helpful:

Apnea-no breathing activity

Dyspnea-labored breathing, especially if not warranted by physical
exertion

Eucupnea-normal level of body CO 2

Hypercapnea-Higher than normal level of body CO 2

ttyperoentilation-eorrectly, a level of lung ventilation in excess of that
required to maintain CO 2 at eucupnea levels: sometimes incorrectly used to
describe the labored breathing produced by exercise or stress

Hypocapnea-lower than normal level of body CO 2, produces hypereapnea

Minute Volume-volume of air moved in and out of the lungs in one
minute, may be either inhalation or exhalation volumes, which are rarely the
same. The fact is usually ignored when this term is used.

Respiratory Exchange Ratio (R)-CO2/O2 ratio as determined from
inhaled exhaled gas composition comparisons. Will deviate from R. Q. with
hypoventilation ate! hypervcntilation.

Respiratory Quotient (R Q)-CO2/O 2 ratio as a result of tissue metabolism

Respiratory Rate-frequently trued by physicians and physiologists as a
synonym for breathing frequency, used by biochemists to indicate the rate of
tissue metabolism.

General Anatomy of Chest and Lungs

The relations of chest and lungs are shown in figure 11-1, which

schematically shows the grosser features and the position of the heart, which

shares the chest cavity with the lungs. The major divisions of the "respiratory

tree" and a schematic of the micro anatomy are shown in figure 11-2. The

branching and rebranching of the bronchi and bronchioles gives rise to a very

large number of respiratory bronchioles and alveoli. The total surface contact

between alveolar air and lung capillary blood is approximately 100 square meters

(about half a singles tennis court) in the healthy adult male.

Accumulating evidence indicates that microscopic lung structure is

deleteriously affected by a number of pollutants. Since the life _upport engineer

may be called upon to provide respiratory protection and support equipment for

use in environments where the atmosphere cannot be economically cleansed of

pollutants some knowledge of the microscopic anatomy of the lung may be
useful.

Intrathoraeic Pressure

During development of the fetus and during the growth of the child, the

chest cavity enlarges faster than the lung increases in size. Consequently, the

lung pulls away from the chest wall with greater and greater pressure. This

pressure is referred to as the intrapleural pressure or intrathoracic pressure.

Because intrathoracic pressure is applied directly to the heart and major thoracic

blood vessels, changes in intrathoracie pressure have effects on the circulation.
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Increasedintrathoracicpressurepreventswmousretornto theheart.Cardiac
outputrapidlyfallsreducingbloodpressureandbloodsupplyto thebrain,
and,sinceit hasnoabilityto accumulateanoxygendebt,thebrainceases
to functionandunconsciousnessensues.Theengineeramtdesignerof life
supportequipmentnmstbe carefulnot to produceor require chau#_s in

this pressure that compromise the circulation.

PARIETAL PLEURA

VISCERAL

PLEURA

i MEOIASTINUM

////

//

,I/' _ RIBCAGE

DIAPHRAGM /'/ \
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HEAR]- AND MAJOR

BLOOD VESSELS

Figure 11-1. Gross anatomical relations of chest and lungs.

General Function of Respiration

In the majority of people during routine activities, the depth and rate

of breathing movements are regulated for the maintenance of carbon

dioxide in the arterial blood. Oxygen want can be regulating, but only

when the oxygen content of the inspired gases is reduced to nearly half

that in air at sea level. Oxygen partial pressure, except in some unusual

circumstances, should always be high enough so tbat the breathing will be

regulated by the body requirements for CO 2.

The oxygen content of lung air will be determined by the oxygen

content of the inspired gases, the flushing of the hmgs required for CO 2

regulation, and the rate of oxygen uptake by the blood as it pasts through

the lungs.
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Figure 1 1-2. Micro-anatomical relations of chest and lungs. Terminal bronchiole gives rise

to lO to 20 respiratory bronchiolcs, each of which widens into alveolar ducts with many
hundreds of alveoli. The alveolar duct often has several major partitions, the so-called

alveolar _cs. Intcralveolar scpta are shown extcnding into the sacs; the irregular small spaces

thus fnrmrd are the alveoli.
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Respiration

Strictly speaking, respiration refers to the tissue enzyme oxidation
processes that utilize oxygen and produce carbon dioxide. More generally
this term designates the phases of oxygen supply and carbon dioxide
removal. The following annotated outline shows the general subdivisions of
the overall process:

1. Breathing-Movement of chest/lung complex to ventilate the alveoli

2. External respiration-Exchange of gas (0 2 and CO2) between lung
(alveolar) air and blood

3. Internal respiration-Exchange of gas between tissue blood and the
tissue cells

4. True respiration-Ultimate utilization of oxygen by tbe cells with the
coincident release of carbon dioxide.

To the biochemist respiration refers to the enzymatic processes in the
tissues which use oxygen and produce carbon dioxide. Figure 11-3 shows
the general function of the blood in tissue gas supply and removal.

Figure 11-3. Gas exchange between the capillary blood and tissue cells.
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BreathingMovements
Thevolumeofthelungsisdeterminedbythebalancebetweentheelasticrecoil

ofthehmgsandtheelasticityof thecheststructureintherestingposition.From
thismidpositionappropriatemuscularactionwillproduce either an exhalation or
an inhalation. Breathing motion during space flight, as on Earth, is produced by
active inhalation (increasing lung volume above of nfidposition). Subsequent pas-
sive exhalation is produced by tile elastic recoil of the chest/I ung complex releasing
potential energy stored during the active inhalation. Figure 11-4 depicts the
balance of forces establishing nfidposition and the mechanism of passive exhalation
during ,ormal breathing. Any system design or use that requires forced exhalation
(e.g., pressure, breathing in high altitude flying) will produce rapid discomfort and
thtigue. Therefore, low exhalation resistance is required.

C 0= _ - LUNG.......

.... CHEST WALL

/
\

/[

7-

BALANCE OF FORCES

AT MIDPOSITION

POTENTIAL ENERGY STORED

DURING INHALATION

Figure I 1--l. Balance of forces at midposition and mechanism of passive exhalation.

Inhalation Movements

The mechanism of inhalation may be an important consideration in support
equipment design because any circunmtance which tends to deform the usual

mechanism will be both limiting and fatiguing.

The expansion of the chest in the lateral diameter is produced by movement of
the lower full ribs (6 to 10). They are bowed downward, and, during inhalation,
move up and out much as the bail on a bucket is raised. The chest is increased in its
anterior/posterior diameter by movement of ribs 2 and 5, which elevate the
sternum. In adults, the ribs have a downward slant from their attachment to the
vertebral column.



Thechestis increased
diaphragm.
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in the head-foot dimension by descent of the

Exhalation Movements

In most breathing activity, exhalation is entirely passive. The relaxation of
the inhalation muscles permits the forces of gravity and stored elastic energy to
return the chest/lung complex to its normal midposition. In weightlessness, only
elastic recoil remains as a passive force for exhalation; but it is adequate. In

active exhalation the ribs move down, decreasing both the anterior/posterior and
lateral dimension of the thorax. This compression is a usual concomittant of
parturition (childbirth), micturition, defecation, and vomiting.

Control of Breathing

Frequency and Depth Variations

To understand the effects on breathing of various conditions of space flight,
it is well to know the basic mechanisms by which the body regulates the rate and
depth of breathing. Normal resting rates may vary from 5 to more than
30 breaths per minute and httle is known about the mechanisms that determine
individual differences. Slower breathing rates are related to greater breathing
depths. This relationship is a very constant one. There is, on the other hand, a
very narrow normal range for alveolar ventilation. The rate and depth of
respiration produces, in the average individual, an alveolar CO2 concentration of
40 mm Hg; thus, deeper breaths accompany slower breathing rates.

To differentiate alveolar ventilation from total lung ventilation the following
terminology is used:

1. Pulmonary ventilation-The total amount of air moved by the breathing
movements

2. Alveolar ventilation-The volume of inspired gas which reaches and
ventilates the alveoli, i.e., total ventilation minus dead space ventilation.

Table 11-1 shows the relations to produce a 6.0 liter per minute alveolar
ventilation with 150 ml dead space.

Table 11-1

Dead Space Alveolar
Breathing Rate Total Ventilation

Ventilation Ventilation
Breaths/rain _ /rnin

/min _/rain

5

10

20

3O

0.75

1.50

3.00

4.50

6.75

7.50

9.00

10.50

6.0

6.0

6.0

6.0
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When equipment dead space is added to body dead space, the breaths at any

one breathing frequency must be correspondingly deeper. Considerable

difference of opinion exists as to the effects of added dead space. Some

investigators believe that there are compensating mechanisms that tend to keep

CO 2 at tt,e desired level. Others do not. Thus, engineers and designers may have

to decide between added support system complexity and dead space increases. A

brief description of some of the mechanism of breathing control will be

presented so that the dead space effccts car, be better appreciated.

Mechanisms of Breathing Control

Normal rhythnuc breathing is controlled by the requirement to ventilate the

lungs to removc CO 2 as fast as it is produced by metabolic activity. There are,

however, other factors effective in the control of breathing. These arc illustrated

schematically in figure 1 1-5 and described briefly below.

CEB_B_AL COHIt X

:: Y_q ×"_"'_ 1 l'.f/..._/

Figure 11-5. Respiratory" control elements.

Cerebral Cortex Control. Physical exercise results in an immediate increase

in pulmonary ventilation. Impulses originating in the cerebral cortex

stimulate the respiratory center to greater activity, so that breathing is

increased in anticipation of exercise. Breathing is also regulated by the
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cerebral cortex to accommodate talking, swimming, etc. Within limits, there
is also a voluntary control of breathing that is cerebral in origin.

Under heavy exercise, maximum pulmonary ventilation can reach 110 to
120 liters per minute, as compared to a resting rate of 6 liters per minute.
In aviation, however, extremes of physical activity are not encountered,
with the metabolic oxygen consumption seldom exceeding 2 to 3 times the
resting rate. On this basis, the provision of oxygen in military aircraft is
based on a pulmonary ventilation rate of 25 liters.

Blood Pressure Effects. Pressoreceptors in the carotid sinus respond to

blood pressure changes with impulses that regulate breathing rate as well as
blood pressure. Increased blood pressure results in a lowercd respiratory rate
and falling blood pressure increases tile rate.

Chemoreceptor Reflexes. The primary receptors for chemical control of
breathing are located within the respiratory system. There are, however,
chemoreceptors adjacent to the aortic and carotid arteries that reflexively
affect breathing regulation. Two reflexes are involved. Increases in the PCO2
and hydrogen ion concentration stimulate breathing to make it faster and
deeper; decreases depress breathing. Falling oxygen/blood tensions (oxygen
want) also stimulate breathing. With a falling oxygen content of inspired air,
the blood is better oxygenated with increased alveolar ventilation. This
mechanism produces hypocapnia at high altitudes without supplemental
oxygen. Under these conditions, the hypoxic drive overrides the usually
precise PCO2 control. The resulting hyperventilation decreases the carbon
dioxide concentration, thereby effecting an increase in oxygen concentration
since water vapor pres,sur, remains constant.

Lung Stretch Receptors. There are three types of stretch receptors in
the lung that are stimulated progressively as the lung is inflated. One set of
receptors increasingly inhibits further inhalation and finally terminates it.
Passive exhalation then follows. When inhalation is deeper and more forceful
than usual, another set excites the inspiratory center of the medulla to
further intensity of inspiration. The response of these receptors is short
lived and inhalation inhibitory receptors come into play, abruptly
terminating inhalation. Lastly, when inhalation is very deep, for example,
during heavy exercise or emotional stress, a third set of receptors produces
a forced, active exhalation.

Reflexes from Muscles and Joints. Increases in breathing activity during
exercise cannot be explained by chemical or blood pressure changes since
arterial blood PCO2 is usually lower and PO2 elevated during exercise

compared to values at rest. A very important factor in increased breathing
activity during exercise is the reflex stimulation from joint and muscle
movement. Even movement of the arm or leg stimulates breathing.
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Lung Volumes and Capacities

For descriptive convenience the total capacity of the hmg at full
inspiration is divided into several function',d subdivisions. These are defined

below and illustrated in figure 11-6.

r-

g

t_

RESIDUAL VOLUME

EXPIRATORY RESERVE

VOLUME

TIDAL VOLUME

INSPtRATORY

RESERVE

VOLUME i°

Figure 11-6. Inspiratory capacity and tidal capacity.

The four primary lung volumes which do not overlap are:

1. Tidal Volume (TV)-the volume of gas inspired or expired during
each respiratory cycle.

2. Inspimtory Reserve Volume (IRV)-the maximal volume that can be
forcibly expired following a normal inspiration (from the end-inspiratory
position).

3. Expiratory Reserve Volume (ERV)-the maximum amount of air that
can be forcibly expired following a normal expiration.

4. Residual Volume (RV)-the amount of air remaining in the lungs
following a maximum expiratory effort.

Each of the four following capacities includes two or more of the
primary volumes.

1. Total Lung Capacity (TLC)-the sum of all four of the primary lung
volumes.

2. Inspiratory Capacity (IC)-the maximum volume by which the lung
can be increased by a maximum inspiratory effort from midposition.
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3. Vital Capacity (VC)-the maximum amount of air that can be
exhaled from the lungs following a maximum inspiration. It is the sum of
the inspiratory reserve volume, tidal volume, and expiratory reserve volume.

4. Functional Residual Capacity (FRC)-the normal volume at the end
of passive exhalation, i.e., the gas volume which normally remains in the
lung and functions as the residual capacity.

The lung volumes and capacities are frequently determined by use of a
spirometer (a volume displacement device into which the subject breathes).
From this instrument a spirogram (volume change versus time) is obtained.

Significance of Lung Volumes for Equipment Design

Functional Residual Capacity. FRC is important in equipment design for
two principal reasons. First, when a closed-loop breathing system is used,
the total gas volume will be the sum of the gas volumes of the rebreather
loop and FRC and the tidal volume. (The tidal volume will be contained in
either the lungs or the rebreather bellows or will be distributed between

them during inhalatory or exhalatory activity.) This total system gas volume
is important in considerations of inert gas dilution, expansions or
contractions with pressure change, inert gas washout, etc. Secondly, should
the expanding gases exceed tolerable pressures, the designer must assure that
a breathing apparatus will not so impede the flow of these rapidly
expanding gases as to increase lung pressures above these critical levels.

Residual Volume. Because the residual volume is that portion of lung
volume that remains in the hmg after a forced exhalation, to reduce lung
volume below this level will require compression of the chest/lung complex
or an increased trans-lung (intrapleurai pressure to alveolar air pressure)
pressure gradient as the result of reduced external breathing apparatus
pressure acting through the airway. Regardless of the mechanism, lung
collapse (atelectasis), lung blood vessel rupture, pulmonary edema, or any
combination of these three effects may occur. It is therefore, important to
assure that system operation over every possible range of pressure changes
never produces such pressure differentials as to require a lung volume less
than rcsidual volume.

lnspiratory Capacity and lnspiratory Reserve Volume. lnspiratory
capacity represents the maximum volume of air that can be forced into the

lung by ebanges in system volume, without producing overexpansion of the
lungs. The volume of the inspiratory reserve capacity is progressively
reduced during an inhalation, and the remaining volume that can be inhaled
is referred to as the inspiratory reserve volume. Thus, during a breathing

cycle, the permissible increase in lung volume imposed by system pressures
is reduced by the tidal volume. When system pressures are such as to

require a lung volume increase greater than that represented by the
inspiratory capacity (or inspiratory reserve volume, as appropriate), the lungs
are overextended, and lung rupture is possible. It is, therefore, important to
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assure that system pressure changes will never require an increase in lung

volume above what could be produced by a maximum inhalation.

Tidal Volume. A closed-loop system must have a rebreather belh)ws that

will accommodate the largest expected tidal volume. Such a tidal volume

c_mld, of course, be as large as the vital capaeity. But it might not be

practic',d to provide so large a rebrcather bellows. In such a case a

rebreather bellows of reasonable size should be provided (determined by

expected level of exercise, etc.). In this case increased inhalation volumes

can be provided from oxygen storage and increased exhalation w4umes can

be accommodated by venting through a spring loaded exhalation pressure

safety valve.

7btal Lung Capacity. In an extreme case,, the maximum amount of gas

the lungs ,'ouid contain, which must be considered for total system volume

calculations and accommodation for gas expansion, is the, total lung capacity.

Although such a circunLstance is unlikely, a conservative design must use this

volume as the basis for Ihe design.

Average Lung Capacities, Volumes, and Function Capabilities

for Healthy Adult Males

There is considerable individual variability in lung volumes and

capacities. This variability is some.what decreased if the data art: shown with

size and age relationships. Figures 11-7 through 11-ll presents these data.

().e sl_ould note, however, that because of individual variations, the values

presented must be ttsed oJdy as approxinlations when applied to individuals

or small [4roups of individuals.

FRC(t BTPS) 0 1-0 2-0 30 4'0 50 6 0
T , _p" _,.Z+r 12"[ _4" I _ jZ ._ ;.,(+ _ +.,4q

60-[_ + ; ;+q !_TC r= 4 ; J" +z: :(! 1; N '.;"FT1
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• : f ' i, : ;= /'! l2o+_-_ _/, d/+ t_4 t/_/IX+t-+, ±I _,,q
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Figure 11-7. Functional residual capacity (FRC) in normal adult males.
(Cotes, 1968)
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Figure 11-8. Forced expiratory volume

(Cotes, 1968)
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Figure 11-9. Total lurrg capacity (TI,C), vital capacity (VC),

and residual volume (RV) in normal adult males. (Cotes, 1968)
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Mechanical Relations

Pressure/Volume Relations

A knowledge of the pressure/volume relationships is important in the

design of life-support equipment. Figure 11-12 presents the relationship in
its simplest form. Maximum inspiratory (at the left of the figure) represents

the negative inspiratory pressure that can be exerted with lung volume
varying from 0 to 100 percent of vital capacity and the maximum inhalation
volume exchange over a range of negative pressures to nearly 100 mm ltg.

For example, with the lung completely emptied, when only residual air
remains (Point 1), a maximum inspiratory effect of approximately 90 mm
Hg can be exerted. Also, if the pressure in an external breathing loop is
90 mm Hgnegative, no inspiratory volume can be moved. In fact, this
negative pressure will empty the lung to this point. If the negative pressure
were greater, i.e., more negative, there would be marked engorgement of the

lung vascular bed with imminent threat of blood vessel rupture.

|00"

100 80 60 40 -20

/
/

i

/./t

J

0 20 40 60 80 1O0

{ t I _ "1

PULMONARy PRESSURE {ram Hg)

Figure 11-12. Pressure/volume relations of chest/lung complex.

With the lung as full as possible (Point2) no additional inspiratory
effort can be exerted. It also can be seen that, if the pressure in the

external breathing loop is the same as lung pressure, a full vital capacity can be
exchanged.

The points establishing the curve labeled maximum expiratory are obtained
in a like manner using exhalation efforts and positive rather than negative
pressures. Thus, at 100 percent vital capacity a maximum exhalation effort can
be made, and at 0 percent, no exhalation effort made. Likewise, with about
100 mm Hg positive pressure the lung is completely filled in spite of a
maximum exhalation effort so that no air can be moved. If more pressure
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is exerted there is the danger that the lung may be stretched to the rupture

point with tearing of tissue, bleeding, and loss of effective gas exchange
surface.

The reader is cautioned that these curves present average values for

maximum breathing efforts. For any one person danger may exist at much

lesser pressure values. These figures, then, represent extremes that should

never be approached as design points.

Tile maximum pressure/volume loop takes on new meaning if an additional

dimension, the pressure volume relations for the relaxed chest-lung complex, is

included (figure 11o13). The point at which the relaxation pressure curve crosses

the zero pressure line is the midposition; the volume below it is the expiratory

reserve volume, and the volume above it is the inspiratory capacity. The figure

shows that at about 20 mm Hg negative pressure the lung is collapsed to the

residual volume, if there is no competing muscle force. At about 20 mm

Hg positive pressure the lung is completely filled, if there is no competing
exhalation muscle force.

100-

80-

6O

40

20-

-2O

PULMONARY PRESSURE [ram Hg}

Figure ll 13. Pressure/vohme relations of chest/lurtg complex (including relaxion
relations and pressure breathitrg); cross hatched triangle is elastic work of breathing at zero
pressure differential.

Since the pressure/volume loop has the dimensions of work

(AREA : volume x pressure : cm3 x gm/cm2 : gm centimeters), one can also

show diagrammatically the mechanical work done at different brcathing loop

pressures. This is shown in figure 11-13 for zero pressure differential and for

a positive 30 mm Ifg differential.

The n,cchanical work at zero pressure differential is done by the

inspiratory muscles because exhalation is passive. At 30 mm ltgpositive
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pressure, the mechanical work is done by the expiratory muscles. The

fatigue effect is even greater than the relative increase in mechanical work
so that such breathing cart be endured only during an emergency.

Pressure breathing is employed in emergency situations in aircraft flight and
might be a desirable fallback capability for some space flight contingencies. The
limit of tidal pressurc/volume loops over a range of negative to positive breathing

loop pressures can be superimposed on figure 11-13. Because there is an
inherent, reflex, muscular counterforce applied to the diffi_rential breathing loop
pressures, the limit cnvelope for the tidal pressure/volume loops deviates from
the relaxation pressure curve. Thus, whenever thc applied pressure is positive,
relaxation of the exhalation muscles does not occur at any phase of the
breathing cycle. The same is true for inspiratory mtrselcs if ncgative pressures are
applied. The position of the curves determining the pressure/volume loops ow_r a
range of breathing loop pressures is shown in figure 11-13.

Breathing Resistance and Mechanical Work of Breathing

Breathing equipment, no matter how well desig||cd, provides some flow
resistance. "Safety pressure" may be employed to remove inhalation resistance,
but then exhalation resistance is correspondingly increased. Increased flow
resistance increases the work of breathing. Mechanical work over a range of
breathing resistance is shown in figure 11-14. The pressure/volume loops shown
were obtained at uniform breathing ratcs of 40 breaths per minute and with
nmximum or near maximum effort.

Note that at low resistance (50 nun ll20 pressure to produce I00 liters per
minute flow) the area, aml therefore mechanical work, is small. As pressures are
increased (125 and 225 mm llg), the volume moved is not appreciably lessened,
but the pn_ssures exerted are much highcr so that the mechanical work done is

greater. With still higher pressures (675 mm), the work lessens because the
respirator" |uusclcs cannot exert higher pressures. Thus the volume decrea_cs
because breathing in all cases is at 40 brcatt_s iwr trdnute. As far as work
output is eonccrned, there is an optimal loading of the breathing
mcchanism. This is shown in the figure 11-15. The oxygen cost of breathing
through these resistances was relatively flat across the range of hreathing
resistances.

With mechanical work done and tile coincident oxyget, cost, one can
calculate the efficiency. These relations are shown i_ figure 11-16.

Oxygen consumption for the suhjeets in the study illustrat<'d in tile
figures that follow is very highconq_ared to oxygen consumpti<m during
space tlight. Also, highest effieiencies occurred with relatively high airway
resistances. (h_, can conclude, therefore, that there is a veto. large

breathi||g reserve that can he called on in an emergency. Breattfing this
reserve may be fatiguing, hut the rescrw_ is available fi/r emergencies of
short duration.

487 [_5lt O 73 33



5t J6 Bioastronautics Data Book



Respirator,Systtm 507

INSPIRATORY WORK EXPIRATORY WORK

_ i I I II I 1 l ! I I _ i 11 II T I I | ] I

4o _

30 1

2_

5 AIRWAY RESISTANCE (mmHzO/IOOL MIN FLOW) -

O

TO K)O 200 .]1OO 500 TOO 50 TO _ 200 _30 500 ;'OQ

Figure 11-15. Mechanical breathing work output with maximum breathing effort at several

airway resistance levels. Symbols represent different subjects. (Reprinted from Journal of

Applied Physiology, 1958, 13(2 ), 194-204)
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Figure 11-16. Breathing efficiency with maximum breathing effort at several airway
resistence levels. (Reprinted from Journal of Applied Physiology, 1958, 13(2), 194-204)
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Velocity/Volume Loop

If breath velocity is plotted against breath volume, and if inspiratory
volumes are equal, a closed loop is generated. When maximum inspiratory and
expiratory efforts are exerted, a closed loop is formed. For adult males the
velocity/volume (V/V) loop has the form presented in figure 11-17. This contour

is markedly changed with respiratory diseases and aging. The figure also shows
lung volumes and capacities usually ob_ined from a spirogram by superimposing
the resting V/V loop on the maximum V/V loop 0.

I
I

INSPIRATORYCAPACITY

i

INSPIRATORY__,,.._
r''_''J RESERVERESERVE TIDAL' I

I VOLUME I
I I
I I
t I

I...---VITAL CAPACITY ----_-I

Figure 11-17. Maximum velocity/volume (_r/y) loop.

Became time elements can be determined, it is feasible to use the
maximum _?/V loop for obtaining any of the frequently used timed vital
capacities of forced expiratory volumes, as they may be called. Figure 11-18
illustrates the technique for full inspiratory and expiratory efforts.

The _r/V loop can be determined during space flight by use of a

pneumotachograph and appropriate transducers (figure11-19). These are
lightweight and can be integrated into the life-support equipment. Became
the pneumotachograph produces only a velocity signal, the coincident
volume values are obtained by integration under the velocity trace. This is
conveniently done by using an onboard or ground-based computer.

Gas Density, Airway Resistance, and Flow Rates

The reduced pressures during space flight produce a reduced gas density.
If helium were used as the inert gas in a two-gas atmosphere, there would be an
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additional reduction in gas density. Reduced gas density results in lesser airway

resistance for a given flow rate. Airway resistance is also determined by gas

viscosity and gas density; but over wide ranges of density differences, viscosity

effects will be small. If increased airway resistance slows the transit time of gas

f_om the alveoli to the mouth, a measure of the lag between alveolar pressure

production and resultant air flow at the mouth will reflect relative resistance to

v
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Figure l 1-18. Use of the maximum _r/V loop for calculating inspiratory vital capacity
time (IVCT) and expiratory vital capacity time (EVCT).
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Figure 11-19. Construction of "V[V loop from pneumatogram.
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To understand the effects on the astronaut of engineering expediencies that

may compromise the exchange of gases between alveolar air and capillary blood,

it is helpful to note the partial pressures of gases in this exchange (table 11-2).

The only active process in the exchange is transportation (the circulation of the

blood and the ventilation of the lungs). There is no secretory process. The gases

move along concentration gradients as seen in the table.

Table 11-2

Partial Pressure and Gas Exchange Breathing Air at Sea l,evel

Inspired air

Expired air

Alveolar air

Arterial blood

Venous blood

Tissues

Gas Partial Pressure

02

158

116

100

100

40

30 or
less

CO 2

0.3

32

40

40

46

50 or

more

N2

596

565

573

573

573

573

H20

5.7

47

47

47

47

47

Total

760

760

760

760

706

700

A study of this table raises three questions that should be answered :

l. Why is the alveolar/venous blood gradient so much larger for O 2 than for

CO 2 ? Although 02 is a smaller molecule than CO2, and therefore diffuses faster,

CO 2 is approximately 30 times more soluble in body tissues than k_ 02. There-

fore, the effective diffusability is approximately 20 times greater for CO2 than

02, and a concentration gradient for CO2 of 6 mm Hgresults in a more

complete equilibration than does a concentration gradient of 60 mm ttg for 02.

This general relationship is important in design. Oxygen supply to the tissues is

much more sensitive to derangement than is CO 2 removal, thus the necessity for

assuring equipment and physiological 02 supply adequacy.

2. Why is nitrogen partial pressure lower in lung air and blood than in

inspired air? Actually if gas composition is calculated on a dry basis, percentage

of nitrogen is higher in alveolar air (and blood) than in inspired air. This is

because more oxygen is picked up by the blood than CO 2 released. This reflects

metabolic activity in the tissues when varying combinations of fat, carbohydrate,

and proteins are burned producing ratios of CO 2 production to O 2 consumption

(called Respiratory Quotient (RQ) in the tissues or Respiratory Exchange Ratio

(R) for exhaled air).

3. Why is total gas pressure, including water vapor pressure, less in venous

blood and tissue than in arterial blood and respiratory gases? As is apparent from

the gas partial pressure table 11-2 this difference reflects the difference in partial

p_ssure for oxygen uptake by the tissues (60 mm Hg for venous blood) atul

carbon dioxide increase as a result of CO 2 release by tissue metabolic activity
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(6 mm llg for venous tdood). Implicit in this comparison is tile observation that
for binding of a given quantity of gas there must be a much larger change in 02
partial pressure than in CO2 partial pressure. This reflects the very large binding
(or buffering) capacity of blood and other body fluids for (]02. Indeed, as
discu_ed later in this section, hypoventilation and hyperventi/ation can move
enormous quantities of CO 2 in and out of body storage, respectively. The lower
total partial pressure of dissolved gases in venous blood and tissue assures tilat
gas injected into the body or leaked from the lung by rupture will bc quickly
absorbed by the blood. Thus, then: arc no permanent gas pockets in any tissue in
the body.

Oxygen Dissociation Curve of Hemoglobin

The requirements for maintaining oxygen partial pressure at specified levels
is better understood if the mechanism of oxygen transport is understood.
Almost all of the oxygen transported by the blood is carried by the hemoglobin.
0temoglobin carries approximately 19 ml per 100 ml of blood. At usual 02
tensions only about 0.3 ml per 100 ml of blood is carried in the dissolved
state.) The relation between 02 partial pressure and hemoglobin saturation
with oxygen is usually described as the oxygen dissociation curve of

hemoglobin and is presented as a curvc on PO2-percent saturation
coordinates. The general shape of the curve is shown in figure 11-20.
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Figure 22-20. Oxygen dissociation curve of hemoglobin.

The shape of this curve has great significance. Note that above 50 mm
Hg PO2, there is little increase in hemoglobin carrying capacity for oxygen.
Therefore a lowered alveolar PO2 concentration will not materially reduce
the 02 available for tissue use as long as the partial pressure remains above
50mm Hg. However, at the tissue level where the PO2 is kept low by
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metabolicactivity,thehemoglobinwill holdlittle oxygen.Thismeansthat
largeamountsof oxygenare reducedfor tissueuse.Table11-2shows
averagevaluesof 02 concentrationsin alveolarair,arterialblood,venous
blood, and tissues.Figu_11-21 indicatesthe usual conditionsof
hemoglobin_turationin thelungsanddesaturationat thetissuelevel.Note
the markedlyincreasedamountsof 02 releasedto thetissueswith high
metabolicratesthat mayreducethetissuePO2levelto nearzero.
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Fimtrc l 1-21. Oxygen dissociation curve of hemoglobin and the facilitation
of 0 2 uptake and relea_,

An additional facility further increases the efficiency of oxygen supply
to the tissues: the oxygen dissociation curve of hemoglobin is not fixed but
is different at the tissue Icvcl as compared to lung blood. The extent of
this shift is shown in figure 11-22. Examination indicates the great efficacy

of this shifting of the curve: hemoglobin/oxygen association is much
facilitated in the lung blood and hemoglobin/oxygen dissociation is much
enhanced at the tissue level. For instance, at 25 mm Hg 02 tension and
with the curve at the far left position, the hemoglobin would be 62 percent
satt,rated, but with the curve at the extreme right position the hemoglobin

is only 35percent _turated. Thus an additional 27percent of total
_turation volume of 02 is released to the tissues.

To conw'rt the percent of saturation to the actual quantity of 02
carried hy hemoglobin, multiply the grams of hemoglobin per 100 ml of
blood by 1.34, which is the milliliters of 02 that will combine with one
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gram of hemoglobin. Because normal aduh maic blood contains about

15 grams of hemoglobin, each 100 ml of blood will carry about 20 ml of 02

(called 20 ml percent, i.e., perccnt by volume). But, bccausc of venous

admixture (some, blood in the lungs is not adequately exposed to ventilated

alw:oli), the hemoglobin of mixed arterial hlood is only about 95 to 97 pcr(_cnt

saturated. The curves above show the percent of saturation platcauing at lifts

hwel. llighcr 02 (e.g. 100 percent at sea level) will not m,ch increase thc pcr_mt

saturation. More 02 is carried in simple solution. But for space cabin pressures,

ewm 100 perccnt 02 will not much incrcas_ this carrying capacity hccaus,' 02
_4ution in blood is small.
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Figure 11 22, Oxygen dissocialion curve of hemoglobin shill
and lung blood as compar_'d 1o lissuc blood.

The conditions of blood in the hmgs (as compared to those of ti_uc blood)
that causc thc curve to hc shifted to the left arc:

1. Lower tcmpcratur(_

2. Lower pll

3. I,ower ionic con(:cntrati()_,

4. l,owcr PCO 2.

Opposite c(mditi(ms exist at thc tissue level and cause the curve t() be shifted to

the righl.
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Denitrogenation

Saturation, Tissue Types, and Nitrogen Elimination. Ambient air contains
approximately 79 percent physiologicaUy inert gases of which nearly all

(78 percent) is nitrogen. The body is saturated with nitrogen when breathing
air. When lung nitrogen is removed by flushing with oxygen, the nitrogen
that is dissolved in the body tissues moves along concentration gradients to
the lungs where it is in turn flushed out. If the decrease in lung partial
pressure is too precipitous, the dissolved gases are expanded and collect in
body tissues and structures to produce a variety of symptoms. This
syndrome has many names, such as bends, chokes, decompression sickness,
and caissons disease, which are based on the more conspicuous complaints.

To determine the likelihood of decompression sickness resulting from
inadvertent decompression, one must know: (1) the extent of
denitrogenation at the time of decompression and (2)the absolute level of
inhaled nitrogen immediately preceding the decompression. Continued
exposure to an inhalation mixture containing nitrogen at a low partial
pressure, e.g., 35 mm Hg, will produce a relative denitrogenation with
ultimatc equilibrium at this level rather than at 0 mm HgN 2 partial
prcssure, which would obtain if deuitrogenation were accomplished by
inhalation of lO0percent oxygen (or a mixture of gases containing no

nitrogen). At sea level, breathing air, the body is equilibrated with nitrogen
solution at a partial pressure of approximately 670 mm Hg. Therefore, when

oxygen is breathed, nitrogen elimination proceeds with the initial gradient
for nitrogen movement being approxinrately 670 mm Hg. If, instead of
denitrogenation with 0 mm Hg N 2 pressure, a mixture containing 35 mm
ltg N2 partial pressure is inhaled, the initial driving force for nitrogen
elimination will be a pressure gradient of approximately 635 mm Hg. Such a
small reduction in the total gradient would not meaningfully slow the rate

of nitrogenation, particularly since N2 elimination is generally perfusion
(i.e., blood flow) limited rather than diffusion (i.e., gas diffusion) limited.
Even small changes in lung perfusion rate would affect the rate of nitrogen
elimination much more than would the small difference in driving force.

The other consideration is the absolute pressure of nitrogen in the inhaled
mixture immediately preceding the decompression. If alveolar PN2 is high in the
few minutes before decompression, the probability of bends, or another mani-

festation of decompression sickness, will be determined largely by the long term
alveolar PN2 levels rather than the short-term effects. This is true for two rea-
sons. First, the high levels of PN2 inhaled for a short time will affect N 2 solution

primarily only in the lowest tissue component, and the nitrogen from this com-
ponent will be released very quickly on decompression. Second, bends mani-
festation is believed to be largely restricted to the higher tissue components with
long half-times for clearing. Because it takes many hours to clear this tissue (see
table 11-3) and because even the highest PN2 levels expected will not materially
slow the nitrogen elimination from these tissues, short-term exposure to the
higher PN 2 levels should have little effect on bends production.
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Table l I - 3

Tissue Types for Nitrogen Clearance
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Time for Removal of Half
Tissue Component Tissue Types Previous Level (Approximate)

I 1.5 min

II

III

IV

Lungs
Circulatory system

Viscera

Muscle
Fascia
Skin

Adipose tissue
Bone

8 min

30 min

150 min

(There is evidence for even longer half-time tissues,
perhaps in excess of 940 rain)

The importance in bends production of nitrogen dissolved in the tissues with

long clearance half-times is further suggestcd by the following compari_n. Even

though long-term exposure to an altitude of 4700 feet theoretically removes

only about 15 percent of dissolved nitrogen and one hour of denitrogenation

removes about 60 percent of dissolved nitrogen, still the protection provided

against bends production is about equal.

This discussion has been related to decompression sickness only and not to

hypoxia. It is clear that inhalation of essentially 100 percent 02 during

decompression above 35 000 feet is required and this will not be less efficacious

if predecompression PN2 levels have been 70 mm Hg rather than 35 mm ttg.

Breathing Equipment Design and Nitrogen Elimination. Because nitrogen

solution in body tissues (at pressures of 1 or 2 atm and lower) is directly

proportional to lung concentration, the relative amount of nitrogen contained in

lung air at saturation equilibrium, as compared to that dissolved in the body

tissues, is constant over this pressure range with varying nitrogen percentages in

the respired gases. Therefore, we can consider elimination of nitrogen after

equilibrium, at sea level, and breathing air and then extrapolate to indicate

elimination relations h)r other conditions.

At sea level breathing air, the lungs contain about 2 liters of nitrogen (at

midposition FRC). The total dis_lved nitrogen in the body is not much more

than l liter. If closed-loop breathing equipment is employed and if

denitrogenation is desired, then the nitrogen must be removed from the hmgs

and from the tissues.

Nitrogen elimination from the lungs is quite rapid. Considering N 2

elimination from the tissues, it is apparent from the curve in figure 11-23 that

N 2 elimination from the lungs has essentially asymptoted at about 1.5 minutes.
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If one considers N 2 elimination as a function of number of breaths, rather than

on a time basis, a theoretical elimination curve can be constructed

(figure 11-24). It is apparent from this curve that lung N 2 elimination is about

90 percent complete in 15 breaths.

I I ' I'l'l'lVl_f

' CHIFFLY PULMONARY NITROGEN

15

I ' [ ' I ''It /1_ . i . ' '''''t '1'1 ' I • l'l'|rl t I
itAS&L CONDiTiONS NORMAt. BREATHING

TISSUE NITROGEN

,/ J

, ? 8,° _ , 6 8,0 ,o ,o 6o86,oo 2_o ,oo
_.__E_,l,l, tl, _ I , I,I,I,I,I_I I . I , ,I,I ,Iii i , I ,l,hl , I

TIME IN MINUTES

Figure 11-23. Accumulated nitrogen elimination.
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Figure l 1-24. N 2 remaining in lungs after each of 20 breaths.
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The importance of these observations to respiratory support equipment

design relates to the requirement for nitrogen purging from closed-loop systems.
It is clear that the purging must be rapid at first to clear the lungs and then
slower over a protracted time to keep equipment PN2 levels low enough to
permit relatiwdy unimpeded nitrogen elimination from the tissues without
extravagant usc of gas for flushing.

Ventilation, Perfusion, Dead Space, and Shunts

In the normal adult male at rest there is an alveolar ventilation of about

5 liters per minute amt a cardiac output (perfusion) of about 5 liters per minute.

Thus, the ventilation/perfusion ratio for the lung as a whole is approximately
unity. However, ventilation and perfusion are not evenly distributed, so that
some alveoli/capillary units are relatively over ventilated (under perfused) while
others are over perfused (under ventilated) (see figure 11-25). In addition, some
of the inhaled air r)ever reaches the alveolar surface, so that it does not take part
in gaseous exchange. Thus the total lung complex may be subdivided into the
following functional compartments so far as gas exchange is concerned:

1. Air in the lung and air conducting passages

2. Ventilated and non-perfused alveoli

3. Perfused and non-ventilated alveoli

4. All variations between 2 and 3, including those with balanced ventila-
tion/perfusion ratios.

_) .............................................. i ANATO_,_}CAL SHUNT

............................................ !

l _ En_US aDml* rt,_r

04

10

30

0'_ [ _'_;[ NTJI ATED

LLJN[_r n PE F_ I,l_F D:

At '_ OL I

At VEtJLAR

t_t ACJ SPACL

ANATOMICAL

C:Z::]:ZZZ ..........

pHYSIOL OGICAI

SHUNT}NG

PHYSIOt OG_CAL

DFAD SPAC_

Figure 11-25. Range of ventilation/perfusion ratios.



518 Bioastronautics Data Book

The relations shown in figure 11-25 are discussed in the order of the lowest
to the highest ratios of ventilation to perfusion.

Anatomical Shunt. Some blood passes from artery to vein in the lung
without ever going through a capillary bed. The effect is the same as that which
occurs with perfused but non-ventilated alveoli. Anatomical shunting, then, is
the sum of actual blood shunting and effective shunting when some alveoli are
collapsed or plugged and not ventilated at all.

Venous Admixture. Other alveoli are relatively under ventilated, so that the
blood perfusing them is only partly replenished with oxygen and has only a
portion of the CO 2 that was picked up in the tissues. This blood is only partly
arteriolized and to a lesser or greater extent remains venous blood. The effect of
this on the mixed arteriolized blood leaving the lungs is referred to as venous
admixture. In the normal lung it is small, reducing potential 02 carrying
capacity from about 20 to about 19 volumes percent and reducing hemoglobin
saturation with oxygen from the potential of 100 percent to 95 to 97 percent.

Normally Ventilated and Perfused Alveoli. In the normal lung most of the
alveoli fall into this category. Because of the shape of the oxygen dissociative
curve of hemoglobin, the hemoglobin is essentially 100 percent saturated over
the range of ventilation/perfusion ratios shown in the central hatched area in

figure 11-25. In some diseased states, a much smaller percentage of the alveoli
will fall in this range.

Alveolar Dead Space. Still other alveoli are relatively underperfused. The
blood that passes through these capillary beds reaches complete equihbrium with
the air. Because the reduced blood flow could have been redistributed to fewer

alveoli to produce normal ventilation/perfusion ratios, the effect is as if some
alveoh were adequately perfused and others not perfused at all. These
non-perfused alveoh constitute alveolar dead space. The effective alveolar dead
space is the same whether the inadequate perfusion is evenly distributed or
selectively distributed to some alveoli, with other aiveoli completely non-
perfused. Alveolar dead space may be very large in some disease states.

Anatomical Dead Space. If alveoli had no perfusion, the ventila-
tion/perfusion would be zero. The inspired gas that remains in the anatomical
dead space (the air conducting pas_ges) is equivalent to this. In the normal adult
male the anatomical dead space is approximately 160 ml; the alveolar dead space
is very small with quiet breathing but increases with increased breathing effort.

Physiological Dead ,Space. The combination of anatomical and alveolar dead
space is called the physiological dead space. It is the effective dead space. To this
space must be added equipment dead space if a mask or hehnet is worn. Thus it
can be. seen that added anatomical dead space is the equivalent of added alveolar
dead space. Many individuals have markedly increased alveolar dead space in
certain diseases (e.g., emphysema). If the disease process is arrested, the patient
adapts to the increased dead space, as long as it is not too large, with no great
adverse effects. What, then, of added equipment dead space? Perhaps, if it is not
too large, an astronaut would accept it and adapt to it with no noticeable effect.
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Butwhatistoo large?Certainlyafewhundredmilliliterswouldnotappearto
be.It shouldbecautionedthatthereisnoagreementonthispoint.But,the
abovelogicis intendedto guidetheengineeranddesignerin hisasse_smentof
thevaryingopinions.

O2/CO 2 Diagram and the Alveolar Equations

02/C02 Diagram. The O2/CO2 diagrams for oxygen breathing are relatively
simple. Because the alveolar and expired points fall on a straight line, it is easy to
determine the effects of hypoventilation and hyperventilation. If the alveolar
concentration of one gas and the total ambient pressure are known, the alveolar
concentration of the other can be easily calculated. The formula is

PCO 2 + PO 2 + PH20 = PAMBIENT

Figure I1-26 shows these relations at sea level and scveral altitudes.

8oo

6oo

Pco2

400

200

"_.°oo .........

• . ALVEOLAR POINT

\ ",,_ -,,,, % _" \:
200 400 600 800

PO 2

Figure 11-26. O2/CO 2 diagram breathing pure 02.

With usual breathing the breath is warmed to body temperature and
completely saturated so that PIt20 is 47 mm Hg. This is independent of ambient
pressure. And since the body, also independent of ambient pressure, strives to
maintain alveolar PCO2 at 40 mm Hg, these two gases (CO2 and H20) exert a
combined pressure of 87 mm Hg. Thus, at high altitude, even breathing
100 percent oxygen, the lungs will not contain adequate oxygen to saturate the
blood. In the event, as shown in figure 11-27, the body compromises the PCO2
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stability as the low 0 2 (hypoxia) creates a strong rcspiratory drive through
reflexes from the chemo receptors. This compromise makes more oxygen
available at the expense of a stable CO2, and the pll is elevated with the
untoward effects of this acid base balance derangement.

7O
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5O
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o_

3O

20

I0

0

5_-- " ' / m

-)02(%) 95

0 50 60 70 80 90 lOO 11Q 120 130 t40 150

P02 (mmHg)

Figure 11-27. O2/CO2 diagram breathing air.

When air is breathed the alveolar gas concentrations are not so simply
related. As shown in figure 11-27, there is a family of curves, specific
relationships being determined by the Respiratory Exchange Ratio.

Tile basic diagram is represented by thc grid of curw;d lines and relates the
tensions of 0 2 and ('0 2 to the hemoglobin saturation and the total content of
carbon dioxide ill tile blood. It is constructed from the dissociation curves for

oxygen and carbon dioxide in a subject with a normal hemoglobin concentration
and may be used to predict any two of the variables when the other two are
known.

Superimposed on the basic diagram are two sets of co-ordinates and a curved

line. The co-ordinates for the respiratory exchange ratio (R)radiate from a
point (I) which describes the inspired [,,as (in this case air). The co-ordinates for

the alveolar ventilation in the units/min per 100 nd/min of oxygen uptake are
represented by sets of parallel lines of which that for infinite ventilation is also

that for an R value of infinity. The curved distribution line illustrates the

combinations of oxygen and carbon dioxide tension which may occur for
different ventilation-perfusion ratios in one particular subject: the distribution

line is defined at its lower end by the composition of the inspired gas
('VA/Q =_) and at its upper end by that of the mixed vcnotrs blood (VA/Q : o_.
The dashed lines converge on a point on the distribution line where the VA/Q
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ratio is 1"2. For an alveolus having this ratio of wmtilation to perfusion the
alveolar venflation may be expected to be 2-0 l/lOOml, the respiratory
exchange ratio os 0'9 and the tensions of oxygen and carbon dioxide arc
respectively 104 and 39 mm llg. The corresponding values for the oxygen
saturation and the total content of carbon dioxide may also be read off the

diagram.

Alveolar Equations. In space flight with two gas atmospheres and reduced
total pressures, neither air nor oxygen will be breathed. It will, therefore, be of
frequent iuterest to the enginecr and. designer to determine alveolar gas
concentrations under various conditions. At times it will be inconvenient to

measure all of the gaseous constituents. A set of equations called the alveolar
equations has been developed that permits the calculations of some variables if
others are known. The equations are derived as follows:

General Symbols

- Velocity

V - Gas volume per unit time

P Gas pre_ure or partial pressure

F - Fractional concentration in dry
gas phase

R - Respiratory exchange
ratio CO2]O 2

Symbols for (,as Phase

I - Inspired gas

E - Expired gas

A - Alveolar gas

13 - Barometric

Two assumptions must be made:

1. There is no gas exchange in the dead space; therefore, all gas exchange is
through the alveolar membran_.

2. The inspired volume, of nitrogen is equal to the expired volume (therefore
the equations do not apply during denitrogenation or renitrogenation).

VIFIN2 = '_EFEN2 (l)

Because inspired and expired total volumes are not the same (except when
R = 1), one must be expressed in tertrt_ of the other.

"_I = VE FEN2

FIN 2
(2)

Similarly for CO 2 release

VCO 2 = '¢EFEco 2 - V1FIco 2

487-858 0 - 73 - 34
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and substituting from equation (1)

/_ FEN 2._VC() 2 -- "_EFEco 2 - E FIN2-------] F1CO 2

VCO 2
= VE tEco2

FEN2_
(3)

Similarly for 02 uptake

VO 2 = VIFIo2 - VEFEo2

Substituting from equation (1)

/_ FEN2_VO 2 = E FIN2-------"] F102 VEFEo2

F FEN2 2/VO 2 = VE Io2 F-_N2- - FE 0
(4)

Since R = VCO2/VO 2 = Respiratory exchange ratio

Substituting equations (3) and (4)

R __

FEN 2

FEco 2 - FIco 2 FIN2

FEN 2

FI02 FIN2 FEo2
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canbe eliminated by substituting

523

FEN2 = 1 - FE02 - FEco 2 and

FIN2 = 1 - FIo2(when FIco 2 is negligible)

P can be substituted for F since

Px

Fx PB-47 x = O2,CO2,N 2

(Pll20 = 47mm Hg at body temp-
erature)

With these substitutions one can solve for

PAc02, PAo2 and R

On the other hand, it is incumbent upon the engineer and designer to assure
that an individual will not be exposed to levels of oxygen much increased over
sea-level concentrations. The effect of oxygen in increased partial pressures

(hyperoxia) is tissue poisoning. The effect is especially pronounced'in the lungs,
and breathing an atmosphere composed primarily of oxygen for a day may result
in death. When the PO2 is raised to three atmospheres or more, the effects on

the central nervous system are so sudden that lung edema seldom is the critical
problem. The subject may collapse or experience convulsions which may
precipatate death. These considerations obviously limit the therapeutic uses of
oxygen and c',dl for care in the design of respiratory support equipment and
facilities.

Factors Relevant to Respiratory Support Equipment Design

Temperature, Humidity, and Respiratory Water Loss

Humidity, Temperature, and Comfort. The humidity standards for air
conditioning have been set at approximately 50 percent Relative Ilumidity
(RH), a level which subjective data indicate to be generally comfortable for the
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entire body. Respiratory system comfort, however, demands considerably higher
humidity levels (viz. speakers in climate-controlled auditoriums who must take
frequent drinks of water to maintain respiratory system comfort).

At very high whole-body environmental temperatures, low humidity is
comfortable because of the cooling effect produced by evaporation of water
from the mucous membranes, in spite of the discomfort occasioned by drying of
these membranes. The discomfort associated with breathing dry oxygen is well
known among aviators. If tile temperature of the inspired gases can be kept low
enough, the respiratory system experiences (within limits) greater comfort at
higher humidity. Because the gases are always essentially 100 percent saturated
by the time they reach the lungs, _turation of the inspired gases is of little
importance to the welfare of the mucous tissues deep in the respiratory system.

Humidity and Engineering Considerations for Respiratory Support
Equipment Design. Expired breath is at body temperature, i.e., 37°C, and
essentially saturated. Because it is desirable to maintain the temperature of the
inspired gases considerably below this, there is a condensation of moisture in
respiratory equipment from the expired breath as it is cooled. High humidity
level has at least two implications for engineering consideration. First, wet
surfaces are more susceptible to all types of corrosion, particularly when bathed
in an atmosphere of essentially pure oxygen. Also, the higher the level of
humidity the greater the tendency for valves or flow orifices to freeze.

From an engineering viewpoint then, it is desirable to keep the humidity as
low as possible. This consideration has resulted in the requirement for the
maintenance of essentially dry oxygen derived from compressed or liquid
oxygen. Because of the great cooling occasioned by the expansion of these gases,
even a small amount of moisture would result in the freezing of the valves and
orifices.

The optimum level of humidity must be determined by a resolution of the

opposing physiological and engineering considerations. Freezing and corrosion
problems may well dictate that relative humidities be kept below levels that
might be optimally desirable from a physiological viewpoint. It is therefore
recommended that no arbitrary upper or lower levels of humidity be specified
for breattfing support equipment, but that the final level of humidity be
determined by the temperature of the inspired gas, which relates to comfort, and
by the engineering requirements to limit corrosion and freezing. To require
specific levels of humidity without regard to the several parameters which will
ultimately dictate the level of humidity is to place artificial constraints on the
engineering design, and this may produce an undue complication in the final
system implementation.

Standardization of Gas Volumes for Temperature and Humidity. Gas

volumes are usually measured at the ambient temperature and pressure of the
recording instruments and variable relative humidities. Because these
conditions are not constant from one test to another, the volumes need to

be converted to some standard form for interpretation or comparison with
other data.
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The conversion usually employed is the following:

• Volumes which relate to uptakes or evolution of gas by the body are
converted to standard conditions, i.e., 760 mm Hg and 0 ° C

• Other gas volumes are reported saturated and at body temperature and
ambient pressure.

These notations are usually abbreviated:

• ATP Ambient Temperature, Pressure, and humidity

• ATPS Ambient Temperature and Pressure and Saturated with water

va por

• STPD Standard Temperature and Pressure and Dry, i.e., 0°C,760 mmHg

• BTPS Body Temperature and Pressure and Saturated with water vapor.

The relationship between them can be expressed:

273
_xVSTPD = VATP × 273 + t

Pb - PH20

760

310 Pb - PH20
VBTPS : VAT P X ×

273 + t Pb - 47

With these equations one can convert from one set of notations to another. The
use of table 11-4 makes the process simpler.

Respiratory Water Loss. Respiratory water loss can be calculated for any
given condition if minute volume of pulmonary ventilation, inspired gas

temperature, and the relative humidity of inspired gases are known. For usual
minute volumes, one can assume near saturation of the inspired gases at body

temperature.

Energy Cost of Breathing

Whenever respiratory-protective equipment is used, the work of breathing
increases. This increase may be expressed in three ways, the first two

quantitative and the last one qualitative:

1. The Physical Work of Breathing. This can be expressed as foot-pounds
per minute or, more commonly (using the pressure-volume loops), as
gram-centimeters per breath or per minute.
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Table 1 1-4

Factors for Conversion of Volumes from ATPS to STPI) and BTPS

Ambient

Temperature

° C

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Aqueous Vapor

Pressure (mmH 9)
at Saturation

12.0

12.8

13.6

STPD

0.936

0.932

0.928

14.5

15.5

16.5

17.5

18.7

19.8

21.1

22.4

23.8

25.2

26.7

28.3

30.0

31.8

33.7

35.7

37.7

39.9

42.2

44.6

47.1

49.7

52.4

55.3

0.924

0.920

0.916

0.911

0.906

0.902

0.897

0.893

0.888

O.883

0.878

0.874

0.869

0.864

0.859

0.853

0.848

0.843

0.838

0.832

0.826

0.821

0.816

0.810

Factor to Convert to:

BTPS

1.133

1.128

1.123

1.118

1.113

1.1 08

1.102

1.096

1.091

1.085

1.080

1.075

1.069

1.063

1.057

1.051

1.045

1 .O39

1.032

1.026

1.020

1.014

1.007

1.000

0.994

0.987

0.980



Respiratory System 527

2. The Physiological Work of Breathing. This is the energy cost of

breathing. With an appropriate apparatus it is easy to measure. It is the real cost

of breathing and is easily related to respiratory gas storage requirements.

3. Fatigue Effects. Increased breathing work loads of identical increased

energy costs can produce vastly different fatigue effects. ¢Ls an example, pressure

breathing produces fatigue effects out of all proportion to the relative increase in

energy cost.

The simplest way of determining the energy cost of breathing is to determine

the increased oxygen consumed coincident with the increased breathing activity.

Figure 11-28 shows the typical effects of increased ventilation. The scatter

diagram shows the relation of pulmonary minute volume to minute oxygen

consumption with increased external respiratory dead space in a single subject.

Both parameters were plotted as increases over resting values. The curve was

visually fitted to the points. Points in the areas marked A, B, C, and D were

determined with 2780 cc, 2280 cc, 1780 cc, and 780 cc externally added dead

space, respectively. Extrapolation into lower left quadrant permits an estimate

of the energy cost of breathing at resting ventilation volumes. It can be seen

further that total cost of moving a given volume of air may be determined from

the curve by adding 6 cc to a value indicated on the ordinate. The triangle and

star represent the average of 10 tests on each of 2 additional subjects. To obtain

an estimate of the calorie cost, assume an R value and multiply by the

appropriate calorie equivalent. If R is 0.825, the calorie equivalent of a liter of

oxygen is 4.825. Note the estimate of the oxygen cost of resting ventilation

(0.5 ml 02 per liter w_ntilation, which is in agreement with the generally cited

figure).
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Figure I1-28. Oxygen cost of increased ventilation produced by breathing through four
different added dead spaces. (Reprinted from Journal of Applied Physiology, 1957, 11(1),
84-86)
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Thedatafor the abovecurvewereobtainedusinga breathingrateof
26breathsperminute.Minutevolumesapproaching80litersperminuterequire
vet3,largetidalvolumes.Figure11-29showstheoxygencostofbreathingovera
rangeof breathingfrequenciesusingonlythedatafor the moreefficient
breathing,i.e.,thelowestoxygencostforagivenminutevolumeofventilation.
Thereis goodreasonto believethat thebodywill inherentlychoosethe
optimumcombinationof rateanddepthof breathingfor a_vencircumstancc.
This curve should, therefore, be reliable, for design purposes.
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Figure 11 29. Relation of increased pulmonary ventilation and 0,2 cost of inereas_
ventilation for "efficient" breathing. Curve was visually fitt_xt to poinl_. (Reprinted from
Journal of Applied Ph_ siology, 1958, 12(3), 413-_24)

Because even w'ry hard work rarely increases ventilation abow_ 120liters per

minute, the energy cost of breathing is a very small portion of the total

energy cost of work. At 120liters, it is just over 300 ml 02 pcr minute. A

work load to produce such a large increase in pulmonary ventilation will

produce a total oxygen consumption of well over 4 liters per nfinute. Thtt_,

the oxv_r_'n cost of breathing is less than 8 percent of the total cost of the

work. Because the relationship is not linear, the percentage of energy cost is

much lower at lower work loads. Table 11-5 shows this relationship for a

single subject. It should be noted that there may be considerable variability

among individuals. The table illustrates the point that any increased

breathing work load that can be easily tolerated will not result in

meanin/,fful increases in oxygen consumption.
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Table 11-5

Oxygen Cost of Breathing as Related to Total
Oxygen Cost of Exercise

529

Total 02 Cost of Exercise 02 Cost of Ventilation 02 Costof Ventilation
(I/rain) (ml/min) (%/rainof Total 0 2 Cost)

Rest0.30

1.17

1.60

2.38

5.37

6

24

36

58

430

2.0

2.1

2.25

2.3

8.0

Some Physiologic Parameters Relevant
to Respiratory Support Equipment Design

Because breathing is regulated (under all normal circumstances) to maintain a
constant arterial blood PCO2, the amount of oxygen in the respired gas mixture (so
long as it is above 120 or so mm Hg), has little effect on the amount of oxygen
removed by the blood or on the pulmonary minute volume. Even I00 percent oxy-
gen at sea level, therefore, does not reduce the breathing. Ordinarily about 25 liters
of air are moved in and out of the lungs for each liter of oxygen removed. This is
called the Oxygen Ventilation Equivalent.

Because only, about 4 percent of the respired volume is removed by the lung
blood, a closed-loop breathing support system, when the exhaled breath is purged
of CO2 and rebreathed, will represent a considerable economy compared to con-
ventional open-loop systems. Table 11-6 shows these relationships with engineer-
ing implications. It should be noted, however, that the comparison shown does not
represent the real tradeoff. A closed system must also remove CO2 and provide an
exhalation volume accumulation. The table shows only the stored gas require-
ments.

Average astronaut activity requires about 2 ib of oxygen per day. In table 11-6
this falls above midway' between rest and light work. There may, however, be short
bouts of physical exertion with markedly increased metabolic activity. This is more
likely to occur with extravehicular activity when the a_tronaut is being supported

by portable breathing gear. (See also chapter 18, B:ork, tteat and Oxygen Cost.)

Physiological and Engineering Considerations of CO2 Levels in Respiratory
Protective'and Support Equipment Design

Long-Term PC02 Effects. Long-term CO2 effects are defined here as those ef-
fects that might be produced by exposure to elevated PC02 tensions over a maxi-
mum 15-hour period. In considering the effects of altered PC 02 levels on the body,
it might be worthwhile to note that in certain disease processes the body' PCO2 is
considerably elevated and the body seems to adapt without noticeable deteriora-
tion in the performance of the individual. Similarly, persons living at high altitudes
have a significant decrease in alveolar and arterial PCO2 without any measurable
detrimental effects on general performance levels.
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In a number of studies animals and humans have been exposed for prolonged
periods to various levels of elevated carbon dioxide. Although elevated levels
produced noticeable physiological changes, particularly in the renal activity
necessary for elimination of the buffered acid, no studies have defined any
debilitating or compromising effects of modest increases (i.e., up to 3% at sea
level) in CO2 on performance. The reader interested in a detailed treatment of
this topic should consult:

Greenbaum, L, & Hoff, E. (Eds). A bibliographic source book of

compressed air diving and submarine medicine, Vol 3. Office of Naval
Research & Bureau of Medicine, Department of Navy, Washington, D.C.,
1966.

Comroe, J. Physiology of respiration. Yearbook Medical Publisher, 1966.

C02 Levels in Rebreather Systems. It would seem desirable to maintain
PCO2 at as low a level as practicable because we ordinarily inspire an atmosphere
in which PCO2 is a small fraction of one percent. However, considerable studies
and operational experience haw_ indicated that there are no subjective or
performance effects when PCO2 is allowed to increase to as much as 22 mm

Hg partial pre_ure. It is therefore recommended that for rebreather systems,
PCO2 be kept as low as practicable in terms of engineering requirements.

However, if the engineering penalty necessary to keep PCO2 at 8 mm Hg or
below is exorbitant as compared with that required to maintain PCO2 with no
excursions going above 22 mm Hg, it is then suggested that these higher levels
should be allowed.

A study report from the U.S. Naval School of Aviation Medicine (1962)
indicates that for the full pre_ure suit helmet or the partial pressure suit hehnet
with the conventional face seal, CO 2 levels run between 1-1/2 and 3 percent at
sea level (i.e., up to 22 mm Hg partial pressure). Subsequent studies by the Air
Force and NASA have indicated similar lew_ls of carbon dioxide in helmets of

space suits and full or partial pressure suits with no detrimental effect on the
wearers.





CHAPTER 12

THE VESTIBULAR SYSTEM

by

Ashton Graybiel, M.D.

Naval Aerospace Medical Center

The material presented here represents an attempt to provide the reader with
some comprehension of the role that the vestibular system may play in manned
space missions involving rotation of a portion of the space vehicle. The
"vestibular problem" is one item to be considered, along with others, in reaching
a compromise that determines vehicle design criteria. Among the interested
parties are (1) specialists knowledgeable in regard to the other human element
problems; (2) engineers who must ensure inertial stability of the vehicle, taking
into account "cost"; (3) astronauts who must assume partial responsibility not
only in self-prevention of vestibular side effects but also, along with
astroscientists, participate as subjects or observers in validation experiments;
(4) biomedical personnel in charge of long-range and specific-mission plans; and
(5) investigators conducting ground-based supporting experimentation. The
operational objective of concern is the prevention of vestibular side effects,
which encompasses the selection process, adaptation, education and experience,
and the use of various countermeasures, including drugs. The greater the
understanding of the events and processes underlying the side effects, the better
this operational objective will be achieved.

A systematic review of the vestibular system is complicated by the many
gaps in knowledge resulting from the fact that the vestibular system only
recently has come under intensive study. In areas where information is available,
it is mostly of a descriptive nature. For these reasons, the vestibular system will
be discussed first in general terms, where the issues are quite clear, before
proceeding to more specific features, where our understanding may not be as
precise.

In primitive fish the "ear," containing acoustic and nonacoustic sensory
organs, developed in association with the hindbrain. The organ of hearing long

Opinions or conclusions contained in this chapter are those of the author and do not neces-

sarily reflect the views or endorsement of the U.S. Navy

Reviewed by G. Melvill Jones, M.D., MeGill University, Montreal, Canada.
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remained in a rudimentary state, and the evolutionary development of the
acoustic system had to await the expansion of the primitive forebrain in higher
vertebrates. In striking contrast, the nonacoustic portion of the car, containing

otolitil organs and semicircular canals, developed early because these organs of
equilibrium were essential. With the appearance of the cerebellum, an outgrowth
of the hindbrain, the basic componcntry of the vestibular system was complete.

Thus, as we view the phylogenetic scale from fish to mall, the essential structure
and the cardinal purpose of the vestibular system remain unchanged.

The otoliths and canals are uniquely designed to sense linear and angular
accelerations; to convert this energy into neural impulses; and, mainly through
influencing motor behavior, to aid in orientation to the upright and in
eye-head-body coordination. Because the sensory inputs from the vestibular
organs are destined mainly for lower portions of the central nervous system, we
are not familiar, through personal experience, with the functions they subserve,
as in the case of vision or hearing. Indeed, not until the turn of the century was
it generally recognized that the organs of equilibrium comprise a portion of the
labyrinth of the inner ear.

Under natural stimulus conditions, the behavioral responses to which the
vestibular system contributes are characterized by automaticity, reliability, and
egality among members of a species or subspecies. There is little if any awareness
of vestibular influences when man is engaged in natural activities, implying that
the incredibly complex integrative mechanisms intercalated between sensory
input and motor output have been effected in eiegant fashion. This "silent

elegance" is of such importance to the organism that it could only have evolved
through natural selection and survival of the fittest. A backward look at our
evolutionary development is enormously important in appreciating both the
harmony that characterizes functions subserved by the vestibular organs under
mitural physiological conditions and the inherent limitations in making rapid
adjustments to abnormal patterns of accelerative stimuli under artificial
conditions.

Long before man was aware that he had organs of equilibrium, he learned to
extend his natural powers of locomotion by various means. In these motion
environments, he was exposed to abnormal patterns of accelerations to which he
could not quickly adapt, and motion sickness resulted. Prior to the "discovery"
of the vestibular organs, reports dealing with the etiology and treatment of

motion sickness were of little or no value. Subsequently, the major advances
were made in the light of the role of the vestibular organs and the institution of
studies under laboratory conditions.

Only recently has there been a concerted attempt to study the vestibular

system in a comprehensive manner, greatly aided by the new techniques of
morphologists, neurophysiologists, psychophysiologists, and others. While most
investigations of structure necessarily must be conducted on animals, many
behavioral studies are easier to carry out on man than animal and have the
unrivaled advantage of using the definitive experimental subject.
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Almost all experiments on man depend on using an unnatural stimulus that
elicits a response that is always unnatural and usually abnormal. This is done in
order to manipulate and measure the stimulus to canal or otolith or both, and to
evoke specific measurable responses. Most responses imply that the vestibular
system is disturbed and that these disturbances fall into two categories,
depending on whether they are system-bound or not. System-bound responses
include abnormal eye motions, "sensations," and eye-head-body incoordination,
and have characteristics of reflex disturbances. Non-system-bound responses
include the symptomatology of motion sickness and do not have the
characteristics of reflex disturbances.

The advantages that the investigator gains by eliciting abnormal responses are
offset generally by some amount as a result of the departures from natural
stimulus conditions. These handicaps include individual differences in
susceptibility to a disturbing stimulus and individual differences in the rate of
acquisition and decay of adaptation effects. All of these individual differences
are more prominent in dealing with motion sickness than with reflex
disturbances.

With regard to useful servation, the importance of the vestibular organs to
man's performance is far less than in marine forms of life which must remain
upright when free-swimming, in birds that fly, and even in subhuman primates.

In man there seems to be a disparity between the great potentialities of the
vestibular system he inherited and its useful servation. This disparity disappears,
however, when we come to consider reflex disturbances and motion sickness

which may, as a result of exposure to a physically harmless stimuli, create
turmoil throughout the body.

In research bearing on the design of a rotating space vehicle, laboratory
studies have indicated that vestibular side effects tend to increase as a log
function of angular velocity (generating cross-coupled angular accelerations) and
that other physiological side effects are the result of short radius and high
angular velocities. Thus, it seems that an effective design approach will involve
assigning relative weighting factors to the cross-coupled angular acceleration,
Coriolis accelerations, and subgravity level (short radius effects would not be
involved if the other conditions were satisfied). Observations in space flight and
parabolic flight, however, indicate that persons change in their susceptibility to
motion sickness in weightlessness, complicating the "vestibular problem." An
important missing bit of information concerns the change in susceptibility as a
function of subgravity level, an issue presently under study. Inasmuch as nearly
all of our information on the vestibular system has been obtained under
laboratory conditions, the extrapolation to space flight conditions must be made
with appropriate reservations.

The End Organs

Among the organs of special sense that are stimulated by physical means, the
vestibular organs are unique in that, under physiological conditions, they are
stimulated exclusively by the gravitoinertial force environment; the semicircular
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canals (largely if not entirely gravity independent) respond to angular or

cross-coupled angular accelerations and the otolith organs to gravity and to

linear or Coriolis accelerations. Man has no control over a gravitoinertial force

comparable to that of blocking a visual stimulus by closing the eyes in a lighted

room or blocking the entry of sound waves to the cochlea. The only control man

has is that of manipulation, for example, tile nullification of gravity in orbital

flight or control over the generation of impulse accelerations.

The paired vestibular end organs are situated in hollowed-out channels in the

petrous portion of the temporal bone (figure 12-1) (Anson, Harper, and Winch,

1968). Within the bony labyrinth, the membranous labyrinth is surrounded by

perilymph and filled with endolymph. Thus the sensory, receptor mechanisms are

protected from the effects of superimposed body weight by the bony labyrinth

and, by virtue of the contained fluids, from the effects of accelerations except

for displacements due to differences in specific weight among fluid and solid

tissues and displacement due to inertial lag in fluid-filled ducts which resemble a

torus. This "protection" is illustrated by the findings on animal subjects exposed

to high peak- and sustained-linear acceleration. In tablc 12-1 are shown some

findings on squirrel monkeys tested at a wide range of linear accelerations

immediately after exposure to sustained accelerations. At levels below

60G (Igarashi and Nagaba, 1968), none demonstrated abnormal eye motions and

only a few manifested slight ataxia. Moreover, none sustained any damage to the

vestibular organs, as revealed by histologic study of the _oss and fine structure.

At levels of 60G and above fragmentation appeared in the otolithic zone.

t_£N6t_ANOUS_N_F/q:

Fig_tre 12-1. Reconstruction of meml)ranous labyrinth and related anatomy.

(Anson, Harper, & Winch, 1968)
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Tahle 12- !

Gross Ataxia and Spontaneous Eye Movement Immediately
After Exposure to lligh-lntensity Acceleration Stimuli
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g-Level

Number Ataxia Spontaneous

of Eye
Animals Floor Bar Movement

0..,..,,,.

30 .........
40 .........
50 .........
60 .........

75 .........
80 .........
100 ........
125 ........

150 ........

175 ........
200 ........

_ _ _

3 ± ± --
2 + -- --

3 + + --
4 4-+ _H- --

2 + + --

1 • -- _+

3 ++ _ _+
3 ++ -H- +

6 _ _ +

4 -H-+ -H- +

6 -H-+ -H- +

1 + _- +
I -- + +
3 ++ +4+ +

3 -H- +-_ 4+

4 -H- +++ ±
I _ _ 4-+

200 p .......
250 p ......
300 p ......
350 p ......

400 p ......
45O p ......
500 p ......

[p, peak-gexposure;+++, severe;++, moderate;+, slight; -,+questionable; --, negative].

The Otolith Apparatus

The four otolith organs appear as thickened portions, termed macular plates,
on the inner walls of the paired utricle and saccule (figure 12-2). Taken together,
these four curved macular plates occupy, without overlap, a significant portion
of a sphere. A cross section of the saceular macula of a squirrel monkey, which is
similar to that in man, is shown in figure 12-3, and a sketch of the zonal
structure is shown in figure 12-4 (Igarashi, 1966).

The otolithic membrane contains otoconia (figure 12-5) (Lindeman, Ades, and
West, 1970), concretions of calcium carbonate with a specific weight of about
2.71, embedded in a gelatinous material. This membrane is the only tissue within
the bony labyrinth that differs much from the specific gravity of the lymph fluids.
The otolith membrane rests on the cupular membrane into which protrude the
hair-like projections of the sensory cells. It is the movement of the otolithic
membrane relative to these sensory "hairs," or cilia, that constitutes the effective
stimulus to the organ (tlgure 12-6) (Lindeman, Ades, and West, 1970).

487-85U O - 73 - 35
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_,ANTERtOR (VERTICAL)

II
LATERAL OR HORIZONTAL // i\
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i t i_. i" COCHLEAR NERVE

/_/'/__<_,# "_ SCARPA'S GANGLION

COCHLEA

=<7,
MACULA OF THE SACCULE

Figure 12-2. Labyrinth of left ear as viewed from mediM aspect.

Figure 12-3. View of macula saeeula from squirrel monkey.
ZoJml structure is clearly seen. (Igarashi, 1966)
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OTOLITHIC ZONE
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SUBCUPULAR ZONE

HAIR CELL

SUPPORTING CELLS

I00.= CONNECTIVE TISSUE

BONY TISSUE

Figure 12-4. Schematic of zonal structure of macula sacculi in squirrel monkey.
(lgarashi, 1966)

Figure 12-5. Scanning micrograph showing statoconia from macula utricuh in cat.
(Lindeman, Ades, & West, 1970)
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Figure 12_. Bundles of sensory hairs at periphery of macula utriculi in chinchilla.
(Lindeman, Ades, & West, 1970)

The sketch in figure 12-7 was drawn from electronmicrographs of the sensory

epithelium of the utricular macula of the squirrel monkey (Spoendlin, 1966). Two
types of hair cells, each with two types of cilia, are depicted. Each cell has 60 to

70 stercocilia and one kinocilium laid out in strict geometrical arrangement. It is
considered likely that the kinocilium plays the major role in the energy transfer. In
different regions of the macula, kinocilia are polarized in different directions

(figure 12-8); hence, a shearing force in one plane will result in kinocilia moving ill
different directions with reference to the kinociliar pole (Spoendlin, 1965).

The "power train," constituting the cilia-otolith mechanism, is initiated by the
acceleration of gravity and by impulse linear accelerations so directed as to cause a
shearing displacement between the otolithic membrane and the membrane
supporting the hair cells. The result is mechanical deformation of the cilia
(kinociliutn) which, in turn, causes chemical changes affecting the generation of

bioelectricity (nerve action potentials). After a suprathreshold stimulus, the resting
spike discharge is altered in its temporal and spatial patterning, constituting the
propagated discharge which, traveling along nerve fibers to the central nervous
system, is the way in which otolith sensory inputs affect behavior. Most receptor
cells have a resting discharge but some do not. An example of typical responses is
"shown in figure 12-9 (Wersiill and Lundquist, 1966); i.e., deviation toward or

away from the kinociliar pole has opposite effects. In some cells stimulation may
result in abolition of the resting discharge.
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Figure 12-7. Schematic drawing of an area from a vestibular sensory epithelium, with
haireell of type I (HC I) and type II (HC lI). Typical arrangement of the stereocilia (St) and
kinoeilia (KC), modified kinoeilia (kc) with their basal bodies and roots (b) in the
supporting cells (S) and (B) in the hair cells, Nerve fibres (N), Nerve-chalice (NC) and Nerve
endings (NE), Synaptie structures (Sy), Golgimemhranes (G), Multivesieular bodies (V),
and endoplasmie retieulum (E). Reticular membrane (RM) Mierovilli (MV). (From
Spoendlin, 1966, p. 41)

LATERAL _'. /__

)Ill

POSTERIOR_ MeOIA_"

Figure 12-8. Schematic representation of polarization pattern of sensory ceils in macula

u_iculi of guinea pig. Arrows indicate direction of polarization showing fanlike spread from
one side of macula up to line beyond which polarization is reversed. Kinocilia on either side
of dividing line face each other. (Spoendlin, 1965)
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Figure 12-9. Electrical discharge rate of hair cells as function of displacement
of the sensory hairs. (From Wer_Ml& Ltmdquist, 1966)

The Semicircular Canals

The orientation of the six semicircular canals with reference to the head is

shown in figure 12-10. It will be noted that, although the three canals on one side
lie approximately in mutually perpendicular planes, only the horizontal canals lie
close to one of the coordinate planes of the skull, the superior and posterior canals
deviating by 45 degrees from the sagittal and frontal planes. Thus, rotary motions
in the horizontal plane, generating impulse angular accelerations, would stimulate
the horizontal pair of canals, although not maximally. Rotation in the sagittal and
frontal planes would generate angular accelerations in planes almost 45 degrees
from the planes of vertical (superior and posterior) canals. The operational signif-
icance is seen when the canals are stimulated in a pilot during pitch, roll, and yaw of
the aircraft (Clark and Stewart, 1962; Hixson, Niven, and Correia, 1966).

The so-called "semicircular" canals form a complete circuit by virtue of their

connections with the utricle (figure 12-1). One extremity of each canal is dilated to
form the ampulla, which contains the sensory receptors. A cross section of the
ampulla of a horizontal canal of the squirrel monkey is shown under low magnifi-
cation in figure 12-11 (lgarashi, 1966). The crista is a transverse ridge of tissue
covered with the sensory epithelium containing sensory cells whose cilia extend
into the cupula. This structure completes a fluid-tight gate across the ampulla,
hinged at the crista and free to move back and forth in response to movements of
the endolymph. This constitutes the so-called cupula-endolymph system. Clock-

wise rotation about an axis at right angles to the plane shown in figure 12-11 would
result in an inertial lag of the endolymph in the torus-like canal, causing the cupula
to be displaced counterclockwise. The fine structure of the sensory epithelium is
provided with hair cells similar to those of the macula. The kinocilia in the hair cells
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areuniformlypolarized;in thehorizontalcanalstheyaretowardtheutricle
(utricularpole)andintheverticalcanalstowardtheopposite pole.

Figure 12-10. Orientation of semicircular canals (enlarged) as viewed in skull from above.

It is apparent that the power train involved in the transformation of angular
acceleration forces to electrical energy in the semicircular canals is quite
different from the corresponding mechanisms in the otolith organs. In the first
place, the acceleration of gravity, which plays the major role under natural
stimulus conditions in the cilio-otolith system, may be neglected. The cupula-
endolymph system, responding to impulse angular accelerations in the plane of
the canal, has been likened to a fluid-filled torus, with the cupula responding to
movements of the endolymph in the manner of a spring-mass system with
viscous damping, ltead motions under natural conditions generate a high angular
acceleration with the onset of rotation, transient in character, followed by a very

brief period of rotation approaching constant velocity, and ending with another
transient acceleration of opposite sign. The duration of angular accelerations is
usually measured in fractions of a second and, inasmuch as the areas under the
curves depicting acceleration and deceleration are the same, the cupular
deflection is immediately restored to, or almost to, its natural resting place.
In sharp contrast to the otolith organs, the variations in G-loading
encountered in space flight may be neglected in dealing with the stimulus
to the canals. In the absence of angular or Coriolis accelerations (cross-coupled
angular accelerations) there is no accelerativc stimulus present. The resting dis-
charge presumably is of chemical origin.
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Figure12-11.Viewofcrista-eupula system of horizontal canal from squirrel monkey.
(lgarashi, 1966)

Central Nervous System Connections

This section summarizes the exceedingly complex vestibular reflex
mechanism, and points out some of the important functional neuroanatomical
relations. Figure 12-12, indicating the principal nervous pathways (Rasmussen,
1952), and figure 12-13 (Graybiei, 1969), indicating some additional features,
will serve as visual aids.

Afferent impulses from sensory receptors in the canals and otolith organs are

propagated along first-order neurons that terminate in the vestibular nuclear
complex, cerebellum, reticular formation, and, according to one authority at
least (Camis, 1930), some primary fibers reach the motor nuclei of the
extraocular muscles, although not verified in a more recent investigation
(Carpenter, 1960). These terminations are sites of origin for monosynaptic
vestibular pathways and receiving sites for reciprocal or outside influences. The
widespread distribution of these neuronal chains and networks, along with the
less well-known efferent fibers terminating in the receptor cells of the canals and
otolith organs, constitutes the reflex vestibular system.

The vestibular nuclear complex is the chief center, both with regard to
anatomical organization and functional control of the vestibular system. The

vestibular nuclei have important reciprocal linkages with the cerebellum and
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reticularformation;theysendoutmajorprojectionsthatascend,descend,and
crosstheneuraxis;theycontainsitesfor intcrconnectionwithother_nsory
systemsandotherneuralmechanismscoordinatingreflexactivity(Fredrickson
andSchwarz,1970;Gernandt,1967,1968;Ito, 1970;Nybcrg-ttansen,1970;
Pompciano,1970;SnyderandLowy,1970;Wilson,1970)

Figure12-12.Vestibularorequilibratorysystem.(Rasmus,_cn,A.T.,ThePrincipalNervous
Pathways.Copyright1952byMacMillanCompanyandusedwiththeirpermission)

hi addition to well-defined vestibular pathways, there is evidence that
vestibular activity reaches areas to which specific tracts have not yet been
identified. Representation in the cerebral cortex of the brain has been
established using the evoked potential method (Mickle and Adcs, 1953, 1954;
Spiegel et al., 1970). Connections between the vestibular system and visceral
nervous system have been demonstrated, using elcctrophysiological methods
upon animal subjects (Megirian and Manning, 1967; Tang and Gernandt, 1969)
and behavioral indicators for man exposed to unusual periodic accelerations.

The vestibular system, almost entirely concerned with the control of
movement, is subject to strong modulating influences. Specific control over
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_ferent impulses may be in the nature of gating mechanisms subserved by
efferent vestibular fibers (Gacek, 1960, 1968; Smith and Rasmussen, 1968). The
cerebellum, which contributes greatly to the finc control of movement, exercises
a strong tonic inhibitory control over vestibular reflexes. Cortical influences also
are inhibitory, as are those having their origin in the reticular formation.

CORTEX

,_ HYPOTHALAMUS

CEREBELLUM _ _'/ _'_ STIM--_DRINKING

I _ ,_:. ST M-#SWEATING _ VASOMOTOR

',*; .,"_MR I _S_-,V,T,ON" ,CTVT_
I t [

L_i Sr,M--',ER,STALS,S
Z I Ascending (/P_ N'_ I _.J SOMNOLENCE

_A/i ,MLF .J

EFF

'_ _ NUCLEUS In

_"1"-_ E.ETICCE.TE_
AREA OSTRE..
C.EMOCEPTIVETRIGGERZONE

I I -'-OESC.MLF
_4F'_ R ETICULOS PINAL

VESTIBULAR

FIBERS VESTIBULAR
NUCLEI

VESTIBULOSPINAL

Figure 12-13. Depicting possible (abnormal) irradiation of vestibular activity (dotted lines)
following slxong Coriolis acceleration; first order refers to effects. NF = fastigial nucleus;
U = uvula; N = nodulus; F = flaeculus; EOMN = extraoeular motor nuclei; MLF = medial
longitudinal fasciculus; RF =reticular formation; PVN=paraventricular nucleus;
SN = supraoptic nucleus; Ant. H. =anterior hypothatamic area; DMN =dorsomedial
hypothalamic nucleus; VMN= ventromedial hypothalamic nucleus; Post. N. = posterior
nucleus; L.H.A. = lateral hypothalamic area; M.N. = medial nucleus.

The extensive connections of the vestibular system with the motor
nuclei of the extraocular muscles deserve special attention. Stimulation of a

branch of the vestibular nerve supplying a single canal in the eat may result
in conjugate deviation of the eyes (Fluur, 1959). Such a movement,
involving agonists and antagonists, implies that messages with highly specific
physiological "meanings" are sent to the extraocular motor nuclei. The close
relation between the vestibular system, on the one hand, and vision and
control over eye motions, on the other, has a firm foundation in the
underlying neuroanatomical relations.

Extensive connections, some of them monosynaptic (Wilson, 1970), also
exist between some of the vestibular nuclei and the spinal cord, particularly
to those portions controlling movement of the head and trunk. These
underlying neuroanatomical relationships provide the foundation for the
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powerfulcontrol exertedby the vestibular system upon coordinatcd
movements of eyes, head, and trunk.

The reciprocal influences between canalicular and otolithic inputs and the
integration between right and left vestibular inputs are of great importance, and
some of the anatomical pathways and sites of interaction have been identified
and studied in detail. With regard to the advantages of having paired organs, the

benefits must lie in synergism effected in the central nervous system, inasmuch
as loss or even damage to one labyrinth results not only in loss of servation but
also in severe vestibular disturbances. These disturbances, that may be severe in
man, would be fatal in many animals and stand in sharp contrast to the little or
no disturbance following unilateral loss of visual or auditory function. Inasmuch
as vestibular influences do not reach the neocortex to any great extent, the
possibility of right-left differences based on learning would be negligible, a
matter of practical significance.

Static and Dynamic Characteristics

There is an important body of information dealing with the class of
phenomena under this heading, much of recent date. This information is widely
scattered in scientific journals, ranging through publications devoted to the
medical, psychological, engineering, and even mathematical sciences. A relatively
large amount of this information is in the nature of "facts," but a very
important amount repre_nts attempts to fi_rmulate theories based on thesc facts
and, insofar as possible, express them in the form of nomographs or in
mathematical notation. There are reasons why this is difficult even for the
simplest of all input-output responses; i.e,, those duc to stimulation of the
horizontal pair of horizontal canals. The basic difficulty is that this cannot be
done based on information obtained under natural stimulus conditions ('although
Nashncr's sophisticated experiments, mentioned in the next section, approach
near-normal stimulus conditions). As soon as one departs from natural stimulus
conditions he is usuMly dealing with perturbed responses, representing instability
of the canalicular system, that may implicate the otolithic system; in any event,
there is an attempt to restore stability through the adaptation process.

If one attempts to extend the scope of his lheory to include the vertical pairs

of canals by using facts obtained by exposure to angular accelerations in the
_gittal and frontal planes of tbe head (body), which is eommoldy done, none of
the canals lie in these planes; indeed, tht'y are 45 degrees from tiffs "ideal."
Central nervous system processing somehow compensates for this anatomical
state of affairs, but the underlying mechanisms have not been fully _'lucidated.

Much less information is avail',dd_" with regard to the otolitbie system, and
ht_re one must contend with nonvcstibular somatosensory receptors that
constitute, in effect, a second system. It is further complicated by the eonstant
stimulus due to bwavity. Finally when all systems are operating and interacting
under abnormal stimulus conditions, the input-output relations arc difficult to
stabilize, and the question of relevance is raised. Insofar as tbcy simulate an
operational situation they have relevancy, but extrapolation to natural stimulus
conduction must be done with caution.
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Natural Stimulus Conditions

Under natural stimulus conditions the semicircular canals are stimulated

only as a result of angular accelerations with reference to the skull. Under these
conditions, a person does not perceive a true sensation of rotation or visual
illusions or manifest nystagmus, all of which are used as indicators under many
cxperimental conditions. Positional nystagmus observed in some normal persons
is an exception. The canals furnish information with regard to angular velocity
and displacement, and some investigators are of the opinion that they furnish
information at two or three higher derivatives than angular velocity. Head
motions under natural conditions generate a high angular acceleration with the
onset of rotation, transient in character, followed by a very brief period of
rotation approaching constant velocity, and ending with another transient
acceleration of opposite sign. Although the acceleration and deceleration
magnitude may be different, the time-integral of angular acceleration at the
onset and offset are equal (area under the curves). Thus under most natural
conditions the end organ is thought to respond as an integrating accelerometer.

The otolith organs pose an interesting question that would seem to be of
more than academic interest; namely, whether they always act as accelerometers.
This relates to the fact that even if tile head is "fixed" in the gravitational field,
the receptors are stimulated, giving rise to a tonic input over and above the
resting discharge. There is general agreement that if the head is rotated in the
gravitational field in such a manner as to cause relative motion between otolithic
and cupular membranes, this constitutes an effective stimulus, in addition to
whatever suprathreshold tangential accelerations are generated. In the head-fixed
situation, the question arises whether receptor elements continually fire
(respond) due to the weight or pressure of the otoconia, or whether the fixation
is sufficiently imperfect, as in the case of the eye, to stimulate receptor elements
as a result of fine or imperceptible motions of the head relative to the direction
of gravity.

There are a number of stimulus conditions which meet or nearly meet the
criterion of natural terrestrial conditions, as will be discussed later.

Unnatural Stimulus Conditions

This section is devoted mainly to experimental findings in subgravity states,
which are of operational and theoretical interest. The central feature in all of the

findings pertains to the role of the otolith system. Additional information is
presented in a later section dealing with unnatural stimuli in "Vestibular
Servation in Man" as well as in Appendix A, which contains a summary of
vestibular modeling efforts.

Ocular Counterrolling. Ocular torsion may be defined as the involuntary
conjugate rolling movement of the eyes around their lines of sight in the
direction opposite to the leftward or rightward tilted position of the head (and
body) with respect to the gravitional upright. The measurements are made by
comparing the position of a metal frame, to which the subject is thoroughly
secured (head secured by individually fitted dental appliance), and the relative
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position of the uncovercd eye from colored photographs made in thc upright

and tilt positions. The amount of the roll is measured in degrees of arc. Findings

on a large number of subjects are shown in figure 12-26, presented in the section
on functional tests.

One experiment dealt with the problem of response decline as function of

length of exposure. The findings, figure 12-14, indicate fluctuations in the

amount of roll but no significant decline ovcr a period of about 8 hours (Miller

& Graybicl, 1970 c). These findings bear on the qucstion raised above regarding

the nature of the stimulus responsible for the tonic output. In figure 12-15

(Miller, Graybiel & Kellogg, 1966) thc amount of roll as a function of G-loading

is compared in seven normal and six labyrinthine-defective (L-D) subjects; the

decline manifested in the L-D subjects may have been due to residual otolithic

function. In figure 12-16 is shown a log plot with extensions into the

supragravity range bascd on data from other experiments (Miller & Graybiel,

1965). It is scen that thc S-shaped curve becomes linear at around 0.6 G, i.e.,

proportional to the log of the stimulus; the upper limit to this logarithmicity has
not been dctermined.
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Oculogravic Illusion. When a person is subjected to a change in direction of

the gravitoinertial vertical with reference to himself, this is rightly interpreted as
body tilt away from the upright, and the visual framework tends to tilt
concordantly. The latter has been termed the oculogravic illusion (Graybiel,
1952). It is mainly dependent on the integrity of the otolith system, although
nonvestibular proprioceptors may contribute to its perception. When a person
views an objectively vertical luminous line in the dark, it will appear to tilt when
the direction of the resultant force vector has inclined about 1.5 degrees from
the Earth vertical. The observer's estimates of the tilt correspond closely to the
change in direction of the resultant vector up to about 30 degrees, but beyond
this the subject increasingly overestimates the angular change. In figure 12-17 are
shown estimates made of the illusion by normal and L-D subjects under dry and
head-out water immersion conditions on a human centrifuge (Graybiel et al.,

1968a). There was greater individual variation in the settings made by the L-D
compared to the normal subjects, but the contribution of (mainly) nonotolith

gravireceptors under dry conditions in the case of the L-D subjects is evident.
Water immersion simulated to some extent the weigi_tless condition with regard
to nonotolith but not to otolith receptors.
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extrapersonal space made by normal and labyrinthine-defective subjects under wet and dry
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al., 1968a)

In figure 12-18 are shown the settings made by normal subjects during
prolonged exposure on a human centrifuge (Clark & Graybiel, 1963a). The body
was restrained and the head fixed by means of a fiberglas helmet. As in the case
of ocular counterrolling, there was little or no decay in the magnitude of the
illusion during periods measured in hour.
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Figure 12-18. Change in perception of horizontal following prolonged exposure
to a visual framework. (Experimenter offset the line.) (Clark & Graybiel, 1963a)

Up to this point the illustrations of the oculogravic illusion suggest that
it falls into the near-normal type of vestibular response, but in some
circumstances this is not the case. One is when the strength of the stimulus
is increased while the subject is riding in a lighted circular room at the end

of the arm of the centrifuge. Everything in the fieht of vision appears to
tilt 90degrees to the Earth vertical. Visual cues to the Earth vertical are
literally overpowered by the strength of the stimulus to the otoliths,
receptors, and other gavireceptors.

A and E Phenomena. Wade (1968) has recently reviewed the literature
dealing with visual orientation to the upright, and how it is influenced by
l_)dy position with reference to the gravitational vertical, and has analyzed
ttne contributory role of posturai mechanisms in terms of the otolith, neck,
and trunk systems, lu brief, it is readily demonstrated that when man is
upright, orientation of a visual target to the gravitational vertical and
horizontal, in the absence of visual cues to the upright, is accurate and that
with rightward or leftward tilt, a bias appears first in a gradual displacement
of the visual vertical to the opposite side of the gravitational vertical, the
Miiller (1916) or E effect; after tilting through 65 degrees the bias reverses
and eventually is displaced toward the _me side, the Aubert (1861) ()r A
effect.

The curves in Figure 12-19 A and B demonstrate differences between
normal and L-I) subjects, respectively, in perceiving the A and E effects,



TheVestibularSystem 553

whichclearlypointto a contributoryinfluenceof the otolith apparatus.
Someevidencethat thisbiasis lost in weightlessnesswasdemonstratedin
GeminiflightsV andVII (Graybielet al., 1967),suggestingits dependence
underterrestrialconditionsonotolithicandnonotolithicgravireceptors.

Inversion Illusion. In space flight the inversion illusion has been
experienced by some cosmonauts on making the transition into
weightlessness (Billingham, 1966; Yuganov et al., 1966). Its probable
dependence on physiological deafferentation of the otolith receptors is
suggested by the observation in parabolic flight that some normal subjects
but none of the L-D subjects experienced the illusion (Graybiel & Kellogg,

1967).

Nystagmus. Caloric nystagmus has been elicited in parabolic flight
missions (Kellogg & Graybiel, 1967). With eyes open, nystagmus was

manifested during pushover and pullup but not during the weightless phase.
An experiment was repeated (Graybiel et al., 1970a) using a similar
procedure except that the subject's eyes were closed. Figure 12-20 illustrates
typical findings. Note that in the first two parabolas, nystagmus (velocity of
the slow phase) declines but is present; that, in the third parabola, the
primary _ves way to a secondary nystagmus in the weightless phase; and
that during the pullout, primary nystagmus reappears. In the last three
parabolas only secondary nystagmus is seen. The modulating influences of
changing strength of the caloric stimulus and changing G4oadings on the
otolith receptors are apparent. Under laboratory conditions secondary

nystagmus did not appear.

Motion Sickness. In a later ruction, the problem of motion sickness
experienced in orbital flight and in the weightless phase of parabolic flight
is discussed. Symptoms are elicited as a consequence of head motions
generating angular accelerations that stimulate the canals, despite the fact
that these stimuli are normal The tonic afferent impulse from the otolith
receptors is absent in weightlessness; hence, the normal integration in the

(combined) vestibular system has been altered. Thus the basic cause is
physiological deafferentation of the otolith receptors, yet the events
triggering the abnormal response are natural head motions.

Not easily explained are the great individual differences in susceptibility
to motion sickness in weightlessness, resulting not only from normal
stimulation of the canals but also from cross-coupled angular accelerations
that would result from head motion in a rotating vehicle. It would appear
that some persons have unusually low and some unusually high
susceptibility. Thus, the subgravity level is a parameter that must be taken into
account as well as the angular velocity. The curves describing susceptibility to
motion sickness as a function of subgravity level can be determined from experi-
ments in parabohc flight but require validation under actual space flight stimulus
conditions. The American experience with regard to motion sickness in space mis-
sions has recently been reviewed in detail (Berry & Dietlein, 1970).

487_858 O - 73 - 36
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Figure 12-20. Effect of varying g values during parabolic flight on caloric induced
nystagmus. Caloric nystalcntts is reduced, then suppressed, and, finally, reversed in repeated
periods of weightlessness, while calorie nystagmus is increased during periods of g values
above 1.0.

Vestibular Servation In Man

Under Natural Stimulus Conditions

Astonishingly little is known concerning the normal functions of the
vestibular system in man under natural conditions. The canals and otoliths serve
mainly as "participants" in motor functions, and it is exceedingly difficult to

elucidate their contributory roles. A classical experimental approach to this
question involves the use of human or animal subjects with bilateral loss of
canalicular and otolithic functions. Experiments on animals alone, however, will
never suffice, because the findings are not directly applicable to man. The
identification of human subjects with bilateral loss of vestibnlar functions has

been accomplished by screening groups of deaf persons, but experimentation on
subjects identified in this way is complicated by the great differences between
persons who hear and those who do not. Moreover, in all such subjects not only
is there the need to make sure that the pathologic changes are quiescent and that
adaptive changes are complete following any loss of function, but also there is
the need to take into account the unmeasurable factor of "compensatory
adjustments." Despite these limitations, the best information we have has been
derived from a comparison of performance of persons with and without
vestibular defects.

Clinieal Studies. Under ordinary present-day living conditions, severe losses
of vestibular function have gone undetected. This is dramatically illustrated by
the rare cases in which there has been loss of vestibular function early in life but
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retentionof hearing(Graybielet al., 1970b).Twosuchpersons,discovered
fortuitously,revealedthatneitherthey,theirfamilies,northeirphysicianswas
awareof theloss.Despitethefactthatlossof functionwasreadilyrevealedin
our laboratory, this takes little away from the fact that they met not only the
ordinary demands of present day living but also were proficient above the
average in a variety of sports. When apprised of their loss, it was brought out
that they had experienced difficulties under circumstances in which visual cues
were inadequate and, po_ibly, in eye-head-body coordination when visual cues

were adequate.

Laboratory Studies. Although a variety of behavioral tests has been
proposed to demonstrate the effects of loss of vestibular function, only a few
well-controlled systematic investigations have been conducted.

The postural equilibrium test battery. These tests have a limitation in
file sense that many systems m addit_ vestibular reflexes are challenged,

but a great advantage is that they test natural behavioral mechanisms. Findings
in the case of subjects with partial loss of vestibular function (Graybiel & Miller,

1970a) suggest that postural equilibrium is more dependent upon canalicular
than on otolithic function. A u_ful test battery, described elsewhere in detail

(Graybiel & Fregly, 1966), comprising six individual items, requires the subject
to stand or walk in the stringent position of body erect, arms folded against
chcst, wearing shoes with flat heels and leather soles. The below-listed test items
constitute this battery :

Slmrpened Romberg (SR): Stand on floor, eyes closed, feet in
Ileel-to-toc position. Maximum score 240.

Walk eyes open (E/O): Walk heel-to-toe, eyes open, on %-inch
wide rail. Maximum score 15.

Stand eyes open (E/O): Stand heel-to-toe, eyes open, on ¾-inch
rail. Maximum score 180.

Stand on leg eyes closed (SOLEC): First right leg (SOLEC-R),
then left leg.(SOLEC-L). Maximum score 150.

Walk a straight line heel-to-toe on floor (WALEC).
Maximum score zero.

The scores are normalized in percentile equivalents. Some comparative scores are
shown in table 12-2. Scores below the 6th percentile are regarded as abnormal,
and above the 40th, in the typical normal range. In general, improvement in
scores suggests normality, and its absence, abnormality.

Nashner (1970) has just published the results of a sophisticated study on
postural sway under near-normal baseline conditions. Based on available
information, he developed a general postural control model that, in turn, was
used in devising a series of experiments dealing with postural sway resulting from
rotation about the ankle. The experimental findings were combined with the
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general model to develop specific models for the sensory-motor interfaces. Three
normal subjects and one L-D subject participated. The latter was 20 years of age
and had compen_tcd "to the extent possible" following bilateral transection of
the VIIIth nerve, 2 years prior to testing. Four types of tests were conducted:

l. Reflex response gains. In normal subjects the average gain of the stretch
reflex response induced by small rotations was about one-third that necessary.
tot postural stability. In the L-D subject with eyes open the gains were larger

than in the normals but below those necessary fi_r postural stability; with eyes

closed the average gain increased markedly, and, for extensor muscles, resulted
in "rigid" postl,ral stability.

2. Induced sway: thresholds for perception with eyes open. Threshold

values in terms of response time and body angle are shown in figure 12-21

(Nashner, 1970).
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Figure 12-2I. Response threshold to induced sway motion
of vestibular defective subject. (Nashner, 1970)

3. Continuous recording of postural response and body angle motion. With
eyes open the "control strategy." is the same for the L-D subject and normal
controls, but in making corrections for transient disturbances (higher center
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commands),performancewasbetterforthenormalsthantheL-Dsubjects.With
eyesclosedthestrategyremainsthesamefornormalsubjects(periodsof reflex
stabilityandtransientdisturbances),butchangesfor theL-Dsubjectin that
reflexstabilitygiveswaytocontinuousoscillation.

4. Frequencyspectraof bodyanglemotions.Comparativevaluesareshown
in figure12-22AandB(Nashner,1970).
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Figure 12-22. Fourier coefficients of body sway motion for vestibular defective subject
standing on rigid, flat surface-A: with eyes open; B: with eyes dosed. (Nashner, 1970)

In summary, the normal subject regulates posture with a combination of high-
frequency (canal and somatosensory receptors) stabilization and low-frequency
(otolith and optic receptors) stabilization; with eyes closed he still has otoliths
functioning. The L-D subject with eyes closed is without low-frequency stabiliza-
tion, resulting in a "rigid" stability.
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Perception of postural vertical. Perception of tile postural vertic',d was

compared in normal and L-D subjects (eyes closed) immediately after right or

left displacement of 30 degrees from the upright in a series of 30 trials. The

findings in figure 12-23 (Clark & Graybiel, 1963b) show that although the

normal subjects exhibited smaller average errors than the L-D subjects, tile

differences between these groups were not statistically significant. Moreover, tile

improvement with practice was about the same for both groups.
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Figure 12-23. Errors in setting to postural vertical. (Clark & Graybiel, 1963b. Copyright
1963 by the American Psychological Association and reprinted with their permission)

In another study the same subjects were tested under four conditions of tilt
and two conditions of delay before setting themselves to the upright. The
findings in table 12-3 (Clark & Graybiel, 1964) indicate the somewhat greater
average errors in the L-D compared with normal subjects and suggest that the
error in setting is a function of both the degree of tilt and length of delay.

Table 12-3

:_verage Errors in l)cgrecs in Setting to the Postural Vertical

Delay

in

Setting

0

2 rain

Normal Subjects

(S = 9)

Tilt

10 ° 20 ° 30 ° 40 °

1.2 1.5 2.0 1.9

2.2 3.5 3.8 4.2

Labyrithine Defective Subjects

(S = 10)

Tilt

10 ° 20 ° 30 ° 40 °

2.4 2.7 3.0 3.3

3.4 6.1 6.5 6.8
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Taken together, these findings emphasize that the vestibular contribution to
nonvisual perception of the upright was relatively small under the conditions of
the experiment. These findings are in accord with those of Schock (1960) who
demonstrated large decrements in the ability of normal subjects to set a
luminous rod, in darkness, to the vertical or horizontal when under water,

compared with settings made out of water.

Tentative Conclusions Based on a Review of Clinical and Laboratory
Studies.

1. In young persons with normal hearing, severe losses of vestibular function
have gone undetected under ordinary living conditions. Handicaps can be
demonstrated, however, under challenging situations, especially in the absence of
visual cues.

2. Loss of otolithic function is well tolerated, inasmuch as nonotolithic

proprioception subserves quite adequately some of the same functions.

3. Loss of canalicular function is less well tolerated than loss of otolithic

function, partly because it subserves more important and unique functions.

Under Unnatural Stimulus Conditions

The schema in figure 12-24 represents an attempt to identify important

elements determining input-output relations in which the vestibular organs play
either the essential or a contributory role. The main chain of events involves:

(1) the accelerative stimuli; (2) the cili-otolith and cupula-endolymph systems;
(3) the sensory inputs to the canalicular and otolithic systems; (4) their
integration to form the vestibular system; (5) interactions of vestibular and
nonvestibular systems, notably the visual system; (6) normal and abnormal

system-bound responses; and (7) non-system-bound responses that involve not
only a facultative linkage but also nonvestibular servation systems. Listed in the
figure are: (1) a categorization of etiologic factors resulting in normal and
abnormal sensory, inputs, (2) an attempt to illustrate typical sensory input
activity patterns, and (3) a hsting of important secondary etiologic factors
affecting su_eptibility to reflex vestibular disturbances and motion sickness.
Not shown in the figure are the many important events and proces_s involved in
the acquisition and decay of adaptation effects. Exposure to unnatural
accelerations may stimulate canals, otoliths, or both. The extremely important
contribution made by head motions in otherwise stress-free motion
environments needs cmphasis. In a rotating environment the cross-coupled
angular accelerations constitute an ever-changing bizarre stimulus pattern for the
canals that do not vary significantly with changes in radius. The otolith organs
are stimulated by Coriolis accelerations which are affectcd by change in radius,
but their "positive" contribution, i.e., abnormal sensory input pattern, must be
small, inasmuch as susceptibility to motion sickness does not seem to vary
within radii ranging from 0 to 19 feet in a rotating environment. Stated
differently, any otolith contribution to a disturbance in otolith-canal integration

would appear to be independent of a disturbance in the otolithic system caused
by the vectorial sum of radial, gravitational, and Coriolis accelerations.
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Figure 12-24. Conceptual framework showing important elements and their interactions
undedying system-bound vestibular disturbances and non-system-bound disturbances
( motion sickness).

In weightlessness the tonic* sensory output of the otolith organs due to
gravity is abolished, thus altering the sensory input to the otolithic system.
The semicircular canals, however, are stimulated by angular accelerations
generated by head (body) motions that differ little if at all from those
generated by making similar head motions under terrestrial conditions. The

loss in stability in the (combined) vestibular systems would appear to be
due to normal canalicular inputs encountering an otolithic input consisting
only of the spontaneous discharge. The resulting disturbance is sufficient to
elicit symptoms of motion sickness in some persons but not in others.

Many unnatural patterns of accelerative stimuli clicit only abnormal
system-bound responses; i.e., do not evoke the symptomatology of motion
sickness. In general, they have the characteristics of reflex phenomena and
vary greatly in their departurc from normal stimulus conditions. Adaptation
may not be manifested under near-normal or under certain abnormal

_timulus conditions. If adaptation occurs during continual exposure, it is an
indication that the response was elicited as a consequence of insufficient
adaptive capacity to cope (immediately) with the stressful stimuli.

*For the purpose of clarity, a distinction is made between a spontaneous discharge and one
resulting from stimulation which, in the case of the otolith organs, may be either tonic or
periodic or both.
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Many reflex vestibular disturbances have the following characteristics in
common: (1) short latencies, (2) maximal response to the initial stimulus,
(3) possible modulation by secondary influences, (4) little or no evidence of
temporal perseveration based on sensory input (some exceptions here),
(5) variable time course of adaptation, and (6) possible need for readjustment
on change to the initial or a different gravitoinertial force environment.

In the case of stimulus patterns that have the potential for precipitating
motion sickness, these symptoms may be avoided, e.g., by short exposure,
making it possible to elicit reflex vestibular disturbances as "isolated" vestibular
responses. Much of what follows under the etiology of motion sickness applies

to stimuli in this category.

The typical overt symptoms of motion sickness are well known, and
systematic studies reveal that they have the following characteristics: (1) delay
in appearance of symptoms aftcr the onset of the stressful stimuli, (2) gradual
or rapid increase in severity of symptoms, (3) modulation by secondary
influences, (4) perseveration after sudden cessation of stimuli, and (5) response
decline indicating recovery. Further abstractions reveal: (1) great individual
differences in susceptibility and in the acquisition and decay of adaptation,
(2) transfer of adaptation effects, (3) learning, and (4) conditioning.

The appearance of symptoms always indicates that the adaptative capacity
of the person has been exceeded. Indeed, even prior to the appearance of overt
responses it can be demonstrated that the individual's susceptibility has risen.
Moreover, the order of appearance of symptoms is affected by the strength of
the stressful stimuli and length of exposure.

Under all stimulus conditions, secondary etiologic influences, categorized in
figure 12-24, are present, tending either to raise or lower susceptibility. Vision
plays an important role. A pilot, for example, free of symptoms in the cockpit,
may experience motion sickness in the navigator's closed compartment. Mild
symptoms of motion sickness have disappeared under the influence of
experimenter directed tasks that may have preempted central nervous system
pathways used by irradiating vestibular influences. Covert factors may come into
play. Covert factors include defects, disease, and functional disturbances that

either are not diagnosed or wrongly considered unimportant. Examples are
personality defects, which render a person unwilling or unable to cope with
functional disorders of vestibular origin, prodromal stages of disease, and
undiagnosed vestibular disease or functional disorder.

Little is known concerning the precise nature of the facultative linkage. The
fact that irradiating vestibular activity is demonstrably open to modulating
influences points to the use of common pathways in the brain-stem reticular

formation. This common meeting ground between somatic and visceral systems
is essential not only for coordination at the reflex level but also to provide for
some voluntary control over otherwise autonomic responses. What makes the

vestibular linkage unusual (but not unique) is the readiness with which vestibular
activity may get "out of bounds" and elicit the widespread responses that
include the typical symptoms of motion sickness. The sometimes long delay
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betweentheonset of stimulation and appearance of motion sickness suggests
that a chemical linkage also may be involved.

Recovery during continual exposure to stress is complicated. At some point
in time, the tendency toward restoration of homeostasis in nonvcstibular
systems exceeds the influences having a contrary tendency. At another point in
time, nonvestibular systems are freed from vestibular influences (adaptation in
the vestibular system and disappearance of any neurohormones released). Then
restoration takes place spontaneously through homeostatic events and processes,
not only in the systems responsible for first-order cffects but in all systems
involved in higher order effects and complications. Curves depicting the time
course of adaptation in the vestibular system, the disappearance of vestibular
influences, and the restoration in the nonvestibular systems tend to overlap and
have not been clearly defined. Thus the engagement and disengagement between
the vestibular and nonvestibular systems is difficult to follow but an interesting
object of study.

Investigations dealing with reflex vestibular disturbances and motion sickness
in man may be directed to the solution of an operational problem, or to the
accumulation of facts, the synthesis of which would be applicable to any
operational problem.

Individual Assessment

The distinction among functional, provocative, and simulation tests is useful
although somewhat arbitrary. Only simulation tests will be discussed in detail,
partly because some of the material is not readily accessible elsewhere but
mainly because they comprise the most important kinds of tests in the
assessment of astronauts.

Functional Tests. There is evidence that functional test scores within the

normal range have no value in predicting individual differences in susceptibility
to reflex vestibular disturbances and motion sickne_ (Khilov, 1969a, b; Miller &
Graybiel, 1970a). They are valuable nevertheless from the clinical standpoint (to
nile out overt and, if possible, cryptic defect or disease) and from the standpoint
of making comparative measurements, the astronaut serving as his own control.
The reliability of most vestibular tests is not high compared with vision or
hearing tests; hence, the need or desirability for repeated measurements on
astronauts serving as experimental subjects. Functional tests should be used not
only in the selection of aviators and astronauts but also in the selection of
subjects used in vestibular experimentation.

Clinicians have described test batteries (Aschan, Bergstedt, & Stahle, 1956;
Henriksson et al., 1966; Jongkees, 1967; McNally, 1969; NcNally & Stuart,
1942; Spector, 1967) to which reference might be made for details, but nearly
all batteries include tests for spontaneous and positional nystagmus, a modified
ttallpike test, and some clinicians use a visual tracking "pendulum test." The
latter is not widely used, hence will be described briefly. Eye motions are
recorded while the subject "tracks" an oscillating target. The displacement and
frequency of the pendulum device can be varied. Normal persons begin to have
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difficulty in tracking the target with displacements greater than 20 degrees and a
frequency greater than 0.8 Hz (oscillation time : 1.2 sec), and this is declared by
the appearance of saccadic perturbation in the record. The testing procedure can
be exploited by using one eye for fixation. Some typical results are shown in
figure 12-25.

7

 Ay,,AAm 

Figure 12-25. Eye movements recorded during pendulum test.

Semicircular Canals. Thermal stimulation consists of delivering a jet of
water of known temperature against the ear drum at a predetermined rate and
volume. The subject's head is positioned so that the horizontal pair of canals are
vertical. Differences in specific weight of endolymph at body temperature and
that portion of the canal influenced by the irrigating water causes a displacement
of the cupula. The thermal stimulus to one ear is grossly abnormal because of
the disturbance created in the delicate right-left synergistic mechanisms
underlying normal canalicular function. The great advantage is that each

horizontal canal can be stimulated individually (vertical canals also can be
stimulated). The nystagmic response may be observed, but nystagmographic
recordings are recommended for reasons of objectivity and better opportunity
for analysis.

With the well-known Hallpike test (Fitzgerald & Hallpike, 1942), irrigating
temperatures of 30 degrees and 44 degrees C are used, which may induce nausea
in highly susceptible persons. It has the great advantage of determining what is
termed right-left labyrinthine and directional preponderance. We have used the
threshold caloric test (McLeod & Meek, 1962). It has advantages for screening
purposes and comparative measurements, a person serving as his own control,
and the vestibular disturbance is brief and recovery quick. Irrigating
temperatures just below body temperature usually suffice, but if not, stepwise
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decreases are made until a response is obtained. If irrigating temperatures below

35 degrees C are required to elicit a response, some abnormality should be

suspected.

Angular Acceleration Thresholds. Rotating devices have been fabricated

that profile' noi on--_l_a__'siological character, albeit unusual, but

may have excellent performance characteristics, including preprogramming. The

most sensitive indicator is the oculo_ral illusion, but "sen_tions" and

nystagmus are also used routinely.

The oculo_'ral illusion is a form of apparent motion that has its genesis in

the cupula-endolymph mechanism and may be viewed under many diffcrcnt

circumstances (Graybiel & ttupp, 1946). in measuring "thresholds," favorable

e_mditions include a dimly lighted three-dintensional target viewed in darkness

a,d fixed with respect to the subject. The expected apparent motion is in the

direction of acceleration. In a recent report by Clark and Stewart (1969), the

mean threshold for the perception of the oculogyrai illusion in 32 normal

subjects was found to be 0.l l°fsec 2 when they were exposed to rotation in the
vertical axis for 10 seconds.

Tests of Otolith Function. Ocular counterrolling, described above, has

the adva,tage of not disturbing the vestibular system; hence, it qualifies as a test
conducted under near-normal stimulus conditions. The values obtained with

different degrees of rightward and leftward tilt describe curves that can be

examined for left-right symmetry. The "index" (one-half the sum of the

maximal left and right roll) values obtained in a group of 550 presumably

normal persons and 10 L-D subjects are shown in figure 12-6 (Miller, 1970).

The rare i,stances when values fall below 120 seconds of arc are unexplained.
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There art' a variety of other tests available, but none recommended as a

substitute h_r ocular counterrolling; _metimes a second test is desirable it'

facilities f_r counterrolling are not available. _'_mong the other tests arc': (1) the
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oculo_avie illusion test described above, (2) the elicitation of compensatory
eye motions by exposing a person to horizontal oscillations on a horizontal

swing or other device, (3) the elicitation of nystagmus in a device that rotates a
person about an axis other than the Earth vertical or revolves a person in a
counterrotating capsule or room that exposes him to a rotating linear
acceleration vector.

As part of our routine, we always include audiometry and the postural
equilibrium test battery.

Provocative Tests. Provocative tests serve the important purpose of
evaluating a person's susceptability to reflex vestibular disturbances and to
motion sickness and may, in addition, measure his ability to cope with such
disturbances either with or without the aid of countermeasures, including the

use of drugs. Factors of etiologic significance in addition to the gravitoinertial
force environment, may be introduced to simulate more completely the
anticipated operational conditions or to explore their role in affecting an
individual's susceptibility to novel circumstances. The distinctions between
provocative and simulation tests involve primarily their duration and,
secondarily, their specificity in terms of the global exposure conditions; thus,
the predictive value of provocative tests is less than that of simulation tests. The
validity of the findings, as in the case of functional tests, is compromised if the
person tested either is suffering from active disease involving the vestibular
systems or, indeed, has not compensated completely following permanent injury
that is no longer active.

In conducting and interpreting the results of provocative tests, difficulties
are encountered and precautions must be taken, which are not unrelated.
Difficulties have their origin in: (1) the individual differences in susceptibility
with regard to a given test; (2) intraindividual differences in susceptibility, when
exposed in different gravitoinertial force environments; (3) preternaturally high
susceptibility if insufficient time has not elapsed between exposures; (4) the
fact that adaptation occurs as an inevitable consequence of every test, with
much individual variation in the rate of acquisition and of loss of adaptation;
and (5) the difficulty in expressing the results in absolute values. Great

advantage would occur from the use of normalized scores and standardization of
techniques.

Some advantages of provocative tests include: (l) the low "cost" in terms of
time and equipment that makes a "test battery" feasible, (2) individual testiltg,
and (3) their use in studying vestibular mechanisms and in evaluating counter-
measures.

A large number of provocative tests are in use, but brevity dictates limiting
what follows to the description of a few representative tests relevant to space
flight operations.

The Dial Test. A standardized test has been devised for determining
susceptibility to motion sickness in the slow rotation room (SRR), and this came
to be known as the "dial test." The stressful Coriolis accelerations are generated
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by simultaneousrotationsof roomandsubject.Fiw,dialsaresoplacedin
relationto thesubjectthat,tosetthem'cdlenumber_meachdial,hcisrequired
to movehisheadandtrunktofiw'differentextremepositions,whichmaximizes
therotationof theheadoutof the plane of the room's rotation. A "sequence"
consists in setting the fiw' dials in accordance with a tape recording, one every
6 seconds, followed by a rest period of 6 seconds. The subject, usually with eyes
open, continues the task until either a definite endpoint is reached, usually
Mill (severe malaise) (tablc 12-4) ((,raybiel et al., 1968b), or (usually) until
20 sequences or 100 settings have been made. If the original rate of rotation,
say, 7.5 rpm, is too stressful, the velocity is redrced, or if too weak, the velocity
is increased. With few exceptions, normal persons reach the endpoint at some
velocity between 5 rpm and 20 rpm. Thc rcsults are scored in terms of angular
velocity, number of head motions, and level of symptom (e.g., 10rpm,
78, M 111, respectively).

The Cot|oils Sickness Sure tpfi_bility Index. This represents a modifi-
cation of the dial test, but a rotating St|lie or Litter-chair is used, the subject
making standardized head motions ususally with eyes closed (Miller & Graybiel,
1970b). Higher angular velocities than those in the SRR are required to reach
the same endpoint. A noteworthy feature of this test is the method of scoring,
which yields a single value, the "index," enabling the investigator to make
comparisons within and among subjects.

Off-Vertical Rotation Test. In contrast to the two tests just described,
which mainly "disturb" the canalicular system, a rotating linear acceleration
vector mainly stre_es the otolithic system. The off-vertical rotation (OVR) test
is one of many and may be scored in "duration," which has some but not all of
the advantages of an index. The device consists of a rotating chair (figure 12-27)
(GraybieI and Miller,1970b) mounted on a platform tt_at can be tilted either by
a hand crank or by an electric motor, and the degree of tilt read from a large
protractor. The subject's head, held rigidly against the hcadrcst by adjustable
straps across his forehead, is maintained precisely ovcr the center of rotation,
with smooth rotation ensured by proper counterbalancing. The rotation,
pro_ammed on a time axis, involves periods of acceleration at 0.5°/sec 2 for
30 seconds, followed by periods of constant velocity for 6 minutes, until either
the endpoint is reached or 6 minutes completed at 25 rpm, the cut-off point. In
effect, this program represents unit incrcases _t' 2.5 rpm _very 6.5 minutes after
the initial step. Tile cndpoint can be expresse, d in terms of elapsed time at
terminal velocity, as total elapsed time at terminal vclocity, or as total elapsed
time, which serves as an index of susceptibility to motion sickness. With each
revolution of the OVR device, the subject continually changes position with
respect to the gravitational upright. Thus, receptors in the paired maeulae of
utricle and sacculc and nonvestibularproprioeeptors are continually exposed to
an unusual stinn.lus pattcrn. The findings in a group of healthy men, the great
majority attached to a naval air station, are shown in figure 12-28 (Graybicl and
Miller, 1970b). All but twelve men reached the predetermined endpoint (5111 A)

at a lO-degree tilt; all but five of thc remainder reached it only when the angle of
tilt was increased to 20 degrees. Thus, the scores ranked 95 subjects in
terms of their susceptibility to this unusual gravitoinertial force environment
and demonstrated that five were highly insusceptible.
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Figure 12-27. Off-vertical rotating chair device. Slide mechanisms

for positioning subject now shown. (Graybiei & Miller, 1970b)
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Figure 12-28. Susceptibility index in subjects exposed to off-vertical rotation according

to programmed stress indicated on abscissa. (Graybiel & Miller, 1970b)
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Figures 12-29 and 12-30 are plots comparing susceptibilty to motion
sickness with scores obtained in testing, respectively, the function of the
semicircular canals and otolith organs (Graybiel and Miller, 1970b). Although it
appears that significant relationships were not found between functional test
scores and susceptibility to motion sickness, it is worth adding that when
extreme values are compared, susceptibility was higher in subjects with low
rather than high oculogyral illusion threshold test values, and susceptibility was
lower in subjects with high rather than low values for the counterrolling index.

Simulation Tests Some of the problems posed in attempting to prcdict
susceptibility to vestibular side effects under the novel conditions in a rotating
space base are pointed out in figure 12-31. The slow rotation room (SRR),
which can be used to simulate the angular velocity, is a completely enclosed

space and provides for prolonged exposures and sudden transitions between the
rotating and nonrotating state. The SRR fails to simulate space-base conditions
in such notable aspects as weightlessness, subgravity levels, man's orientation
when upright with regard to the axis of rotation, and the Coriolis forces while
walking and handling objects. Stated differently, the SRR provides a very useful
simulation device for the important study of the effects of cross-coupled angular

accelerations, except for the fractional subgravity levels and man's orientation
with respect to the axis of rotation. The SRR is useful in demonstrating the
qualitative aspects of the role of the vestibular organs in postural equilibrium
hnd in walking, but nonvestibular factors play a greater role. The necessary use
of small rotating devices poses limitations in terms of visual reference, length of
exposure, and postural equilibrium. Parabolic flight offers the opportunity to
study the effects of weightlessness and fractional subgravity levels for brief
periods. Orbital flights prior to the establishment of a space base offer the
opportunity to use small or even fairly large rotating devices for validation of
ground-based experimental findings and the advantages of prolonged exposure to
study adaptation effects.

It is convenient, although somewhat arbitrary, to distinguish between
experiments designed to elicit responses that have their genesis mainly in the
vestibular system and those designed to prevent such responses by means of
stepwise incremental increases in the stressful stimuli.

The studies now to be reported for elicitation of vestibular side effects, were
selected for their operational relevance and were conducted for the most part
either in the SRR or in parabolic flight.

Slow Rotation Room. A series of experimcnts was carried out in the
SRR to determine if there were differences in susceptibility to vestibular side
effects dependent upon man's orientation to the axis of rotation and if the

acquisition of adaptation effects acquired in one orientation mode transferred to
the other. A unique feature of this experiment was the provision for subjects to
walk on the "wall" of the circular SRR and carry out their tasks while
horizontal with respect to the Earth vertical (Graybiel et al., 1968c). This was

made possible by the use of air-bearing supports and custom-fitted articulated
fiberglass molds. Four subjects participated in two different experiments
involving adaptation to the stimulus conditions with the room rotating at 4 rpm
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for a period of either 4 or 5 days. One pair of subjects initially in the horizontal

mode was changed to the vertical mode near the middle of the perrotation
period when symptoms of motion sickness had disappeared; in the second
experiment they began in the vertical mode. The order was reversed for the
second pair. When in the horizontal mode, the subjects spent approximately
6hours a day in the airbearing device, 6to 10minutes upright, and the
remainder of the time recumbent on a bunk. The findings, summarized in
figure 12-32, indicate that there is no significant difference in susceptibility in
the two modes and that transfer of adaptation is excellent. On cessation of
rotation only mild symptoms of motion sickness were manifested. A by-product
of the experiment was the demonstration of important differences between

motion sickness and postural disequilibrium during adaptation to the rotating
environment and subsequent return to the stationary one. In the start-horizontal
mode, adaptation ensuring freedom from symptoms of motion sickness on
change to the vertical mode did not prevent ataxia. In the start-vertical mode,

the adaptation resulted in a great decrease in ataxia; this adaptation persevcrated

throughout the finish-horizontal mode and as long as 36 hours afterward. This
implied that the dynamic processes underlying postural homeostasis involved
muscular activities largely rendered static when subjects were in the horizontal
mode.
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Figure 12-31. Prediction of susceptibility to motion sickness

with prolonged exposure space mission.

In the light of the experiment just described, earlier studies involving
prolonged exposures in the SRR were reviewed, particularly from the standpoint
of manifestations of motion sickness on cessation of rotation. The experiment in
which four subjects were exposed at 10 rpm over a period of 12 days was
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notable in this regard (Graybiel et al., 1965). Despite the fact that severe

symptoms were experienced, especially in the first half of the perrotation

period, manifestations of motion sickness on cessation of rotation were trivial or

absent.
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Figure 12-32. Appropriate mean changes in level of symptoms of motion sickness and
in postural disequilibrium in 4 young healthy subjects exposed to continual rotation at
4 rpm.

Adaptive Capacity Tests• These tests measure individual differences in

the rate of acquisition and decay of adaptation in a rotating environment. They

qualify as simulation tests, and measure at once susceptibility to reflex vestibular

disturbances and motion sickness and ability to adapt and to retain adaptation

effects. Repeated exposures are required to measure retention of adaptation

effects, and the best schedule is yet to be determined. These tests have various

options open (Reason & Graybiei, 1969; 1970a, b), but all rely on exposure to

stepwise increases in the stressful accelerations.

The findings in one test of this sort are summarized with the aid of

table 12-5 (Reason & Graybiel, 1970a). Ten young subjects executed controlled

head (and body) motions at each of ten 1-rpm increases in velocity of the slow

rotation room. Eight discrete head motions at 2-second intervals comprised a

sequence, and 4 seconds elapsed between sequences• At the end of each head

motion the subject responded with a yes or no; yes indicated that he

experienced one or more reflex vestibular disturbances or symptoms of motion

sickness. The adaptation criterion was a negative response during three

sequences, at which point the angular velocity of the SRR was increased by

1 rpm. The number of head movement sequences required at different step

increases of the subjects are shown in table 12-5. The individual differences in

performance were great. Four of the ten subjects experienced motion sickness

and dropped out; one at 5 rpm, two at 6 rpm, and one at 10 rpm. One subject
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required only nine sequences (72 head motions) to reach 10 rpm, and these were
made at velocities below 3 rpm. At the other extreme, one subject required
390sequences (3120head motions) to achieve the adaptation criterion at
10 rpm.

Table 12-5

Number of Movement Sequences Prior
to Achieving Adaptation Criterion at Each rpm*

Subject 1 2 3 4 5 6 7 8 9 10 rpm

RE 0 1 2 9 10 20 33 64 94 157

TA 0 2 3 2 3 9 10 5 8 8

HA 1 2 4 4 7 11 18 34 48 22

JE 5 4 0 0 0 0 0 0 0 0

HU 0 1 2 1 1 2 4 5 6 6

DI 0 0 0 2 2 2 2 3 3 4

HE 0 0 0 0 0 0 3 15 31 T**(45)

JA 0 0 1 12 6 T(23)

SY 8 7 1 1 1 T(10)

WE 23 44 33 22 T(225)

*This value represents the total number of movement sequences executed at each rpm less

the three movement sequences, eliciting negative sensation, which constituted the

adaptation criterion.

**T indicates that rotation was terminated without achieving the adaptation criterion. The

figures in parentheses show the number of sequences completed prior to termination.

This type of procedure stands somewhere between brief susceptibility tests
and incremental adaptation tests designed to prevent reflex vestibular
disturbances and motion sickness. Tests of adaptive capacity, however, are the
best available for revealing individual differences in ability to cope with
operational stimulus conditions.

Parabolic Flight. Studies dealing with the susceptibility to motion
sickness in the weightless phase of parabolic flight have been mainly of two
types (Miller, et al., 1969). In one kind, subjects were restrained in their seats
and required to make standardized head motions during the weightless phase
only. The findings are summarized in figure 12-33 and demonstrate that, among
the twelve subjects tested in this manner, six were asymptomatic. Five of the
remaining six experienced symptoms only when making head motions; the last
subject demonstrated increased susceptibility when making head motions as

compared to the head restraint (control) condition. These findings are
concordant with those of Russian investigators utilizing parabolic flights
(Kas'yan et al., 1965) and with the findings on astronauts (Berry &
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Dietlein, 1970) and cosmonauts (Yuganov et al., 1966) who experienced motion

sickness in orbital flight.
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Figure 12-33. Effect among 6 susceptible subjects of active head movements relative to
restrained condition upon sickness susceptibility measured in terms of number of
parabolas required to provoke severe malaise. (Miller et al., 1969)

The second kind of experiment involved the use of a rotating chair device,

with subjects required to make standardized head motions similar to those used

in the dial test but with eyes blindfolded. Each subject served as his own control,

and comparisons were made between susceptibility under terrestrial conditions

and during parabolic flight, using similar periods of rotation and nonrotation.

The findings summarized in figure 12-34 (Miller, et al., 1969) indicate that some

subjects experienced a significant increase in susceptibility aloft while others

manifested a decrease. When subjects were ranked in terms of their susceptibility

under terrestrial conditions, the higher the susceptibility, the greater the

likelihood that there would be an increase aloft, although there were exceptions

to this generality.

The following studies were aimed at defining techniques and procedures for
the prevention of vestibular side effects.

Incremental Adaptation Tests. Programming the acquisition of

adaptation effects is good only in the sense that it is the best means to an end.

Although there are a number of factors and trade-offs involved, the basic
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operation consists of establishing new integrative patterns in the nervous system

in response to changes in stimulus conditions. One object is to confront the

nervous system with the largest change in stimuli possible, short of eliciting

unwanted responses. In the absence of any response, there is no guide as to

whether the nervous system is being fully tasked; i.e., operating at high

efficiency. In practice, however, there are, ofttimes, responses in the nature of

delicate indicators. If these indicators are not present spontaneously, they may

be evoked with caution, and the degree of provocation required serves as a

monitoring guide. However, only persons with experience in this kind of testing

can safely task the nervous system to the limit without risk. The smaller the

experience, the greater the margin of safety required.

20

I0

0

i_z Au it _t= _ |c _ ,m cat i i x_ •

MOTION SICKNESS SUSCEPTIBILITY

o I • IQ og • Ig

Figure 12-34. Comparison of Coriolis (motion) sickness susceptibility of 15 subjects
measured in weightlessness and under terrestrial conditions. O* = no symptoms, except
in subject HA who experienced moderate malaise (MIIA) on only his first test at O g;
Mill = severe malaise. (Miller et al., 1969)

A brief review of early experiments representing attempts at incremental

adaptation to a given terminal velocity in the SRR is worthwhile, partly to

indicate the problems involved and partly to draw abstractions from the

findings.

Three attempts to prevent motion sickness by step increases to a terminal

velocity of 10 rpm were unsuccessful; two involved three incremental steps over

a period of approximately three days, and the third a series of 40 incremental
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steps over a period of 40 hours. In the next attempt (Graybiel, Deane, &
Colehour, 1969) overt motion sickness symptoms, with the exception of
drowsiness, on exposure to otherwise intolerable accelerations were prevented
solely by means of nine stepwise increases in rotational speeds over a period of
16days to a terminal velocity of 10rpm. The stress profile and the
symptomatology are summarized in figure 12-35. The four subjects had a busy

schedule, and experimenter-paced head motions were required only for brief
periods in connection with provocative tests. On cessation of rotation, ataxia

was the most prominent and lasting complaint, and symptoms of motion
sickness were either absent or of small significance. The on-board experimenter
who was quite susceptible to SRR sickness spent his "nights" at home. He
gradually adapted however, and could make the sudden transitions between the
rotating and nonrotating states "without malaise or motion sickness", lie did

require about 30 minutes to adjust to the change. Important implications
include: (1) the feasibility of adapting to 10 rpm, although the "cost" in time
was high; (2) the remarkable freedom from symptoms of motion sickness on

cessation of rotation, implying that efferent vestibular activity may have played
an important role; and (3) the feasibility of making sudden transition between
0 and 10 rpm on a daily basis.
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Figm'e 12-35. Stress profile and symptomato|ogy in exposing 4 healthy subjects
to stepwise increases in rotational speed to a terminal velocity of 10 rpm.

An attempt then was made to effect symptomatic incremental adaptation in

an experiment in which the three subjects were required to execute experi-
menter-paced head-body motions (front, back, left, right). The actual time spent

making 1000 head motions was a little over half an hour. In figure 12-36
(Graybiel & Wood, 1969) are shown the stress profile, the number of head

motions made at each step, each up-down counting as one motion, and the level
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of symptoms experienced by the subjects. One subject, TA, was quite
susceptible, becoming very drowsy at 2 rpm, experiencing epigastric discomfort
at 5 rpm, and minimizing or refraining from making head motions at the higher
rpm. The two remaining subjects experienced mild symptoms at terminal
velocity, which became more severe on cessation of rotation. TA resorted to the
use of an antimotion sickness drug. Noteworthy features were: (1) the inability
of TA to keep up with the schedule, (2) the appearance of symptoms resulting
from inadequate adaptation in the remaining two subjects, and (3) the increase

in symptoms experienced by all subjects on cessation of rotation.
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Figure 12-36 Stressprofile in the SRRand manifcstions of motion sickness
in 3 healthy subjeet_exposedto rotation for over 2 days (Graybiel & Wood, t969)

In figure 12-37 (Graybiel & Wood, 1969) are shown the findings in a similar
test, except that more head motions were made at the higher angular velocities.
Symptoms of motion sickness were trivial except in subject RO who experienced
very mild symptoms at 8 rpm and 9 rpm and on cessation of rotation. Except

for ataxia, which was aggravated by head motions, complaints were minimal on
cessation of rotation. These findings confirmed inferences drawn from the earlier
studies and demonstrated that the time required to effect adaptation can be
greatly shortened through control over head motions as well as angular velocity
and by setting up an adaptation schedule. It should also be pointed out that the
problems encountered were greater at relatively high velocities compared with
relatively low ones and that, except in one instance, problems were not
experienced if the unit increase was 1 rpm.

The above findings stimulated intensive studies centering on: (1) the best
manner to execute a discrete head-body motion, (2) the spacing between
head motions, (3) the size of unit increases in velocity, (4) the number of
head motions as a function of 1-rpm increases in angular velocity, and
(5) the individual differences in rate of acquisition and decay of adaptation
effects mentioned above.
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Figure 12-37. Stress profile in SRR and manifestations of motion sickness in 3 healthy
subject_ exposed to rotation for about 2 days. The large number of head motions
accounted for rapid adaptation. (Graybid & Wood, 1969)

The findings in an experiment to be reported (Reason & Graybiel, 1970b) can
be briefly summarized with the aid of figure 12-38. Three subjects participated,

and the adaptation schedule was the same for all subjects; the procedure was
essentially the same as that described above in connection with table 12-5. On

Day 1, while rotating counterclockwise, subjects executed 40 head movement

sequences at 2 rpm, 50 at 3 rpm, 70 at 4, rpm, 90 at 5 rpm, and 110 at 6 rpm. The
subjects, while rotating, then were shifted to highly stressful generalized activities

in an attempt to evoke motion sickness. Their performance indicated that the head

motions had produced a substantial degree of protection both wit[l respect to

reflex vestibular disturbances and motion sickness. On Day 2 the subjects executed

130 head movement sequences at 7 rpm, 150 at 8 rpm, 180 at 9 rDm , and 80 at

10 rpm. The subjects were again transferred to generalized activities and their
performance was similar to that on Day 1. On the morning of Day 3 after 120 head

movement sequences at 10 rpm, the room was brought to a stop, and the subjects

executed the same head motions as during rotation. There were no symptoms of
motion sickness, and all reflex effects quickly disappeared.

In figure 12-39 are shown findings obtained on the same three subjects when

they executed an incremental adaptation test before and after participating in the

3-day experiment just described. This test is also identical with the incremental

adaptatior t test described in connection with table 12-5. The noteworthy findings
are: (l) the small number of affirmative responses 6 hours after the 3-day experi-

ment ended; (2) weekly exposures led to increasingly better performance; and

(3) when the subjects were rotated in the opposite direction (clockwise), their

performance was far better than on the first pre-experimental test, indicating

transfer of adaptation effects acquired during counterclockwise rotation. Again

the findings support the conclusion that sudden transfers between the rotating and

nonrotating environments are not only feasible in the SRR, but also that the

adaptation effects may not decay rapidly and with weekly practice may not only
be retained but improved.
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Figure 12-38. Stimulus profile for a 3-day adaptation schedule on SRR.
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Figure 12-39. Pre- and post-tests associated with 3-day adaptation schedule

for 3 subjects on SRR.

Postural Disequilibrium. Nonvestibular factors are of greater importance
than vestibular factors in connection with postural stability while standing or walk-

ing in a rotating environment, and this problem is considered along with others in
Appendix B. Not considered, however, is the acquisition of adaptation effects
(along with skill) readily demonstrable in the SRR.

The ataxia manifested in the rotating room resembles that experienced aboard
ship, and it is possible to demonstrate the contributing role of the vestibular organs
by comparing the responses of normal and of labyrinthine defective (L-D) subjects
(figure 12-40 A, B). With the onset of rotation, both normal and L-D subjects expe-
rience difficulty in walking, which is maximal initially and becomes progressively
less over a period of days, after which there is little further change. This may be
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shown by a test for postural disequilibrium designed to reveal small differences

between the normal and L-D subjects in a stationary environment. One significant

difference between the normal and L-D subjects is that the former, on sudden

movement of the head, is more disturbed in his postural equilibrium than is the L-D

subject. On cessation of rotation, both normal and L-D subjects manifest ataxia on

walking. The sensations differ from those experienced on disembarking after a sea

voyage in that the subjects report that they feel unstable on a stable platform,

whereas after a voyage the platform seems to be unstable too. Again, the normal

subject on quickly rotating the head, experiences disequilibrium and may expe-

rience dizziness; these are not experienced by the L-D subject.
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Figure 12-40. A: Heel-to-toe walking scores for four normal subjects; B: Individual
teat performance of 4 L-D subjects on a 3-inch wide rail along time axis of rotation.
(Fregly & Kenned}', 1965)
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DrDL__. The dial test has also been used on the SRR in the

evaluation of antimotion sickness drugs; a summary of the findings is shown

in figure I2-41 (Wood & Graybiel 1970a). It was found that only those

drugs with a parasympatholytic or sympathomimetic action and some of the

antihistamines were notably effective under the stimulus conditions.

Recently it was demonstrated (Wood & Graybiel, 1970b) that a combina-

tion of promethazine 25 mg with d-amphetamine 10 mg had the same range

of effectiveness as that found for scopolamine 0.6 mg plus d-amphetamine

10 mg and that the substitution of ephedrine 50 mg for the amphetamine,

while slightly less effective, was the best combination in terms of freedom

from side effects. The drowsiness (sophite) syndrome and nausea and

vomiting require different therapy. Coffee or its alkaloids have long been

used to increase alertness, and the amphetamines should be reserved for

"contingences." Once the nausea syndrome is well established, which should

be a rarity, drugs taken by mouth may either remain in the stomach or be

regurgitated. The combination of preventing head motions and the injection

of an antimotion sickness remedy should suffice. The most effective

measure would involve the use of a soporific or an antimotion sickness drug

in an amount to ensure sleep.

Figure 12-41. Effectiveness of anfimolion sickness drugs in preventing SRR sickness in
60 subjects exposed on 500 occasions in rotating environment, using Dial Test. (Wood
& GraybieI, 1970a)
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Early Guidelines in the Prevention of Vestibular

Side Effects on Space Missions Involving

The Generation of Artificial Gravity

The limitations in simulating such novel stimulus conditions as those

involved in making sudden transitions between rotating and nonrotating portions
of a space base force an extension of ground-based studies to include validating
observations and experiments conducted aloft. The astronaut necessarily plays
the key role in this integration. In the role of subject he can serve as his own
control in validating studies; in the role of onboard experimenter he is essential
in conducting experiments and making observations aloft; in the role of
astronaut he has responsibilities in connection with the prevention of vestibular

side effects during the mission. As indicated earlier, prevention involves taking
charge rather than responding to events, and this will require close cooperation
between the astronaut in the space base and the biomedical representatives in
the ground-based control center during the period of adjustment.

Ground-based activities involving the astronaut center around the
individualization of the problem in preventing vestibular side effects and the
astronaut's somewhat complementary role as subject and onboard experimenter.
Major elements include selection (or secondary selection), instruction, preflight
adaptation, monitoring his progress during the mission, and postflight
assessment. The astroscientist, who does not double as an astronaut, presents
somewhat different considerations, tle would not be under the same time-load

stress as the astronaut prior to launch, and presumably there would be little
restriction in terms of participation in prelaunch assessment, indoctrination, and
adaptation. Inasmuch as his tasks aloft would not include items critical for life

support, rapid adjustment to stimulus conditions would not be a necessity,
which in turn would permit greater freedom in the selection process.

The lines of direction of the ground-based experimental program would be
determined in large part by the findings obtained under space flight conditions.
Until that time, all guidelines are tentative in nature. A brief status report serves
to point up gaps in our knowledge.

In order to keep the discussion within manageable limits it will be assumed
that the rotating portion of the space base will have a radius of about 80 feet

and that its maximal angular velocity will be 4 rpm. The problem posed by
postural instability will not be discussed inasmuch as nonvestibular factors are of

chief importance in this case. Only the worst-case situation will be considered;
namely, initial transition into weightlessness, subsequent (initial), transition to
rotation at 4 rpm with one-third fractional G loading, and sudden transitions
between the rotating and nonrotating portions of the space base.

Transition Into Weightlessness

Information presently available indicates that it is possible by means of
selection procedures not only to distinguish among astronauts and astroscientists
who are or are not susceptible to vestibular side effects in weightlessness, but



The Vestibular System 585

also to rank those who are, according to their degree of susceptibility. In other
words, rarely, if ever, should one be surprised by unexpected responses from

astronauts making their initial transition into weightlessness and seldom
surprised even in the ease of astroscientists.

Transition Into The Rotating Environment

The principal unknown element of this novel experience concerns the effect
of the fractional G load. This information will soon be available, but until then a

conservative approach would serve to avoid the selection of persons who are
susceptible to motion sickness in weightlessness. Present findings indicate that,
with few exceptions, persons who are relatively insusceptible to motion sickness

in weightlessness are in the group that is relatively insusceptible to motion
sickness in the SRR. Consequently, persons with high adaptive capacity in the
SRR and low susceptibility to motion sickness in weightlessness should not have

a problem in making a sudden transition to 4 rpm in a space base if prelaunch
adaptation has been carried out. This does not obviate the necessity for small
rotating devices to permit incremental adaptation in case of need.

Sudden Transitions Between Rotation and Weightlessness

Here too we are dealing with novel stimulus conditions, and again it would
be helpful to know the shape of the curves depicting susceptibility to vestibular
side effects as a function of subgravity levels. The evidence available strongly
indicates that it is possible to rank persons with regard to their acquisition and
retention of adaptation to 4 rpm in the SRR and that persons fully adapted can
make the transition between the stationary and rotating environments without
experiencing either motion sickness or reflex vestibular effects, except insofar as
they contribute to ataxia. What is not known is the extent to which adaptation
effects acquired in the SRR would transfer to the space base condition. Again
this points to the necessity of making provision for incremental adaptation in
case of need. In weightlessness, incremental adaptation is more difficult to
program than in a rotating environment, unless there are means for substituting
passive for active motions.

Frequent transitions (measured in days) are necessary to preserve adaptation

to both rotating and nonrotating environments under terrestrial conditions, and
this would be a reasonable expectation under space base conditions.

487-858 O - 73 - 38
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The input-output relationships for the vestibular system relating linear and

angular acceleration and gravitational forces to eye movements, perceived
orientation, postural reflexes and control commands are shown schematically in
figure A-1 (Young, 1969). Models have been developed for semicircular canal
and otolith function, and to a limited extent for their interactions on the basis
of behavioral experiments. Typically, subjects are rotated through known

angular velocity patterns, and the resulting eye movements (usually angular
velocity of slow phase nystagmus) or subjective sensation of velocity and
perceived orientation with respect to the apparent vertical are monitored. A
control engineering model for subjective sensation and slow phase nystagrnus
velocity for rotation about a vertical axis is shown in the adaptation model for
horizontal semicircular canals given in figure A-2 (Young & Oman, 1969). The
torsion pendulum canal dynamics represents the second-order equation
describing semicircular canal action summarized by van Egmond, Groen, &

Jongkees (1949). The differential equation relating angular deviation of the
cupula to angular acceleration normal to the plane of the canal is given by:

where

0 = moment of inertia of the endolymph

7r = moment of friction at unit angular velocity of the endolymph
with respect to the skull

A = stiffness, or torque moment per unit angular deflection of the
cupula

= angular deviation of the endolymph with respect to the skull

a = component of angular acceleration of the skull, with respect to

inertial space, normal to the plane of the semicircular canal.

In Laplace transfer notation the cupula deflection is related to the angular
acceleration by the relationship:

_(s) _ 1

a(S) s2 + pr/0)s + (a/0)

*The material in this section was kindly furnished by Professor L. R. Young, Massachusetts
Institute of Technology.
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Figure A-1. Framework for systems analysis of vestibular function.
(Young, 1969)
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Figure A-2. Model for subjective sensation and slow phase nystagmus velocity
for rotation about a vertical axis. (Young & Oman, 1969)

If the roots of the denominator are real and widely separated, i.e., the system
overdamped and A/_r < 71"/0,the equation may be approximated as

_ ]
a(s) (S+a)(S+b)

where

a --_--A (0.04 - 0.02 rad/sec)



and

[a nominal
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= 0.1 rad/sec for lateral canals,
0.14 rad/sec for posterior and superior canals]

corresponding to the long time constant of the cupula
return phase

b = -_" (4 - 300 rad/sec)

[bnomina i = lOrad/sec]

corresponding to the short time constant.of the system

The existence of a nystagmus reversal following an impulse of acceleration and

the reduction in nystagmus and sensation during sustained constant angular
acceleration led to inclusion of central adaptation blocks for both nystagmus
and sensation of angular velocity. The response of this model to an acceleration
impulse (velocity step) of 1.0 deg/sec is shown in figure A-3 (Young & Oman,
1969). Notice the apparently shorter time constant for subjective angular
velocity than for nystagmus slow phase velocity as has been observed in
cupulometry. The model response to a step of constant acceleration is shown to

agree with experimental data in figure A-4 (Young & Oman, 1969). Latency to
detection of low-level constant angular accelerations is shown in figure A-5
(Young & Oman, 1969). Finally, the semicircular canal model can be used to
predict nystagmus and subjective sensation responses to sinusoidal stimuli. For
nystagmus, the concept of "cumulative" eye position is used, derived by
eliminating all fast phases and piecing together the slow phase nystagmus as in
figure A-6 (Young, 1969). The resulting frequency response for nystagmus is

shown in figure A-7 (Young & Oman, 1969). It is seen that over a wide range of
frequencies (within 0.1 rad/sec-lO rad/sec), the eye angular velocity tends to
compensate for head angular velocity with relatively little phase lag or phase
lead, but with a gain significantly less than 1. The complementary frequency
response for subjective sensation of velocity is shown in figure A-8 (Young &
Oman, 1969). The break frequencies are noted in terms of "ra (adaptation time
constant) and A/_'.

The nonlinear model for otolith function relates specific force (gravity minus
linear acceleration) to perceived linear acceleration or tilt, as shown in figure A-9
(Young, 1969). The step response of this model shows a rapid rise, an overshoot,
and decay of the resting level to about 40 percent of the peak response with a
time constant of approximately 5 seconds. The model frequency response is
shown in figure A-10 (Young, 1969). It is supported by data on sensation of
linear velocity during sinusoidal horizontal acceleration and by the phase angle
of dynamic counterrolling during continuous rotations. The model can be
interpreted as perceived velocity with respect to actual velocity, or perceived tilt
with respect to actual tilt. Figure A-11 (Young, 1969) shows the latency to
perception of constant linear acceleration as a function of acceleration level. The
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model assumes an absolute threshold of approximately 0.005g's for

gravitionertial force in the plane of the utricular otolith. Figure A-11 is for

horizontal acceleration with the head upright which places the latency at

0.01 g's.

i _ero_i_,_ \ . c.p,.,oDot,.cti_

0 Velocity

f I I I I I I I I I I l I I I 1 I l I

0 4 8 12 16 20 24 =)8 32 3.6
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| I I I
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44 48

Figure A-3. Velocity step response of MIT semicircular canal linearized model
to 1.0 deg/sec velocity step. (Young & Oman, 1969)
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Figure A-4. Comparison of adaptation model for vestibular response with Guedry and
Lauver (1961) experiments for an angtflar acceleration step (1.5 deg/see2). (Yotmg & Ornan,
19691
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Figure A-6. Vestibular nystagmus and "cumulative" eye position (f= 0.5 Hz). Note
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(Meiry, 1965)
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Cross-coupling between linear and angular sensors has al.so been a subject of

input-output modeling. A preliminary structure of this cross-coupling is shown

in figure A-12 (Young, 1969) in which linear acceleration affects nystagmus
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both through modification of semicircular canal nystagmus and through "L
nystagmus" based on otolith stimulation. Numerous examples of "barbeque

spit" nystagmus have been observed, both by constant angular velocity rotation

about a longitudinal horizontal axis and by counterrotating a subject on a

centrifuge. In each case the "steady state" angular acceleration at the

semicircular canals is zero, and yet a co_rsistent nystagrnus pattern persists. The

nystagmus contains both a bias (steady level) component and a sinusoidal

component with period equal to that of the rotation. The sensitivity of this bias

mid sinusoidal component (as well as the predication of Steer's "roller pump"

model) is shown in figure A-13 (Young, 1969).
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Figure A- 12. Preliminary structure-model of influence of linear acceleration on nystagmus.
(Young, 1969)

3o
D

o

2o .
g

o'- to-

%t
t

(3 I 2

STEER

GUE(3RY

BENSON

------ M(3DEL PREDiC_O_J

o

oi1 I_ { _

3 4 5 6 7 8 9 IO 20 30

RPM

4O

(o) Magnitude of Bias

30

2O

_" bO

• STEER

U] GUEDRY

0 BENSON

r

o o[J
o

0 i.?i L_J__L_Z I ] J 1 M I I
0 I 2 3 4 5 6 7 8 9 I0 20 30 40

RPM

(b) Magnitude of Sinusoidol Component

Figure A-J3. Summary of available data of normalized bias an(:[ sinusoldal amplitude

of vestibular nystagmu_ fromrotationin a ]-_ field (I,-nystagmus). (Young, ]969)



The Vestibular System 599

An overall summary diagram of the vestibular model is given in figure A-14

(Young, 1969).
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Mathematical expressions for the unique static and dynamic characteristics
(and associated derivatives) in rotating environments are listed in table B-1.
Certain aspects of man's performances are influenced by these characteristics.

They are as follows:

Self-locomotion, either walking or climbing, and material handling are, of
course elements of gross motor performance; other gross motor performances of
concern are force and torque applications. Fine motor performance involves
dexterity and eye-hand coordination involving head motions. Postural balance

may be influenced by reduced gravity and the Coriolis forces acting due to body
motions necessary in the act of balancing or moving. Transition from artificial
gravity to zero gravity and return, as may be required in space base operations,
can possibly degrade performance because of developed adaptations to either
condition. Passive radial locomotion, as with an elevator on a space base, may be
influenced by the Coriolis forces involved, dependent on the rate of elevator
movement. In addition, the potential rapid onset of g when increasing radius
could have an acute influence on orthosatic tolerance as any rapid onset of g

might. Work-rest cycles involve the time lines of general and specific
performance and the energies involved for performance, and could influence the
extent of work and rest periods.

The remainder of this material involves the considered influence of the

unique characteristics of artificial gravity on specific elements of performance. A
number of criteria have been suggested that relate to these characteristics and
the potential influence on performance (table B-2). These criteria are used to draw
boundaries on plots of the two independent variables of artificial gravity, radius
and rate of rotation, and thus depict areas of these variables where acceptable

performance may be expected. It must be remembered that these boundaries are
currently based on judgment, as little data exist. It is necessary, therefore, to verify
the validity of the criteria and to establish appropriate magnitudes for them. The
criteria (table B-2) relate to the gravity level, Coriolis forces, gravity gradient, and
cross-coupled angular accelerations. The gravity-level criteria are bounded by 1 g
and 0.1 g while moving in the vehicle. There is clearly no need to exceed 1 g and

0.1 g is considered a minimum value for adequate traction. The Coriolis forces re-
late to human or object motion tangentially and radially and with the annoying
factor that objects do not fall where expected. The gravity gradient criteria relate

to changes of weight of objects when their radical position is changed, to the gra-
dients along the body, and to variations of hydrostatic pressure along tbe body
relative to that on Earth. The cross-coupling angular acceleration criteria relate to
the rotation of objects and to the rotation of the human head in the rotating
environment.

**Thematerial under this heading was kindly furnished by Mr. R. W. Stone, Jr., NASA Langley
Research Center.

487-858 0 - 73 - 39
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Table B-I

Mathematical Expressions of the Characteristics of Artificial Gravity

Characteristic

g level

g gradient

g ratios

Object weight change

Gravity variations along body

Coriolis acceleration (radial)

Coriolis accelerat ion (tangential)

Angular cross coupling

Mathematical Expression

acg = rcg 6.) 2

dacg/d r = 6Jv2 = acg/rcg

alia 2 =rllr 2

AW/W = (r 1 -r2)/r 2

h ((Dv2) = (h/r)acg

_-Y-_.r ((..,312 + 2601 r,_v+ 6Jv2)

_" = 2_((.01 + OJv) +r_ 1

(_h x = ('_h_- EO.___v(G'lh8 sin 8

+ C_hqs_o_0 ,in _ )

_hv = Who"_%(% _ co,o co,

- C_h_) ,in 9 )

• + __ ( cose co, _,('_hz = COh I_/ ('Ov COhe

+ LOh_COS _ sin 1],//

Hydrostatic pressure variation PH, = P/2 (r2 -- r2) EOv2

Distance objects fall from expected position d = r F (_rF2 -- r12/r| - tan--1

(_/r 1))
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Table B-2

Potential Criteria for Artificial Gravity
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Gravity Level

32.2>r_ + 2r% % + r%2> 3.22

Tangential movement

Coriolis Forces

(1 + C1 rb0v2 > rEO12 -4:.2r(.O 10.) v + r(X)v2_(1-C1)rb)v2

Radial movement

Dropped objects

2r/,% <C 2

r ,_l/rl -- tan -1 _rl2/r , _C 3

Gravity Gradient

Change in object weight (r - r 1)/r _._C 4

Along body (r - rh)/r _C 5

Hydrostatic pressure (rhear t + rh)/(r + r h) _ C6

Cross-Coupled Angular Accelerations

%<--%/%
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Figure B-1 is a graphic representation of the influence of these characteristics
on man moving within a rotating spacecraft. There is radical movement toward
and away from the center of rotation with the tangential components of Coriolis
forces acting. There is tangential movement with and against the direction of
rotation with alterations in the radial forces (weight) shown. Axial motion
causes no Coriolis forces except for those created by lateral movement of limbs
or lateral body sway. The least influence of the characteristics of artificial

gravity on human mobility probably occurs during axial motion.
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); TANGENTIAL CORtOLIS ACCELERATION
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MAN'S RADIAL VELOCITY

Figure B-1. Graphical representation of influence of artificial gravity on self-mobility.

Figure B-2 shows four boundaries expected to influence walking on the
floors of rotating vehicles. The 1 g limit is one below which, when walking
at 3 ft/sec, the body will never exceed 1 g. Below the leg weight boundary,
the feet, when walking at 3 ft/sec, will not exceed 1 g. Above the 0.1 g
traction limit, traction is expected to be adequate. The fourth boundary,
AW/W, often referred to as the ratio of Coriolis force to artificial weight, is
one above which, when walking 3 ft/sec, the change in weight due to the
relative motion will not exceed 0.5 of the artificial weight. Also shown in
this figure are data for walking in simulated artificial gravity at nominal
values of artificial gravity of 1/6g, 0.2g, 0.3 g, and 0.5 g. While walking
against the rotation at 1/6 g, lraction became difficult which tends to verify the
traction boundary. At 0.5 g, while walking with the rotation, subjects complain
of leg heaviness, indicating that the boundary for leg heaviness may be somewhat
high. Walking at 0.3 g seems to be the most amenable g of those studied. The
AW/W boundary has not essentially been established at 0.5. It should be noted

that these data were obtained for curved floors having a constant value of radius.
Flat floors, depending on the radius, can impose difficulties not indicated
on this figure.
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Figure B-3 shows two boundaries for radial motion of the astronaut, as when

climbing toward or away from the center of rotation, one for which the Coriolis

forces due to 2 ft/sec radial motion does not exceed 0.30 the artificial weight,

and the other where it does not exceed 0.30 the Earth weight. There are no data

to support either criteria or the magnitude of 0.30. As these are forces not

supported by the legs, the boundary that relates to Earth weight may have

significance. Clearly, studies to establish proper values are needed.
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in artificial gTavity. Boundaries are for a speed of locomotion of 2 ft/sec.
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Figure B4 shows boundaries for material handling. Three boundaries are
shown: one for tangential movement above which the change in weight due to
4 ft/sec of motion will not exceed 0.25 of the artificial weight; a second for
radial motion where the tangential Coriolis forces do not exceed 0.25 of the

artificial weight; beyond the third boundary, the weight of an object when raised
6 feet does not decrease below 0.50 of its original artificial weight. A fourth
possible boundary is not shown but would relate to the rotation of an object out

of the plane of rotation. It has been assumed that a torque caused by angular
cross-coupling probably can be 0.50 of the applied torque. Rate of vehicle
rotation for this value could be rather large, greater than 10 rpm. Research to
establish the validity of any of these criteria and proper magnitudes for them are
required.

14-
WT. RATIO • 0.50

12-

I0- ___.__

6 RADIAL FORCE

TANGENTIAL _ RATIO • 0.25
CORIOLI$ FORCE/_

4; RATIO= 0.25 --/ '/,,_.

20 40 60 80 I00 120 140 160
RADIUS, FT

Figure B-4. Rateof rotationandradiusboundariesfor acceptablematerialhandling
in artificial gravity. Boundariesare for speedof materialmovementof 4 ft/sec.

Figure B-5 relates to boundaries for postural balance. The first is a static
boundary or neutral stability, beyond which the vestibular mechanism would
sense falling before an unbalance angle for a stationary man would be exceeded.

It is felt that this is not a significant boundary for normal man. Two dynamic
boundaries are shown, one for the vertical motions and the other for lateral
motions present when walking. In both instances, these could have more critical
influence when walking axially as the unusual Coriolis accelerations would act in

a lateral direction about which man is least stable. When man is walking
tangentially, the accelerations act in the saggital plane. It is assumed that these
Coriolis accelerations should not exceed 0.25 of the artificial weight.

Figure B-6 is a plot that relates angular head motions and vehicle rate of

rotation. The stimulus that causes disturbances in a rotating environment is the
cross-coupling that exists between these two angular velocities. The product of
these two values gives the maximum stimulus from cross-coupled angular
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acceleration. Shown on this figure are curves of constant values of this
cross-coupling, ranging from 0.5 to 4,.0 rad/sec2. Based on current experience, a

value of this cross-coupling of 2.0tad/see2 ( deg/sec 2) seems to be a

conservative tolerance criterion. A range of rapid head motions possible for man

is from 2.5 to 3.5 rad/sec ( 140 deg/sec to 200 deg/sec). Vehicle rpm

boundaries of 4 (a conservative value), 6 (a nominally acceptable value), and

10 (a tolerable value) are shown. Generally, of course, adaptation is required to

attain continued exposure to such rotation.
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Figure B-5. Rate of rotation versus radius boundaries
for acceptable postural balance in artificial gravity.
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Figure B-6. Possible criteria for acceptability of cross-coupled angular accelerations
in vehides with artitifial gravity.

Figure B-? is a compilation of all the previous boundaries shown,

superimposed on plots of artificial gravity. The area encompassed by all
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boundaries shows a minimum radius between 50 and 55 feet. The material

handling boundaries are the critical elements. These boundaries are, of
course, not well established and must be validated numerically and for
analytical form by experiments. If these are not valid, a much smaller
radius may be possible. It must be noted, of course, that al: other
boundaries require similar verification. The Coriolis force to artificial gravity
ratio ( W/W), which is plotted as 0.5on this figure, has often been
considered to have a maximum desirable value of 0.25. Such a value would

impose a radius of the order of 50 feet, as has been noted previously.

12 I " WALKINGBOUNDARIES(FIG B2)
I CLIMBINGBOUNDARIES{FIGB,_

_jt ......... MATERIALHANDLINGBOUNOARIES[FIG4)POSTURALBALANCEB(::X._DARIE.S(FIG. 5)
I C , .,_l NOMINAL HEAD MOTIONBOUNDARY(RG. B6)

_'_% -- ARTIFICIAL-GRAVITYLEVELS

"_4 "-'----- -I

0 20 40 60 80 I00 120 140 160

RADIUS, (r), FT

Figure B-7. Compilation of boundaries for acceptable human performance
in artificial gravity.

Figure B-8 is a log plot based on the material in Figure B-?.
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Figure B--8. Log plot of material in figure B-7. (Co.'tear of D. B. Crier)
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SYMBOLS

acceleration, feet per second squared

angular acceleration, rad/sec

radius, feet

rate of rotation, radians per second

artificial weight, pounds

change in artificial weight due
velocity, pounds

acceleration of Earth's gravity

distance or height along body, feet

instantaneous radial distance, feet

instantaneous tangential distance, feet

Ealer angles, radians

hydrostatic pressure pounds per square foot

tangential distance, feet

609

to radius change or relative

center of gravity

vehicle

radial positions

incremental

head or object relative to inertial space

head or object relative to vehicle axis

floor

cross coupling

Dot represents the first derivation with respect to time

Double dot represents the second derivation with respect to
time





CHAPTER13

VISION

by

John H. Taylor, Ph.D.

University of California

San Diego

The extreme importance of the human visual system in ordinary life is
obvious, and the necessity for an intact functional visual apparatus in the

performance of ever more critical tasks when man and machine must
interact has become increasingly evident. Man is no longer a mere passenger
aboard a space vehicle-he is an active element in the system, able to
perform intricate tasks, to make scientific observations, to exercise
judgment, and to modify the coursc of a mission. The most important
sensory input which he requires for nearly all such activity is visual, and it
is therefore imperative that every phase of operation in space be considered
in regard to the optimization, maintenance, and protection of man's vision.

This chapter presents some of the facts of human vision which are
believed to be important in present and projected space activities. Even
though it is limited to the case of normal or superior visual capabilities, as
may be assumed to pertain to the astronaut group, the information is
necessarily sketchy. For this reason, and because new data are always
becoming available, it is to be hoped that the reader will seek
supplementary information in the current literature.

Units and Definitions

The quantitative description of the visual process requires a set of
meaningful units, and because of the nonlinearity of the eye as receiver,
these units differ from the units of physics in that they reflect the
propertie_ of the underlying physiological and psychophysical mechanisms of
vision. Radiant energy in the band of electromagnetic wavelengths between
about 380 and 750 nanometers is capable o! stimulating the eye, and that

Reviewed by John Lott Brown, Ph.D., University of Rochester.
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which does so is called light. While the measurement of radiant energy in
general is called radiometry, the measurement of light is called photometry,
and photometric units are based upon the potential of light for stimulating
vision. An adequate discussion of the relationship between radiometric and
photometric concepts and quantities is beyond the scope of this chapter,
and the reader should consult one or more of the available contemporary
references 0galsh, 1958; Kaufman, 1966; Meyer-Arendt, 1968). Some of the
units most frequently used are shown in table 13-1. The function which
relates radiometric quantities to their photometric counterparts is called the

luminous efficiency curve, and is shown in figure 13-1. This curve is, in
fact, the spectral sensitivity function for the eye at high energy levels, and
the photometric units which depend upon it are rigorously appropriate only
to the case of daylight vision. It will be seen later that the maximum of
the curve is shifted toward the shorter wavelengths as light levels drop, and
that for night vision the peak has moved from its daylight position at
555 nanometers (nm) down to 505 nm. There have been efforts to establish
photometric units wMch apply to the low-level case (scotopic, as opposed
to photopic vision), but for most purposes the units based on the data of
figure 13-1 continue to be used. A notable exception occurs in the
treatment of colored stimuli at low levels, where the correction is absolutely
mandatory.

Most of the data provided in this chapter are expressed in terms either
of luminance or of a kind of ratio of luminances called contrast. Luminance

is the photometric term corresponding to radiance, and refers to the
amount of visible light coming from an extended surface which is

illuminated or self-luminous. In the former (much more usual) case it is the
product of the illuminance falling on the surface and the luminous
reflectance of the surface, and will generally be dependent on the lighting
and viewing geometries. There are many units of luminance which have
been used from lime to time, and the present trend is to reduce their
number to a single unit in the M.K.S. system; the candela per square meter
(cd-m-2). or nit. But almost none of the data of vision are reported in
terms of nits, and it is safe to say that almost none of the engineers who
deal with light are yet able to visualize a luminance of, say, 10 ed.m-2. By
far the most used and most familiar units of luminance, at least in

English-speaking countries, are the foot-lambert (ft-L) and the millilambert
(mL). These two quantities are close enough in magnitude (1 ft-L =
1.076 mL) so that they may be considered equal in most engineering
applications, and these axe the units which will be used here.
Interconversions between some of the more common luminance units and

illuminance may be accomplished by use of the values in tables 13-2 and
13-3. Other units and concepts will be defined as needed in the text.

Concept of the Threshold

The quantitative description of visual performance is usually made in
terms of that useful construct called the threshold. Simply put, the
threshold is some value of stimulus magnitude, or interstimulus difference,
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to which an observer responds with some selected probability. The general

case is suggested by figure 13-2. As the magnitude of the stimulus is

increased from low values where seeing never occurs to high values where

seeing is essentially certain, the curve of point probabilities rises in an ogival

fashion. Since the inflection of the curve (which is commonly believed to

be a normal Gaussian integral) occurs at a probability level of 0.50, this

value is usually selected for reasons of statistical precision, and the value of

stimulus magnitude which elicits the response 50 percent of the time is
called the threshold.

>-
L_
Z
t,u

klJ

t--
<
-J

1.0
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0,6
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0.4
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I

450 500 550 600 650

WAVELENGTH (nm}

Figure 13-1. Spectral sensitivity of the human eye for daylight conditions.

7OO

In most engineering applications, of course, one is concerned with

performance levels other than 50 percent--usually with such probabilities as

0.95 or 0.99 or even higher. Conversion to probabilities other than 0.50 can

be made with confidence in some cases; the degree of risk depends heavily

upon the manner in which the basic data were collected. Useful

approximations can be made, for example, in the data for contrast

discrimination and visual acuity, where doubling the value of threshold at

P = 0.5 yields magnitudes where P is close to 1.0.

Vtsib_ty

The term visibility has been used in a number of ways; by

meteorologists in evaluating seeing conditions in the atmosphere, by airframe
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designers to describe a pilot's field of view, and others. Used in its more

technical sense, visibility refers to the total process of seeing and thus reflects

the interaction between man's visual apparatus and his physical environment.
The description of visibility, therefore, requires data which relate to the

properties of the visual stimulus (usually an object seen against a background,

illuminated in a specific way), the optical transmission properties of the path of

sight (whether it be air, or water, or through an intervening element such as a

window or an optical device), and to the visual performance capabilities of the

observer. A general treatment of the topic may be found in the papers by

Duntley et al. (1964). By and large the solution of problems of visibility of

greatest interest has been laborious and slow. Recent developments by the
University of California's Visibility Laboratory are leading to the use of
high-speed computers which are able to cope with the tremendous numbers of

interactions between the dozen or more variables which must be taken into
account.

Table 13-3

Conversion Factors for Units of Illuminance

Number of
Multiplied by. _"

Equals Number_

of [
Foot-candles

Im/m 2 (lux)*

Phot

Milliphot

*The symbol for lux is Ix.

r
_" Foot-candles

\.
1

10.764

0.001o8

1.076

Im/m 2 (lux)*

0.0929

1

0.0001

0.1

Phot

929

10000

1

1000

Milliphot

0.929
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0.001
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Figure 13-2. General case of a response curve used to define "threshold." (From the
Human factors in air transport design by R. A. McFarland. Copyright 1946 by The
McGraw-Hill Book Company. Used by their permission)
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The Visual Environment

Earthbound man's visual environment has been determined by the quantity
and quality of natural and artificial illuminations available to him, and by the
reflectance characteristics of materials present in his world. His visual system has
evolved in such a way that he enjoys useful vision over a range of more than
ten million to one in natural illumination, by means of a relatively narrow band
of wavelengths in the electromagnetic spectrum. The great range of luminances
over which the human visual system can function is shown in table 134.

Natural illumination reachingthe Earth's surface depends upon solar altitude,
lunar altitude and phase angle, and cloud cover. An extensive study by Brown

(1952) is summarized in figure 13-3. The original reference should be consulted for
large scale plots relating to different latitudes and declinations, which show illumi-
nation as a function of local apparent time. A more conveniently-sized and readily
obtainable version of Brown's charts may be found in Biberman et al. (1966).

The inherent luminance of objects in the visual field depends upon the inten-
sity of the illumination and the reflectance of the objects, each having
directional properties. Contrast between object and background will be governed
by the same quantities in the case of palpable backgrounds, or by background

luminance alone in the case of objects of fixed luminance seen against the sky.
The optical properties of objects and backgrounds have been discussed in detail
by Gordon (1964), and the reflectance of many natural terrains has been
measured by Krinov (1947). The range of luminances in average outdoor scenes
on Earth is about 160:1, although extremes of 27:1 and 760:1 were noted by
Jones and Condit (1941). In the special case of self-luminous or specularly
reflectant objects being included in the field of view, these ratios can become
very much higher.

In space the visual environment will differ significantly from that on Earth.In
flight, and on the surface of celestial bodies without atmospheres, natural
illumination will come from the sun, planets, stars, planetary satellites, galactic
light, and the zodiacal light. The lunar surface normal to the sun's rays receives (as
does the top of the Earth's atmosphere) about 12 700 foot-candles (ft-c) of solar
illumination. But in the absence of atmospheric scattering, this highly directional
light will produce extremely high contrasts between lunar features in sunlight and
those in shadow. The lunar visual environment has been discussed by Taylor
(1967), and some of the photometric properties of the moon's surface, measured
during the Surveyor program, have been described by Rennilson et al. (1968).
Owing to the absence of atmospheric scattering and the generally low reflectance
of lunar surface materials, it may be expected that the range of luminances on the
moon may extend from about 1000 ft-L for sunlit rock down to about 10 -6 ft-L

for areas in shadow. During lunar night, when both sun and Earth are below the
local horizon, the only illumination will come from the space background elements
noted above. Thus, in the absence of twilight, airglow and aurorae, illumination
in the lunar night will fall considerably below the minimum value shown in
figure 13-3 for Earth night, and is estimated to be 10 -6 ft-c. Average luminance

of the nighttime lunar landscape can therefore fall below 10-Tft-L, a level at
which the human eye performs as if the luminance were zero.

487-858 O - 73 - 40
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Table 134

Range of Luminance for Visual Performance

Luminance

in mL

1 x 109

7 XlO _

4,4 X 10 8

1 = 108 8 X 10 7

l • 107

lt10 6 --

I • IO $ --

1.58 XlO 4

9 4x,0_3
1 • 104 6.4 X 10 "l

4.3 X 10 3

2.9 x 103

2X103 '
1.2 X 10 3

I • 10 3 O.li X 10 2

_X 102X 102
5X 102

2.4X 102

I • 102 1.1 X 102

2 X 101

1.6 X 101

1 x 10 1 XI01

7X l00

1 • l00 8 X l 0" I

1 a 10"1 --

2 X l0 "2

I • I0 "2

7.5 X 10 -3

I X lO -3

|slO "3

Object Notes

Sun Viewed from outside earth's atmosphere

Sun Viewed from the earth

A-Bomb Fireball 4 miles from point of detona-

tlon of an 800 KT weapon.

Venus

Earth

Mercury
Earth

Jupiter

Sky
Moon

Salul*ll

Mars

Moon

Sky
Uranu_l

Neptune

White paper in good

reading light
Movie screen(indoors)

TV screen
Pluto

Snow inlight of full mooc

Lower limit for useful

color vision

Earth

Upper limit for nii[ht vision

Assume albedo (r) of 0.59 viewed from

outside atmosphere

Viewed from spece with cloud cover(r=0.8)
Viewed from outside atmo6phere(r=0,0601

Viewed in January from outside atmos-

phere, no clouds (r • 0.39)

Viewed from outside atmosphere (r, 0.58)

Average sky on clear dey
Full moon viewed from outside of

atmosphere (r = 0,073)
Viewed from outside atmosphe re ( r * 0.63)

Viewed from outside atmosphere {r = O15)
Full moon viewed from earth

Average sky on cloudy day
Viewed from outsidethe earth(r = 0.63)

Viewed from outside atmosphere (r= 0.73)

Viewed from outside the atmosphere

Viewed from outside atmosphere with
full moon
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Table 13-4 (Continued)

Range of Luminance for Visual Performance

619

I ,,, 10 .4

1 x 10 .5

5 • 10 .6
4 • 10"6

3 • 10 .6
2 • 10 .6

1 x 10 .6

3 X 10 "5 Earth

I X 10 -5 Absolute threshold for dark

adapted human eye. lower
limit for night vision

1 XIO "5 Sky

l X 10 "6 Space background

Viewed from outside atmosphere at

night with airglow, starlight, and
zodiacal light providing illumination

Moonless night sky viewed from earth

Background luminance formed by star-

light, zodiacal and galactic light.

_0°40o-30o+20o 100 00 10 ° 20 ° 30 ° 40 ° 50 ° riO° 70 ° 80 ° 90 °

10,0040 10,000

1.000 1,000

Between these extreme values of sunlit lunar day and Earthle_ lunar night,
illumination on the moon is due to light from the Earth. The maximum value occurs
with the full Earth at the zenith, which will provide approximately 10 h-c--with

minor variations caused by rotation and differences in cloud cover As Earth's phase
angle increases from zero (full) to 180 ° (dark), illumination levels will drop in
conformity with the curve shown in figure 13-4 which refers to the case of the
Earth at the zenith.
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Figure 13-4. Earthshine intensity on the moon as a function of Earth phase.
(Jones, 1967; taken from Koval, 1964)

Variations in illumination due to altitude of the Earth in the lunar sky may be

expected to follow the cosine law of illumination very closely. A more detailed

consideration of the lunar visual environment is given by Jones (1967) and by
Kuiper (1954). The report of Shoemaker et al. (1967) indicates that there are

only minor local color differences to be found in the lunar surface materials, at

least for the local Surveyor regions. Earthshine is somewhat variable in color, but

is predominantly bluish.

Farther out in space, in interplanetary travel and planetary surface

exploration, the visual environment will be determined by distance from the sun,

the properties of planetary atmospheres, the presence of natural satellites, and

the character of the planetary materials. Solar illumination will vary with the

square of the distance, so that average values may be summarized (for the

normal plane) as indicated in table 13-5.

The values in the table refer to illumination at the top of the planet's
atmosphere, if present, and vary with distance from the sun. Conditions within

and beneath the atmospheres will depend upon the characteristics of the

planetary aerosols. At present only scant data exist; the cloud cover enshrouding

Venus, as well as Jupiter and Saturn, precludes measurement except by remote
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probes. Koval (1964) has summarized the data for Mars, and considers both its
atmosphere and the properties of the Martian surface with its observed seasonal
variations.

Table 13-5

Illumination Levels in Space

MeanSolar Illumination
Planet (Foot-Candles)

Mercury 84 600

Venus 24400

Earth 12 700

Mars 5430

Jupiter 470

Saturn 138

Uranus 34

Pluto 8

The directional luminous reflectances of some selected terrain backgrounds
are g_ven in table 13-6. These values not only exemplify the range of luminances,
but also their variation with angles of both illumination and path of sight. After
correction for transmission losses along appropriate paths of sight, these values
may be used in predicting visibility for such activities as reentry (e.g., for the
Apollo landmark problem), and the evaluation of Earth resources from earth
orbit and other sorts of visual reconnaissance.

Structure of the Visual System

The principal parts of the human eye are shown in figure 13-5 and

figure 13-6. Figure 13-5 shows some of the muscles that move the eyeball in its
orbit. The superior rectus muscle elevates the front of the eyeball; the lateral
rectus muscle pulls the eye to the right (outward). Inferior and medial rectus
muscles, not seen in this drawing, balance or oppose these movements. The
superior muscle, passing through a pulley, and the opposing inferior oblique,
rotate the eyeball, also moving the front surface up or down and laterally. These
movements allow the visual image to be consistently aligned on the retina when
the head is moved or tilted. Inside the eyeball, the lining of the major cavity
behind the lens is the retina, the light-sensitive neural layer (that is detailed
diagrammatically in figure 13-7). Arteries and veins to supply this active retinal
tissue come through the back of the eyeball with the fibers of the optic nerve,
thence to be distributed over the front surface of the retina. Light rays enter the
transparent cornea, and in so doing are refracted at the curved interface between
air and the tear fluid which bathes the cornea. Most of the optical power of the
eye inheres in this initial refraction. After passing through the cornea and the
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clearliquid(theaqueoushumor) contained in the anterior chamber, the bundle
of rays is restricted by a circular variable aperture, the pupil, whose size is
changed through action of the muscles of the iris. The rays are further refracted
by passage through the lens, traversing the clear, jellylike vitreous humor of the
posterior chamber, so that, in a properly focused eye, a sharp image is formed on
the retina. Scattering of light within the eye is minimized by a darkly pigmented
layer of tissue underlying the retina, called the choroid. The shape of the eye is
maintained by reason of its enclosure in an elastic capsule, the sclera, and the
fact that the fluids within are maintained at positive pressure.

Figure 13-6 and table 13-7 give dimensions and optical constants of the
human eye. Values in brackets shown in the table refer to state of maximum
accommodation. The horizontal and vertical diameters of the eyeball are
24.0and 23.5 mm, respectively. The optic disk, or blind spot, is about
15 degrees to the nasal side of the center of the retina and about 1.5 degrees
below the horizontal meridian.

Changes in focus are accomplished by altering the shape of the lens;

relaxation of the ciliary muscle results in a thickening of the lens, with a
consequent shortening of the focal length so that nearby objects are brought
into focus. The action is termed accommodation.

The retina is a thin membrane lining rear of the posterior chamber and
containing the light-sensitive cells. These cells are of two functionally discrete

types, called rods and cones. Rod cells are the more abundant, there being about
120 million in each eye. They subserve night vision, and are incapable of yielding
the information necessary for color discrimination, since they contain a single
common photosensitive pigment. Cone cells are both less numerous (6 million or
so in each eye) and less sensitive to low levels of luminance. Human cones are of
three types, each containing a different photopigment with peak response to a
particular part of the visible spectrum. Thus, by differential transmission of
nerve impulses upon stimulation, the cones are able to encode information about
the spectral content of the image so that the observer experiences the sensation
of color.

In addition to the rods and cones, the retina contains other nerve cells of
various function. Some of these enable the impulses from many rods to be

converged upon relatively few optic nerve fibers; others permit many sorts of
excitatory and inhibitory cross-innervations within the retina. Through this
arrangement of bipolar cells, ganglion cells, and their various interactions,
impulses which arose in the photoreceptors are transmitted to the visual cortex
of the brain. A vastly simplified diagram of the retina is shown in figure 13-7.
Light must traverse the various layers of cell bodies and synapses before reaching
the photosensitive pigments which are contained in the outer segments of the
rods and cones. The darkly pigmented choroid serves to absorb unused light and
thus to reduce the amount of intraocular scattering. Although there are many
more rods (around 125 000 000) than cones (about 6 500 000), the impulses
from many rods converge upon relatively few bipolar cells. This convergence is
significantly less in the case of the cones, and is one reason for the fact that
visual acuity is best at luminance levels high enough to permit adequate cone
function, especially in the fovea where only closely-packed cones are found.
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Figure 13-5. Right eye, viewed from outer side, showing visual axis passing through center
of lens to point of sharpest vision at fovea, where cones are concentrated. (White, 1964)
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MACULA
RIGHT EYE

Figure 15-6. Dimensions of the human eye. (Speetor, 1956)
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Table 13-7

Optical Constants for the Human Eye
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Constant Eye Area or Measurement

Refractive index

Radius of curvature, mm

Distance from cornea, mm

Focal distance, rnm

Position of cardinal points

measured from corneal

surface, mm

Cornea

Aqueous humor

Lens capsule

Outer cortex, lens

Anterior cortex, lens

Posterior cortex, lens

Center, lens

Calculated total index

Vitreous body

Cornea

Anterior surface, lens

Posterior surface, lens

Posterior surface, cornea

Anterior surface, lens

Posterior surface, lens

Retina

Anterior focal length

Posterior focal length

1. Focus

2. Focus

1. Principal point

2. Principal point

1. Nodal pbint

2. Nodal point

1.37

1.33

1.38*

1.41

1.41

1.33

7.7

9.2 - 12.2

5.4- 7.1

1.2

3.5

7.6

24.8

17.1

[14.2] **

22.8

[18.9]

--15.7

[--12.4]

24.4

[21.01

1.5

[1.8]
1.9

[2.1]

7.3

[6.5]

7.6

[6.8}

Optic disk 2-5

Diameter, mm Macula 1-3

Fovea 1.5

Depth, mm Anterior chamber 2.7 - 4.2

*Cortex of lens and its capsule.

**Values in brackets refer to state of maximum accommodation.
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Figure 13-7. Simplified diagram of retina.
(White, 1964)

The distribution of rods and cones over the retina is by no means

uniform. The cones are most numerous at the center of the visual field, and

are most densely packed in the region just at the fixational center. In this

small central region, whose diameter is about 0.5 mm or l°40 , of arc, there

are no rods at all. This is the region of best visual acuity and best color

vision. The rods are most dense in a band lying about 20 ° from the

fixational center, and it is for this reason that night vision (at levels when

the cones are inoperative) is best for averted vision. The distribution of rods

and cones is shown in figure 13-8. Note that there is a hiatus in a region of

about 5 ° diameter centered at about 15 ° in the nasal retina; this is the

"blind spot", where the optic nerve fibers leave the retina.
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used by permission of Ejnar Munksgaard, publisher)

Rods and cones differ in their response to fight of different wavelengths, as well
as in their overall sensitivities. Figure 13-9 shows the spectral response curves for
each. It will be noted that the sensitivity maximum for rods lies at 505 nm, while
that for cones is at 555 nm. For this reason, colors of long wavelength become
rapidly darker in appearance as the luminance is decreased.

The distribution of rods and cones in the retina is such that the extent of the

visual field for a single eye is as shown in figure 13-10(a). The foveal fixation point
lies at the center of the figure. The absolute limits of the visual field are bounded by
the black portion of the polar plot, while the limits for the appreciation of various
colors are shown by the indicated contours. The chromatic contours are subject to

fluctuation with changes in luminance and size of the test patch, while the outer
limit is stable and set by anatomical features such as the brow, nose, and cheek.

When both eyes are open, the field of view is increased, as shown in figure 13-10(b)
and there is a considerable region over which both eyes are operative, that is, there
is binocular vision. The cenlral white area is the field of stereoscopic vision. The
cross-hatched region in the figure is seen only by one eye, and the blackened area is
not seen. Binocular vision is an important factor in good depth discrimination, as
well as having other advantages. The visual field represented is for a stationary eye
or pair of eyes. Movement of the head and eyes and of the whole body will, of
course, extend the limits of the visual field. On the other hand, the use of optical
instruments almost always restricts the field. For certain space applications where

whole-body movement may be restricted, it is instructive to note the extent of the
binocular visual field under various conditions of restraint, as is shown in

table 13-8, taken from the data of Hall and Greenbaum (1950).
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Figure 13-9. Spectral response of rods and cones, with relative amount of radiant energy
for vision at absolute threshold shown as a function of wavelength of light. (Hecht

& Williams, 1922)

Detailed description of the structure of the visual pathways to the brain,
and the muscles responsible for eye movements is beyond the scope of this
chapter. Reference should be made to any good contemporary texts in
physiology and anatomy, or to the general references cited (e.g., Davson,
1962).

The size of the pupil of the eye is of concern, especially in the design
of optic',d instruments wherein it may be the limiting aperture of the
device. Under conditions of steady illumination, pupillary diameter depends
upon the prevailing luminance level, as is indicated in figure 13-11. The
dynamics of pupillary change are indicated by figure 13-12. The left part of
the figure shows the contraction of a dark-adapted pupil with 8ram
diameter when exposed to bright light, and indicates that the pupil has
stabilized at about 3 mm after 4-5 seconds. The right portion of the figure
shows that dilation upon going into darkness is a slower process, and that
even after 5 minutes the pupil has not reached its fully dark-adapted
diameter. It should be noted that the change in diameter is responsible only
for about a seven-fold change in the amount of light entering the eye, and
hence plays only a miniscule role in the whole process of light and dark
adaptation.
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Figure 13-10. Human field of vimon. (a) Field of view from right eye.
(b) Binocular field of vision. (Boring ¢t aL, 1948)
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The Stiles-Crawford Effect

A ray of light will be maximally effective if it reaches the retina via the

center of the pupil. An identical ray which traverses a peripheral part of

the aperture may, according to its eccentricity, need to be made several

times more intense in order to produce the same result. This phenomenon

is called the Stiles-Crawford effect, after its discoverers, h is primarily of

concern for photopic vision, and has been shown experimentally to be
related to the structure and optical properties of the cones.

The quantitative aspect of the Stiles-Crawford effect is shown in

figure 13-13. It should be noted that the maximum of the curve is displaced

nearly a millimeter toward the nasal side, and that the effect therefore is

neither strictly symmetrical, nor exactly concentric with the pupil. The

magnitude of the effect is dependent upon the wavelength of light, with

more diminution in intensity for blue and red than for the center of the

spectrum. There are also changes in hue and saturation of colors as the

entrant ray is moved across the pupil. In general, most peripheral rays

undergo a change toward some longer wavelength, although greens in a

narrow band around 520 nm appear to shift toward blue (Stiles, 1939).
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Figure 13-13. Stiles-Crawford effect. Light falling on different parts of pupil is not
equally effective in producing sensory end result, even though light reaches same point
on retina. Data are those for B. H. Crawford's eye. (Stiles & Crawford, 1933; reprinted

by permission of the Controller of Her Britannic Majesty's Stationery Office)
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There are two practical cases in which the Stiles-Crawford effect is of
concern. The first of these relates to the design of optical instruments, where it
is evident that distribution of the light flux at the eyepiece should be such that
neither instrument nor operator performance is penalized. An example may be
found in the ease of certain binoculars and monoculars which use reflecting
optics. In these instruments light emerges from the eyepiece as a hollow
cylindrical beam, so that the most efficient central part of the pupil is not used,
and the annular rays may suffer both loss of luminance and distortion of color.
The second consequence of the effect is that it is critically necessary, in the
determination of retinal illumination, to allow for the fact that simple
enlargement of either the natural or an artifical pupil will not produce as large an
increase in visual effect as would be expected on the basis of the increase in
pupil area. The troland unit of retinal illumination thus has limited utility, for it

matters to the retina from what part of the pupil it receives its light. An
approximate correction for the Stiles-Crawford effect has been attempted
(LeGrand, 1957), but even so the troland remains an imprecise unit.

Chromatic Aberration

The eye is unable to bring rays of all wavelengths to focus at the same
retinal plane simultaneously. As in other simple optical systems, light of
short wavelengths being more strongly refracted by the lens, is focused at a
plane in front of that for the longer, less deviated ones. The eye tends to
maintain focus for the wavelengths near the photopic sensitivity maximum,
so that, in the white light case, the red and blue components of an image
will lie behind and in front of the plane of best focus, respectively. This
effect is quite large, and chromatic differences of focus over the spectrum
amount to approximately three diopters.

Measurements of chromatic aberration in the human eye have been made by
several investigators, and the results are in good agreement (Ivanoff, 1949;
Hartridge, 1950; Wald & Griffin, 1947). The data of figure 13-14 are typical.

The consequences of chromatic aberration are many, and although much of
ordinary visual activity is affected little or not at all, there are some important
implications for engineering design. Normal visual acuity is best for conditions
where the color of the illuminant for the task is confined to the spectral region
near the peak of the luminosity curve, at least at low to moderate levels of

illumination (Schober, 1937; Schober & Whittman, 1938). The effect may be
bothersome in certain optical instruments using polychromatic fields, although
this may be corrected by incorporation of a specially designed lens (Wright,
1947). It is often impossible to discriminate between white and yellow stimuli of
small angular extent, since the eye tends to focus on the yellow-green
component of the white and allows the blue and red to blur out so that they are
ineffective in the discrimination (Wilmer, 1946). Finally, it is clear that small
colored stimuli, such as signal lights, will be perceived to be at different distances
according to their spectral composition and that, further instances may occur
when critical detail of displays shows serious chromatic disparities, leading to
operator error.
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Visual Performance

Normal visual performance involves a number of interdependent discrimina-

tions which are made in response to factors in the visual environment and

mediated by the structure of the visual system. Principal among these

discriminations are the appreciation of detail (visual acuity), contrast, color,

form, distance, movement and certain temporal aspects of the object of regard.

The limiting capabilities of the human observer have been extensively

investigated in all of these areas, usually in laboatory studies which isolate the

function of interest. It must be recognized, therefore, that the data do not take
into account the interactions between functions which are known to occur.

Rather, they should he taken as indicative of the limiting case, modifiable for
better or worse in accordance with other factors.

Visual Acuity

There are many definitions of the term "visual acuity;" all, however,

incorporate the notion of the resolution of detail. A variety of test patterns has

been used to measure acuity, from simple single dots to twin stars, gratings,

broken rings, checkerboards, and letters. It is unfortunate that no general

agreement as to the choice of a test has been reached, and that results from the

different patterns are often at odds. The Snellen Letter Test is probably the

most familiar, and is widely used in clinical practice, despite the fact that it is a
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test of letter recognition rather than of retinal resolution. The most satisfactory

expression for visual acuity is in terms of the angular subtense of the critical
detail which can just be discriminated. (In the Snellen notation, the width of the

letters of the 20/20 line is such that they subtend one minute of arc at 20 feet.)

A well-entrenched popular misconception is that 20/20 ,or 1', represents

"perfect" vision. Acuity depends upon the character of the test, and resolutions
of a few seconds of arc are not uncommon. Some results from use of various test

patterns are shown in figure 13-15.
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Figure 13-15. Approximate relationship between various measures of visual acuity and
background luminance. Uppermost curve is obtained using a broken ring (Landolt C) test
object, and data are values of angular gap size discriminable over range of luminances tested.
Vernier acuity task: discrimination of discontinuity in otherwise smooth edge, or of small
linear displacement. Stereoscopic acuity angle: difference in subtense between two test
objects of identical size whose distances from eye are just discriminably different. Minimum
perceptible acuity: smallest detectable spot, with contrast limited to -1.0. (Adapted from
White, 1964)

There are some important variables which affect visual acuity, and which

must be taken into account in operational planning terms:

Luminance. The level of adapt'ion of the eye has a profound effect upon

visual acuity, as might be expected. This dependency is shown for two different
test patterns in figure 13-16.

Position In The Field. At photopie levels, acuity is best at the fovea, and

drops off as the retinal periphery is approached, owing to receptor population
differences. Nocturnal acuity is quite poor, with essential blindness at the fovea
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andbestresolutionappearingin theperipherywhererodpackingisdensest.The
variationofvisualacuityisindicatedinfigure13-17.
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Figure 13-16. Variation of acuity with retinal iUuminance for resolution of a grating
and for recognition of orientation of a Landolt C test object. (Schlaer, 1937)
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Duration. When the pattern is exposed for only a short time, measured

acuity diminishes in accordance with the function shown in figure 13-18. It

is evident from this figure that the duration effect is related to the
luminance of the test.
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Figure 13-18. Visual acuity as a function of time of exposure for several luminance

levels. At any given level less time is needed to see larger objects, and, for any given
object size, less exposure time is required at higher luminances. (Ferree & Rand, 1922)

Color. For tasks illuminated by monochromatic or narrow-band sources,

there is a small but measurable difference in acuity as a function of the

dominant wavelength used, provided that all colors have been equated for

luminance. In comparison with acuity measured in white light, there is a

nominal improvement when sodium vapor lamps are used, while with blue

or violet light acuity is poor (Moon, 1961). These statements apply only to

photopic vision.

Contrast. Visual acuity decreases as the contrast between pattern and

background is diminished. The form of this relationship depends upon the

adapting luminance, as was shown by Connor and Ganoung (1935) and by

Cobb and Moss (1928), whose results are combined in figure 13-19.

Movement. Detail vision for moving objects is called dynamic visual

acuity. Investigations of this problem have been reported by Miller (1958),

whose results are summarized in figure 13-20. These data must not be used

uncritically, for it was shown by Ludvigh and Miller (1958) that wide

differences exist between observers, and that these are not correlated with

their measured static visual acuities.
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Contrast Discrimination

Vision requires that there be differentiation of the luminances (or
colors) in the field of view. Without these gradients of energy across the
retinal image, there can be no information received from the environment
by visual means, at least in the ordinary sense. The luminance gradients
which we use are distributed both in space and in time, and man is
sensitive to both spatial and temporal differences. Simple contrast
discrimination is conventionally discussed in terms of the static case, with

the phenomena of movement, intermittency and color being treated as
separate entities. In a sense, nearly all of visual activity (visual acuity
included) may be regarded as contrast discrimination. Here, however, we
will restrict its meaning to refer to the simplest case of the appreciation of
a luminance difference-generally in white light.

Contrast is defined as the ratio of a luminance change ascribable to the
presence of an object, or target, to the luminance of the background. If the
luminances of target and background are b t and bo, respectively, then the
luminance contrast, C, is:

Bt - Bo AB
C --

Bo Bo

It is evident that the contrast of targets brighter than their backgrounds can
vary between zero and infinity, while those darker than their backgrounds
can vary from zero to minus one. In many cases it has been found (e.g.,
Blackwell, 1946) that targets of equivalent numerical contrast are equally
visible ircespective of sign. This generalization has recently been questioned
by Patel and Jones (1968) who find higher thresholds for positive thap for
negative targets; the effect becoming significant at low luminance levels.

The most important variables affecting contrast discrimination are

luminance of the background, size and duration of the target, and the
portion of the visual field used. Color is relatively unimportant in simple
target detection if a luminance gradient exists (MacAdam, 1949), although
color is important in many other visual tasks.

Background Luminance And Target Size. These two variables have been

investigated quite thoroughly for the case of simple circular targets on
uniform backgrounds (e4g. , Blackwell, 1946; Blackwell & Taylor, 1970).
Their influence on contrast discrimination is seen in figures 13-21 and 13-22,
taken from the earlier study. These data have been used extensively in the
construction of nomograms for predicting the visibility range of objects
under a variety of viewing conditions (Middleton, 1952; Duntley, 1960).

Duration. For very brief exposure times, contrast discrimination depends
on the product of the luminous flux and the duration of the flash, that is,
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ABx t =aconstantatthreshold.Thisis Bloch'slaw,andit holdsfor values
of t up to a criticalduration,tc, whichvariesfrom0.002to0.1second,
dependinguponconditions(Baumgardt& Segal,1946)althoughthelatter
figureis moretypicalunderconditionsof practicalinterest.At exposure
timeslongerthana fewtenthsof a second,thresholdis independentof
durationand_B=aconstant.Thecharacterof thetransitionfromAB x t =
C andAB = C issometimesabrupt,sometimesgradual,dependinguponthe
conditions.(For details,see,e.g.,Kishto,1968.)Datarelatingdurationto
contrastdiscriminationhavebeenpublishedby GrahamandKemp(1938),
by Blackwelland McCready(1958),andbyBlackwelland'Faylor(1970).
Datafromthefirststudyareshownin figure13-23.
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Figure 13-21. Contrast thresholds as a function of adaptation luminance
for 7 sizes of uniform circular targets. (Blackwell, 1946)

Position In The Visual Field. In the light-adapted eye contrast
discrimination is best at the fovea, where the density of cone receptors is

highest, and deteriorates as the target moves out toward the periphery of
the visual field. Under dark-adapted conditions, foveal vision is inoperative
and optimum discrimination is achieved by use of averted vision, usually at
about 10° away from the visual axis. Some data for the daytime case for

targets in the near periphery are shown in figure 13-24, from a study by
Taylor (1961).
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Curves labeled to indicate angular diameter of uniform circular stimuli;4 observers, for
which plotted average values represent0.50 probability of detection in "yes-no"
experiment; each data point based upon 2400 observations. (Taylor 1961)

Depth and Distance Discrimination

Tile estimation of depth and distance in ordinary terrestrial seeing is

accomplished by use of a number of cues which are available to the

experienced observer. Some of these cues are provided by the nature of the

scene of interest, while others inhere in the observer himself. Some of the

important external and internal cues are indicated in table 13-9. But a
number of these cues may be absent in the space environment, and it will

be necessary to evaluate any visual task which requires critical judgment of

depth or distance in terms of the available information.

In cases where only internal cues to distance are available, that is to say

when the objects of interest are of unknown size and shape, and none of

the external aids such as aerial perspective or interposition is of help, it is

evident that the observer must depend upon his stereoscopic acuity,

accommodation and convergence, and, where possible, movement parallax.

Accommodation is only an effective cue to distances at ranges of a meter

or less, and even here it is inaccurate. Convergence alone is a somewhat
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more useful cue, but is limited to a range out to about 20 meters. Stereoscopic

acuity, however, provides a powerful cue to distance. Experimentally

determined values of stereoscopic acuity are in the range from

about 10" to 2" are. An observer with a stereoscopic acuity of 5", for example,

can discriminate that an object at 2600 meters is closer than one at infinity

(LeGrand, 1967).

Table 13-9

External and Internal Cues to Depth and Distance

External Cues

Linear perspective

Apparent size

Motion parallax

I nterposition

Aerial perspective

Shading

Apparent intensity

Apparent convergence of parallel lines and related effects

A strong cue to distance of objects of known size, and texture

Relative angular motion as either head or objects move

Nearer objects eclipse more distant ones

Contrast and color lossdue to aerosols; uselessin free space

A cue to three<limensional form of objects (not to distance)

A cue only to distance of effective "point sources"

Internal Cues

Accommodation

Convergence

Binocular disparity

Relatively unimportant (see text)

Useful limit is about 20 meters (see text)

Most important intrinsic cue to depth and distance

Note: All cues excepting last two can be utilized by a singleeye, and by extension, in unio-
cutar optical devices.

(Adapted from Gibson, 1950)

Movement parallax is another important cue to depth and distance,

especially where binocular vision is impossible, as in the use of uniocular optical

instruments. The accuracy of this cue depends upon the luminance level, the rate

of angular movement, and the direction of movement across the visual field

(Graham et al., 1948). Under optimum conditions (high luminance levels,

orthogonally-oriented movement, and an angular rate of about

0.1 radian/second of time), the resulting acuity is about 40"/second of time.

Thus, even slight side-to-side or up-and-down movements of the head can

provide an accurate cue to relative distance.

Temporal Discrimination

The temporal resolutlon of the visual system is occasionally of concern in

space operations. Examples include the discrimination of temporally coded
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displays, differentiation between steady and flashing lights, and the time-varying
visual signals received from a sunlit, tumbling space object seen against a black
background. Experimental data regarding temporal discriminations are
exceedingly voluminous, and the reader should consult the general references
noted at the end of this chapter for details. Only a small sample of these results
will be given here.

As the rate of intermittency of a flashing light is gradually increased, there is
a rather sharply defined point at which the light begins to appear as a steady
one. The rate at which this transformation occurs depends upon a host of
conditions, but two of the most important are the luminance of the background

and the position in the visual field. (Size, of course, is an important variable, but
it may be assumed that intermittent stimuli in the space environment will be
angularly small.) The transition point between steady and intermittent
appearance is called the "critical frequency of fusion", and is often abbreviated
"CFF." In figure 13-25 the value of the CFF is plotted as a function of
background luminance, for a 2° circular test target located at the fovea and
at 5° and 15 ° above the fovea. Had the target subtended 0.3 ° ,the CFF values
would have been about 5 Hz lower for the foveal case (Hecht and Verrijp,
1933).
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Figure 13-25. Relation between critical frequency and log retinal illuminance for white light
for three different retinal locations: at the fovea and 5 and 15 ° above the fovea. (Heeht and
Verrijp. Reprinted by permission of The Rockefeller Institute Press from The Journal of
General Physiology, 1933, 17, 251-265; Fig. 2, p. 257)

There are other considerations regarding intermittent illumination. Spacecraft

internal illumination, for example, should not exhibit perceptible flicker, owing to

possible performance decrements suffered by the crew. Temporally-coded display

systems, likewise, should be designed so that the crewman's temporal resolution

capabilities are never exceeded.
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Movement Discrimination

Several sorts of tasks are subsumed under this category, and several modes of
movement must be considered. The more common cases of interest may be
listed as follows:

1. Movement across the visual field in the fronto-parallel plane, with or
without stationary reference objects in the field of view.

2. Movement in depth, toward and away from the observer and with or
without reference objects.

3. A combination of the above.

4. A change in the rate or direction of movement.

5. The discrimination of rotational movement, usually centered on the line
of sight, but not always.

In space operations, movement discrimination is especially critical in instrument
reading, rendezvous and docking maneuvers, and in spacecraft landing
procedures. It is abetted by the presence of reference objects in the field

(especially familiar ones), high luminance levels, and optimum rates of
movement.

The variables influencing movement discrimination of any sort are identical
with those affecting other visual functions (luminance, size, contrast, and retinal
position), but with the additional factors of velocity and rate of change of

velocity as complications. The recent book by Spigal (1965) should be consulted
for detailed treatment of the subject, as should the general references.

Some specimen data are shown in figures 13-26 to 13-28.

Color Discrimination

Color vision is mediated by the retinal cones, and is therefore best at
photopic luminance levels and in those parts of the visual field where the cones
are most densely packed. Color discrimination may be general, as in
differentiating between different colors, or it may be specific, as in the
appreciation of some one color characteristic such as hue, saturation, or
luminance. When color is used in coding and in displays, only general
discrimination is usually required (wiring, signals, pipelines, warning and
clearance lights, etc.). In space tasks involving naturally ocurring colors,
however, it may be necessary to make subtle discriminations of chromatic
differences (lunar and planetary exploration, spacecraft landing, vehicular
maintenance, and observations of the terrestrial surface from orbit).

Hue, the psychophysical counterpart of the physical dominant wavelength of
a stimulus, can be discriminated very well under conditions of adequate

luminance (10 ft-L or more) provided that the angular size is large enough. The
data of figure 13-29 refer to the case of a 2° field and photopic luminance
(Wright and Pitt, 1934). About 150 hues can be discriminated under these

conditions; with larger fields, the number of hues would be larger (Wright,
1947).
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Figure 13-27. SensiUvity to movement in depth, expressed in terms of percent distance

traveled by a 3.5 in. luminous disc at mean distance of 25 ft against dark background, as a
function of luminance of disc. Both monocular and binocular curves refer to 75% level of

movement detection. Target was a lamp 3.5 in. in diameter, moved back and forth on a tract

from an initial distance of 25 feet. At the initial distance, the lamp subtended 4,0 min. at the

eyes. 2% change in distance represents a 2% change in visual angle, or about 0.8 rain. Target

speeds ranged from 1.65 to 13.2 in./see producing initial changes in visual angle from

about 0.25 to 2 rain of arc. (Baker & Steedman, 1961 )
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Saturation, the psychophysical .equivalent of spectral purity, refers to the

degree to which a color of given hue differs from white. Pale pink, for example,
is a red of low saturation. Discrimination of saturation is best at the center of

the visible spectrum (570 nm), as seen in figure 13-30.
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Figure 13-30. Saturation discrimination. Values on ordinate represent amount of color
added to white for color change to be discriminable, assuming equality of luminance for the
two conditions. The expression F_/F), + Fw, where F)_ is light flux of wavelength and F w is
flux of white illuminant, is called colorimetric purity. (Wright, 1947)

In most practical cases one is interested in the discrimination of a

combination of hue and saturation - a quantity known as chromaticity.

Investigations of chromaticity discrimination by MacAdam (1942) have yielded

data of the sort shown in figure 13-31, in which the ellipses indicate the fineness

of this discrimination in various parts of the chromaticity diagram. (For a

discussion of the chromaticity diagram, see Wright, 1947, or other general

reference.)

There are some special considerations which should be taken into account in

the design, of systems and in the planning of missions if color discrimination is to

be successful. Some of these have already been alluded to (chromatic aberration,

luminance level); others should be noted.

Small Subtense Color Vision. The ability to discriminate colors is drastically

reduced in the case of angularly small targets. Under this condition, only

three colors may be reliably differentiated: red, green, and another color

which may be yellow, or white, or gray. For this reason, the coding of

signal lights is restricted to three colors whenever they are to be seen at any

appreciable distance.
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Figure 13-31. Ellipses representing]0 times S.D. of color matchesmade at constant
luminance.Each egipse is basedon matches madewith variationrestrictedin direction in
the diagram. These variations were taken in 5 to 9 directions, and 50 matches were made for
each direction of variation, so that each ellipse is based on 250 to 450 color matches.
(MacAdam, 1942)

Peripheral Color Vision. Best color vision occurs at and near the center
of the field. As stimuli are moved toward the periphery, discrimination
becomes poor, and colors are not seen (although the loss of color occurs at
different distances from the fovea). Some typical data are shown in

figure 13-32, from the report of the Committee on Colorimetry (1953). This
figure shows in a very general way the limits of color discrimination in the
parafoveal retina for the colors shown. The use of larger or more luminous
stimuli would cause expansion of these fields; perhaps to the outer limit
shown for achromatic (white) luminance discrimination.

Visual Search

The visual acquisition of objects in the field of view when their location
is unknown is called visual search. The important variables in the search

process include size and structure of the field, characteristics of the target
object, including its size and complexity, luminance level, contrast,
uniqueness, and so on. Although a great deal of work has been done on the
problem, there is no simple set of rules which may be used to formulate
optimum search procedures.
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Figure 13-32. Visual fields for color in a right eye.
(Committee on Colorimetry, 1953)

From the standpoint of engineering design for space operations it may
be assumed that the usual objective will be to assist the search process (as opposed
to concealment and camouflage). Accordingly, it will be desirable to increase the
probability of visual acquisition by careful attention to the factors which are
known to assist in the search process. A number of such factors have been
summarized by Taylor (1969), and a collection of papers edited by Morris and
Home (1960) should be consulted for additional suggestions.

Size Discrimination

The size of an object is usually discriminated by the aid of such cues as
known distance, comparison with other objects of known size, and such factors
as perspective and familiarity. In space operations, however, these cues may be
lacking, or conditions may be such as to deceive the observer. A very important
phenomenon is that called irradiation. Simply put, two objects of identical size
and at the same range will appear of the same size if they are illuminated
equally. If one is very much more intensely lit, it will appear larger. The effect is
especially great in the case of angularly small objects. Recent work by Haines
(1967) should be consulted for the quantitative aspects of the irradiation
phenomenon as it affects both size and shape discrimination.

Form Discrimination

The form of an object is of undoubted interest in all phases of space
exploration, and especially so in the discrimination and description of
planetary and lunar surface features as well as in the differentiation of
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orbitingobjectsandterrestrialformations.Themany variables which affect

the form discrimination process are discussed in Wulfeck and Taylor (1957).
Observer experience and training are important, and the task will depend
upon the level of discrimination desired.

Dark Adaptation

Optimal visual discrimination under conditions of very low luminance can be
nmdc only if tile visual system is adapted to the level of the prevailing photic
environment, or even lower. If a fully light adapted eye is suddenly plunged into
darkness, its sensitivity is initially very poor. With time, however, sensitivity.
begins to increase as a result of photochemical regeneration, certain functional
neural changes, and (to a much smaller degree) enlargement of the pupil of the
eye. If the eye remains in total darkness for 30 to 60 minutes, the adaptation
process will be nearly complete and the sensitivity of the cye in those parts of
the retina where both rods and cones are present will have increased by a factor
of 10 000 for white light.

The course of dark adaptation is influenced by many factors, such as the
intensity, duration, and color of the preadapting light, the size and area of the
retinal area stimulated, and the nature of the visual stimulus used to test the

effect. Summaries of the many parametric studies of dark adaptation may be
found in Graham et al. (1966), Davson (1962), LeGrand (1957) and in Jayle and
Ourgaud (1950). A general curve, obtained with white light, is shown in
figure 13-33. The early portion of the curve, extending to about 10 minutes, is
here reflecting the adaptation of cones. Tile subsequent increase in sensitivity is

due to activity of the rods. The curve is an average from the data
of 101 observers. It clearly indicates that adaptation of the cones is complete
after about 10 minutes. Later increase in sensitivity is caused by activity of the
rods.

There are several important operational consequences of the dark adaptation
process and its properties:

1. Best performance on a task at low luminance requires that the eye be
preadapted to an appropriately low level for sufficient time so that maximum
sensitivity obtains.

2. Since the rods are more sensitive than the cones at low luminances, best
detection capability will occur on those parts of the retina where rods abound

(10 to 30 degrees from the fovea), and averted vision is required for optimal
performance.

3. Since the rods are relatively insensitive to extreme red wavelengths, dark
adaptation will proceed if the observer dons suitable red goggles or if the
illumination provided, in a spacecraft for example, is very deep red. By this
means it is possible to continue to use the high-acuity capability of the central
fovea at elevated iunfinance levels for reading instruments, etc., while the
adaptation process goes on; although vision will naturally be monochromatic in
this case.
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4. Because the two eyes are essentially independent as regards adaptation, it
is possible to maintain dark adaptation in one (e.g., by means of an eye patch)
while the other is used for tasks at high luminance.
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Figure 13-33. Course of dark adaptation following exposure to a luminance of about 1000
ft-L. Measurements made using a test spot1 ° in diameter imaged on a retinal
region 15 ° in nasal periphery where both rods and cones are present. (Sloan, 1947;
adapted from How we see: A summary of basic principles, by A. Chapanis, in Human
factors in undersea warfare, by permission of the National Academy of Sciences)

Vision Under Stress

Environmental stresses to which astronauts may be subjected have been

studied in some detail. Most of these are of a transient nature, occurring only

during some relatively short part of the mission, such as launch, extravehicular

activity, or reentry. Others, however, will be a necessary part of extended

missions, and a potential part of system malfunctions. Added to environmental

factors may be individual stresses induced by anxiety, boredom, interpersonal
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frictions or sensory deprivation*. The latter class of stresses has been only

partially amenable to test, and the practical importance of these factors remains

a matter of conjecture. The physical environmental stresses thought to be

important may, however, be quantitatively evaluated in many instances.

Acceleration

The effects of acceleration on vision have been summarized by White and

Monty (1963). As is well known, the decrement in performance is a function of the

g vector, and less impairment is incurred in the case of transverse g loads. Central

and peripheral contrast discrimination are affected differentially, and central losses

in acuity are suffered. Figure 13-34 shows the nature of these effects, and their

implications for system design and mission profile planning are clear.
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*Sensory deprivation refers to the condition wherein the individual is kept in an
environment with drastically reduced sensory input. Laboratory experiments in which
subjects were immobilized (e.g., in a tank of water at skin temperature) and isolated from
all visual and auditory stimuli, have led to bizarre behavior, hallucinations, delusions, etc.
It is no longer believed that these phenomena are of any interest in hiotechnology, even
for extended interplanetary missions.

Figure 13-34. Binocular visual acuity as a function of transverse g-forces.
Note that effect is independent of body position in these data. (White & Jorve, 1956)
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Vibration

Whole body vibration produces a loss in visual acuity and the accuracy of
dial reading. The effects are related to the axis of vibration, the nature of the
task, and the frequency, but appear to be relatively independent of the
amplitude, at least over the range from 0.025 to 0.05 inches (Mozell and White,
1958). Recent studies have shown visual performance decrements to depend
upon the kind of head restraint used (Taub, 1966) and the use of various helmet
and liner combinations (Schoenberger, 1968). Y-axis vibration applied to the
head alone (Rubinstein and Kaplan, 1968) shows acuity to be a U-shaped

function of frequency, with poorest acuity in the range from 25 to 35 Hz. The
same study showed that acuity gradually returns to normal as frequency is
increased, and that the effect has vanished at 78 Hz. It should be noted that the

decrement in acuity could be overcome by increasing the contrast of the

resolution pattern used. The data for both constant acceleration (1.0gy) and
constant displacement (0.03 cm) are shown in figure 13-35.

Weightlessness

As it is impossible to simulate zero-g conditions in the laboratory, or
for long periods in parabolic aircraft flights, the effects of prolonged
weightlessness on vision are only imperfectly known. The existing data were
collected on Gemini flights, GT5 and GTT, of approximately 7 and 14 days'
duration, respectively. Visual acuity was the only task which was evaluated,
and no significant differences were found between preflight, inflight, and
postflight results (Duntley et al., 1968).

Hypoxia

The effects of oxygen lack on vision are well known from many studies.
Some of the effects of G-forces may be attributed to the fact that blood
supply to the head is diminished, and that an anoxia is thereby produced
both in the retina and the visual cortex. The effects of oxygen lack on the
visual threshold are exemplified by figure 13-36 (McFarland, 1946), which
also shows the effect of cigarette smoking on this function.

Glare

Visual performance is degraded when a source of high luminance
intrudes upon the field of view. The disability and discomfort which result
are functions of the size and intensity of the glare source, and its position
in relationship to the object of regard. Whether the glare source is small
and intense, as when the sun is in the field of view, or large and diffuse, as
in looking through a spacecraft window which is scratched or dirty and
illuminated by a strong source, the effect is to reduce the apparent contrast
of the desired object. The quantitative expression of glare is usually done in
terms of an hypothetical uniform veiling luminance which would produce
the same performance decrement, although this is at best only an
approximation. (For a discussion, see LeGrand, 1957).
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Figure13-36. Effects of altitude, smoking, and oxygen inhalation on luminance
sensitivity. (From Human factors in air transport design by R. A. MeFarland.
Copyright 1946 by The McGraw-Hill Book Company. Used by their permission)

Empty Fields and Low Luminance Levels

It has been noted that the refractive power of the resting eye changes

significantly (in the direction of myopia) when the visual field is

unstructured, as in a dense fog, or when the average luminance level is very

low, as in dark night conditons. This effect is not insignificant, and

typically results in refractive errors from 0.75 to 1.5 diopters in the negative

direction. The importance of these phenomena in space operations is not

clear except in the case of foglike atmospheres and darkened environments

where no cues to distance exist. The empty field problem has been

discussed by Whiteside (1954), and the night myopia effect by LeGrand

(1967) . The possibility of crew disorientation from this cause should be
considered.

Hash Blindness

Momentary exposure to a very intense flash of light results in a loss of

visual sensitivity which may take some time to be restored. Such exposures

are likely to be accidental through loss of a protective visor, inadvertant

looking at the sun, or chance reflections from the polished metal surfaces

of space vehicles. Recovery time depends upon the intensity and duration
of the flash and on the nature and luminance of the task of interest. For

any given task, recovery time can be shortened by increasing the task

luminance in the period immediately following the flash, as may be seen in

figure 13-37. A detailed study of the flash blindness problem may be found

in Brown (1965).

Visual Tasks in Space Operations

It is evident, from the experiences gained in manned spaceflight by both

the United States and the USSR, that the human operator can be relied

upon to perform a number of visually mediated tasks. The trend, therefore,

has been toward giving the man ever greater responsibility in the conduct of
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space missions. It is now thought that any or all of the following activities

will depend significantly upon vision, either in a primary sense, or in a

backup mode:

1. Orientation, both personal and vehicular

2. Rendezvous and docking, including detection and interception;
estimates of distance and closure rates

.

4.

planets,

5.

6.

7.

8.

9.

10.

11.

12.

Navigation, including star tracking and angle measurements

Observation, from the upper atmosphere, of the Earth,
and the Moon

other

Astronomical observations from space

Lunar surface observation from lunar orbit

Planetary surface observation from orbit

Lunar landing, including estimates of distances and closure rates

Observation of the lunar surface from the lunar surface

Planetary landing, including estimates of distance and closure rates

Translation on the lunar surfaee

Extravehicular maintenance and other activity.

The effects of certain environmental variables upon the ability of man to

perform the above tasks, as well as the visual functions necessary in each,

have been discussed by Taylor (1964), and that document should be
referred to for detailed consideration of the list.
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CHAPTER 14

AUDITORY SYSTEM

by

Harlow W. Ades, Ph.D.

University of Illinois

The importance of effective communication cannot bc ow_rstated. Progress
in all facets of civilization depends on the exchange of ideas, messages, and
commands. The orderly flow and management of information has become a sine

qua non in all file complex activities of a modern world.

Communications, whether occurring between humans in normal day-to-day
association or occurring during the operation of complex man-machine systems,
depend primarily on the auditory and visual systems. This dlapter deals with tile
former. In designing any system in which communications plays _me part, the
unique characteristics of any auditory systcm must be considered. An
understanding of its structure and eccentricities will 'allow this receptor system
to be matched with other system elements to achieve efficient system design.
However, the responsibility of the designer does not end here. He must attend
not only to system efficiency but to the impact of system operation on tbc
environment of which it becomes a part. In this regard, noi_ pollution has
become an issue of major concern. While noise-free systems are usually not

feasible, the design engineer still bears the responsibility for understanding the
noise characteristics of his system and their likely effects on audition.

This chapter is divided into three major sections. The first deals briefly with
the physical correlates of hearing, i.e., the acoustic stimulus. In working with a
psychophysical phenomenon such as heariug, one must be able to define and
measure the stimulus parameters with precision since the stability of measure-
ment for any psychophysical relation_ip gcner',dly comes from the physical (or
stimulus) side; however, the reader is referred to other recent works for most of
the detail.

The second section describes in some detail the auditory system itself. Here
one is confronted with the time-honored question, "How much information
should a designer have concerning the morphology and neurology of a body

Reviewed by William D. Neff, Ph.D., Indiana University
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system in order to work with it effectively?" Although it is possible to work in a
system design dealing only with input-output relationships, a certain level of
sophistication concerning System elements will provide confidence to the
designer if nothing else. Here again, except for the inner ear itself, the reader is
referred to recent works on the subject.

The third section _ f this chapter presents recent data concerning hearing loss
and structural change caused by carefully controlled over-stimulation of the
auditory System. The main purpose of this section is to provide information

concerning the physiological response of the auditory System, as evidenced by
physical damage. The section serves further as a caution against subjecting the
auditory system to stimulation for which it was not designed. It also sets the
stage for the next chapter which deals with the response of the auditory system
under conditions of noise and overload.

Physical Correlates of Hearing

Hearing is the sum total of the transmission of sound from the external

environment to the brain. It involves the conversion of mechanical impulses to
neural impulses, the transmission of these impulses to the brain, and their
"perception" by the brain. The sensation of airborne sound is produced when

vibrations of the molecules of air strike the ear drum in alternating phases of
condensation and rarefaction. A graph of these movements as changes in
pressure on the tympanic membrane per unit of time shows a series of waves.

The speed of sound increases with temperature and with altitude. Water also
conducts sound, at speeds over four times as fast as air (775 mph versus
3215 mph), but here we are concerned mostly with airborne sound. The
loudness of a sound correlates with the amplitude of a sound wave. The pitch of
a sound correlates with the frequency or number of waves per unit of time, with
greater amplitude meaning louder sound and greater frequency, i.e., higher pitch.

The presence of one sound decreases an individual's ability to hear other
sounds. This phenomenon is known as masking. It is believed to be due to the
relative or absolute refractoriness of previously stimulated auditory receptors.
The degree to which a given tone masks other tones is related to its frequency.
(For curves of masking effect as a function of frequency, see chapter 15, Noise
and Blast.) The masking effect of a background noise raises the auditory
threshold a definite and measurable amount.

In describing an auditory stimulus, one must specify the frequency of the
sound and its intensity. When dealing with pure tones, frequency is expressed as
"cycles per second" or the preferred synonymous term "Hertz" (Hz). The
intensity of a sound wave is a function of the amplitude of the wave and is

measured in pressure units. Three terms are widely used in referring to intensity.
These are decibels (dB), perceived noise (PNdB), and effective perceived noise
(EPNdB).

The decibel is based on the ratio of the acoustic energy being measured to a
reference energy. The standard sound reference level adopted by the Acoustical
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Society of America is 0.0002 dynes per square centimeter, a value just at the
auditory threshold for the average human. The ratio of the two energy or
intensity measures is transformed into a logarithmic scale for greater manage-

ability. A value of zero decibels does not mean the absence of sound, but a
sound level equal to that of the arbitrary standard, the least sound the average
human ear can hear. Zero to 140 dB, a range extending from threshold intensity

to an intensity generally assumed to be painful to the ear, actually represents a
1014 or 100 million million-fold increase in sound intensity.

The perceived noise (PNdB) is a calculated unit used to express unwanted or
unacceptable sound; that is, noise. The unit, used frequently to describe aircraft
noise, is calculated by combining actual sound level with a weighted annoyance
factor based on a variation in frequencies since some frequencies are more
troublesome to the human ear than others. Kryter (1970) feels that the

relationship between the sound pressure level and judged perceived noisiness, or
annoyance, as a function of the frequency content of random noise is reasonably
well established. Frequency weightings for noisiness and for loudness given by a
number of investigators are in close agreement. Weightings given by Stevens'
loudness index contours (1961) are similar to the equal noisiness contours
developed by Kryter and Pearson (1963), and Wells (1967).

The effective perceived noise decibel (EPNdB) is also a calculated unit,
which is little used, and which carries the weighting concept further by

accounting for the effects of pitch and duration of noise.

A concept which is gaining rapidly in usefulness is the use of the noise

exposure forecast (NEF) in conjunction with the compatible noise exposure
limit (CNEL). In these terms, the noise around an airport, for example, may be
expressed. All of the foregoing terms are expressed in the NEF which can be
monitored and checked periodically and, in addition, can be predicted for the

future by computer calculation. Kryter (1970) describes these terms in much
more detail.

The Auditory System

The process of sound transmission can be very briefly summarized as
follows. Sound waves impinge upon the tympanic membrane and are trans-

formed by this organ and the bones of the middle ear into mechanical waves,
and, by the action of the footplate of the stapes into fluid-borne waves, since the
inner ear is fluid-filled. The action of these waves on the organ of hearing proper,

the organ of Corti, in the inner ear, triggers impulses in nerve fibers which supply
the organ. These nerve fibers transmit coded information regarding sound to the
brain.

The audible range of frequencies for humans is generally given as 20 to
20 000 Hz, though few individuals can hear as high as 20 000. In other animals,

much higher frequencies can be heard. The greatest sensitivity is in the range of
1000 to 3000 Hz. Pitch discrimination is less sensitive at frequencies outside this

range.
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The ear has three anatomical subdivisions containing, along with numerous

other structures, all of the conductive and some of the nerve elements of the

hearing mechanism. Figure 14-1 shows the human ear in cross section. The

external ear, a trumpetlike structure, comprises the pinna and the external

auditory canal or meatus. The middle ear houses the auditory ossicles. The inner

ear contains the organ of hearing proper, the organ of Corti, together with the

nonacoustic labyrinth, the vestibular apparatus.

Figure 14-1. Drawing of cross section through human ear.
(Naval Flight Surgeon's Manual, 1968)

External Ear

The pinna, the fleshy and cartilaginous outer ear, has little effect on hearing

in the human. The ear canal, or external auditory meatus, on the other hand, can

affect hearing seriously if it should become occluded. The canal is bounded

medially by the drum membrane, or tympanic membrane.

The Middle Ear

The tympanic membrane is also the lateral boundary of the middle ear.

Some of the sound waves that strike the tympanum are reflected back into the

auditory canal. The rest are transmitted across the membrane to the air-filled

middle ear. The middle ear contains, in addition to nerves and vasculature, the

bony chain of the sound conduction system, the malleus, the incus, and the
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stapes. These bones functionally connect the ear drum with the inner ear,
transmitting the waves imposed on the drum across the middle ear to the
footplate of the stapes which rocks to and fro, delivering the agitation to the
perilymph of the cochlea.

The ear bones of the middle ear function as a lever system. A small

mechanical advantage is gained because the handle of the malleus is longer than
the long crus of the incus. Much more important, however, is the ratio of the
area of the tympanic membrane to the footplate of the stapes at the oval
window. This ratio is effectively 14 to 1, and corresponds to an increase of
23 dB. The total force at the oval window is about the same as at the tympanic
membrane, but it is concentrated in a much smaller area. Pressure exerted on the

fluid of the inner ear is therefore only 3 to 5 dB less than that exerted by the

sound pressure wave on the tympanum.

Theln_rEar

The inner ear is a closed fluid-filled chamber. It communicates with the

middle ear at the oval and round windows (see figure 14-1). The oval window,
closed by the stapes which is fixed by means of an annular ligament, links the
middle ear with the vestibule of the inner ear. The round window provides the

means of relieving the pressure imparted to the cochlea by connecting the
middle ear with the basal turn of the cochlea through a flexible membrane. The

cochlear wall is rigid and incompressible.

The cochlear partition, including basilar membrane and Reissners'
membrane, ends a little short of the apical end of the cochlear canal. There the
scala vestibuli and the scala tympani join through the helicotrema while the
cochlear duct ends blindly. At the other end of the scala tympani is the round
window. The scala vestibuli opens into the central chamber of the labyrinth, the
vestibule, close to the oval window. The length of the cochlear partition in man,
from its origin between the oval and round window to the helicotrema, is about
35 mm. The sensory surface of the cochlea is thus a long narrow ribbon, coiled
in spiral form, mounted on an elastic membrane, between two fluid-filled
channels. This membrane is moved by the fluid which is driven acoustically at
the oval window by the stapes.

The Organ of Corti

1_ae organ of Lorti occupies the cochlear duct between the scala
vestibuli and the scala tympani (see figure 14-2a). The cochlear duct is
bounded by the thin vestibular (Reissners') membrane and the basilar
membrane on which the organ of Corti is situated. The organ of Corti,
otherwise known as the acoustic papilla, consists of hair cells, supporting
structures, and nerve endings, the hair cells being the sound sensitive

elen, ents (figure 14-2b).

i_.e orgar, of Corti is divided by one variety of the supportive elements, the
inner and outer pillar cells, which slant toward each other to meet at the free
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surface, forming a triangular space, the tunnel of Cortl On the medial

(modiolar) side of this, the inner hair cells are situated, and on the outer side are

the three rows of outer hair cells. The pillar cells are stiffened by bundles of

tonofibrils. The outer hair cells reach the surface of the epithelium, but not the

base, being supported underneath and held in place above by the phalangeal cells

(also called Deiters' cells). Outside file outer tunnel is a solid bank of less

differentiated cells, the cells of Hensen. These gradually diminish in height to

merge with the cells of Claudius which form a simple epithelium merging, in

turn, with the stria vascularis at the side of the cochlear duct.

(a)

I,,,if -"
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_,_ ," , , I _ ',
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' I

(b)

Figure 14-2. A: Drawing of section through one turn of cochlea. B: Enlarged drawing
of section of acoustic papilla showing all essential parts. (From Rasmussen, 1943)
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Medial to the inner hair cells is a comparable, though more abrupt, bank of
cells which are called border cells, and which diminish rapidly to a simple
epithelium composed of cuboidal cells comparable to the cells of Claudius,
covering the surface of the limbus spiralis. The limbus has a projection, the
tectorial membrane, an acellular organ which extends outward, covering, and in
contact with, the hairs of the hair cells.

The structure of the organ of Corti might be summed up as being an
organization in which the hair cells are suspended in a fluid-filled space

supported by their accessory cells, sitting on a membrane (basilar membrane)
which is capable of passive movement, and covered by a membrane (tectorial
membrane) which is capable of exerting a shearing action on the tips of the hairs
upon such movement. The space in which the hair cells hang is open throughout

the length of the organ of Corti. It is filled with a fluid, the cortilymph, and it is
covered top and bottom by the surfaces of hair cells and phalangeal cells, and by
the basilar membrane. This is significant because the electric potential of the

endolymph within the cochlear duct, according to Davis (1959), has been
determined to be +80 relative to the cortilymph, which is -70, which means
about a 150 mV differential.

The organ of Corti is the organ by which the complex sound waves are
analyzed into their component frequencies. A mechanical disturbance beginning
at the oval window becomes a wave which moves from the base to the apex of
the cochlea along the basilar membrane. This in turn moves the entire acoustic
papilla in such a way that a shearing force is exerted on the hairs by their motion
against the tectorial membrane. In some way, this is translated into excitation of
the hair cells, which is transmitted to the nerve endings at the base of the cells,
and transmission of what are now no longer mechanical, but electrical impulses
to the brain.

The Basilar Membrane

The basilar membrane (figure 14-2b) has distinct properties which enable it
to participate in the analysis of complex sounds. First, the membrane is much
wider at the apex titan at the base, the ratio being between five-fold and
eight-fold in man (Wever, 1949). This characteristic is related to the fact that the
membrane is a low-pass filter, permitting low frequency ._unds to travel further
along than high frequency sounds. The question of how sound waves move along
the membrane was once thought to be explained by a theory that suggested that
the entire membrane resonated. This theory presupposed that the membrane was
under tension, which has been proven not to bc the case. The membrane does,

however, vary in stiffness along its length, and is about one hundred times stiffer
at the basal than at the apical end (Bekesy, 1947). This characteristic is the one
primarily responsible for movement of energy waves.

Relying on mechanical models, Bekesy (1960) determined that when
periodic forces are applied to a system with a stiffness gradient, traveling waves
are generated. He had earlier demonstrated the existence of such waves in the
cochlea by stroboscopic illumination. Figure 14-3 shows the amplitude and
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phase relations of the vibrating membrane at various points. At low frequencies,
the membrane vibrates in phase. At higher frequencies, the rate of change in
phase increases with distance. The result is a wave train of several cycles. Also as
frequency is increased, the amphtudc envelope, described by the dotted lines in
f'gure 14-3, moves toward the basal end of the basilar membrane.

Figure 14--3. Successive positions of the _raveling wave along the basilar membrane. The
dotted envelope shows the maximum amplitude of vibration at each point. (From Whitfield,
1967; after Bekesy, 1953)

One final point should be made concerning propagation of waves along the
basilar membrane. Although the waves always travel from the base to the apex,
this property is independent of the direction of the mechanical driving force. If
this were not the case, conduction of sound through the bones of the skull,

bypassing the stapes entirely, would not be possible. The driving force results
from pressure changes in the fluid surrounding the cochlear duct; it is not
provided directly by movement of the stapes. This has been confirmed
experimentally by Wever and Lawrence (1954); however, since the time of

transmission of waves along the entire length of the cochlea is only 10 to
20 msec, an) pressure is applied almost simultaneously to all points along the
length of the membrane, setting a considerable fraction of the membrane in
motion.

Hair Cells

The ear converts sound waves to nerve impulses. It is relatively clear how
sound waves become mechanical vibrations of the basilar membrane and that

nerve impulses are generated in the cochlear nerve. The transducer mechanism
involves the hair ceils of the organ of Corti, but how it does so is a more difficult

question. These cells are illustrated diagrammatically in figure 14-2, as they
appear to the scanning microscope (figure 144), and when specimens have been
prepared by the surface specimen technique (Engstr6m, Ades, & Andersson,
1966) as seen in figure 14-5. The sensory cells are known as hair cells because of
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the tufts of stereocilia which extend from the free ends of the cells. The cilia are
embedded in the cuticle and make contact with the overlying rectorial
membrane. There are some 25 000 hair cells in the human ear (Guild, 1932)

which are arranged in a regular mosaic as a single row of inner hair cells and

three to five rows (the number increases toward the apical end of the cochlea) of
outer hair cells.

Figure 14-4. Scanning photomicrograph of a _gment ot organ of Corti of guinea pig,
IHC= inner hair cell row; OHC 1, 2, 3 = outer hair cell rows as numbered; PC = pillar
cells; D = Deiters' (phalangeal) cells.

Inner Hair Cells

The upper surface of the inner hair cell is bounded by a membrane with an
underlying cuticle in which the roots of the stereocilia are embedded. The
stereocilia have different lengths and form three or four slightly irregular lines.
Each inner hair cell is provided with a single basal body placed at the side of the
rows of stereocilia away from the modiolus. The inner hair cells have a

characteristic shape with a relatively slender upper portion terminating in
the cuticular plate, a bent neck and a thicker cell body containing the
nucleus. Thcy are slanted toward the tunnel of Corti (figure 14-2b).
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Figure 14-5. Surface preparation of organ of Corti of guinea pig.
Symbols as in Figure 14-4.

Outer Hair Cells

The outer hair cells form three regular rows. lhey slant inward, that is,
toward the modiolus, at an angle of 25 to 30 degrees (figure 14-2b). They
have a flat upper surface with a thick cuticle, a cylindrical body, and a
rounded base. It is customary to distinguish a cuticular, an infracuticular, a
supranuclear, and an infranuclear region. On their cuticular surfaces the cells
are provided with about 120stereocilia and one modified kinocilium
consisting only of the basal body. The stereocilia of the outer hair cell

form a regular W-pattern with a basal body located below the W
(figure 14-4). The angle between the outer ends of the W is wide (120 to
130 degrees) in the basal coil of the cochlea and narrows gradually to about
70 degrees in the apical coil. The rootlets of the stereocilia are inserted in
the cuticular plate which is thicker toward the modiolus and thinner toward

the basal body. Surrounding the basal body is a region where there is no
cuticular plate at all, but only a plasma membrane. The infracuticular region
contains many mitochondria and other organelles grouped around the basal

body. Among these structures are rounded granules containing osmiophilic
particles which increase in size in old animals and animals that have been

exposed to intense noise (EngstriSm, & Ades, 1960).
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Thecentralpart of thesupranuclearregionis ratherhomogeneousin
structurecontainingfew mitochondriaor cytoplasmicorganelles.The
nucleusis roundedor slightlyovoid in shape.The infranuclearregion
containslargegroupsof mitochondria.The baseof the hair cell is
surroundedby the cup-shapedDeiters'cellandby thenerveendings.The
cochlearsensorycellsareprovidedwith twokindsof nerveendingsat their
base.Onetypehasa centripetalor afferent,andtheothera centrifugalor
efferent,conductingproperty(figure14-6).Theafferentfibersformamajor
part of the acoustic nerve and consists of a large number of myelinated
fibers, their myelin sheaths being continuous with the myelin coating of the
spiral ganglion cells. This sheath continues along the peripheral dendrite of
the neuron to the region immediately below the medial attachment of the

basilar membrane where the myelin ends.

Each ganglion cell in the spiral ganglion is surrounded by a distinct
myelin coating. The myelin of the ganglion cell is much less regular than
that of the nerve. The myelin coating is externally bordered by the nuclear
region of the Schwann cell. After prolonged treatment with neomycin, the

ganglion cells demonstrate varying stages of degeneration and the myelin
and Schwann cells show a highly pathological structure with irregular myelin
folds and vacuolated mitoehondria. Similar severe destruction may also

occur after exposure to high intensity noise.

At the outer margin of the spiral osseous lamina the myelinated nerves
all shed their myelin sheaths within a very restricted zone. The Schwann

cell protoplasm follows the nerve fibers all the way to the basilar membrane
whereas the nerve fibers, surrounded only by their axolemma, penetrate the
basal layer and enter the organ of Corti where they run as unmyelinated
fibers.

/nnervationof Hair Cells

The afferent neurons of the auditory nerve are bipolar cells. They are
arranged in a long spiral ganglion parallel to the organ of Corti but within
the bony modiolus. The axon-like dendritic processes pass outward through
the sieve-like bony and fibrous habenula perforata into the organ of Corti.
They are myelinated up to the habenula. Some of them pass directly to the
inner hair cells, innervating the outer hair cells. There is a spiral bundle
under each row of outer hair cells. These fibers may then pass great
distances in the spiral bundle and innervate many outer hair cells. Thus
there is a great difference between the innervation of inner hair cells and
outer hair cells. The inner hair cells are innervated directly -- no fiber passes
to more than three to six cells and no cell is innervated by more than
three to six fibers. The outer hair ceils may be /nnervated by fibers which

pass for considerable distances under them, and great segments of outer hair
cells may be innervated by the same fiber. Each cell receives typically more
than one fiber.
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Figure 14-6. Electron photomicrogram of base of outer hair cell (OHC) wilh
two kinds of nerve endings, NE1 and NE2. Dc is a part of a Deiters' cell. (EngstriJm,
Ades, and Hawkins, 1965; used by permission of Academic Press, Inc. Copyright 1965
by Academic Press, Inc.)

In addition to the afferent fibers, an efferent olivo-cochlear bundle runs

lengthwise of the organ of Corti as the intraganglionic bundle within the

modiolus just peripheral to the spiral ganglion. These fibers end as highly

granulated endings on the base of the hair cells. Some of them may end as
well on afferent fibers. There are fewer of them than there are hair cells
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innervated, so that each one ends on many hair cells. They innervate

particularly the inner hair cells and the first row of outer hair cells. Their
function is not well known, but is tentatively assumed to be inhibitory.

A detailed explanation of the physiology of the central auditory
pathways is beyond the scope of this chapter. For additional information,
the reader is referred to the chapter entitled "Central Auditory
Mechanisms" in the Handbook of Physiology (Ades, 1959).

Transducer Mechanisms

The ear, as stated above, converts the mechanical energy of sound waves

to nerve impulses in the auditory nerve. It is clear that the basilar
membrane of the organ of Corti is displaced as a result of the force
imparted to the fluid in the inner ear by the action of the stapes moving in
and out at the oval window. It is also clear that nerve impulses are

discharged in the nerve endings surrounding the base of the hair cells. The
mechanism of stimulation of the hair cells is not known, although it is now

generally assumed that a shearing force is exerted by the tectorial
membrane on the stereocilia and that this somehow results in stimulation. It

may be because of the displacement imparted by the stereocilia to the basal
body, the residue of the kinocilium, which is all that remains on cochlear
hair cells (although a kinocilium is present on vestibular hair cells and fetal
cochlear hair cells).

The phenomena of electrical potentials associated with the cochlea
during stimulation and at rest are germane to this discussion, but not to the
main emphasis of this chapter. For the interested reader, they are summed
up in Davis' (1959) chapter in the ttandbook of Physiology.

Hearing Loss

Damage to or lesions of any one or several elements of the hearing
chain can result in reduced or complete loss of sensitivity to sounds of

various frequencies. This loss of sensitivity, referred to as threshold shift, is
treated in some detail in chapter 15. In this section we shall discuss some

of the physiological changes which accompany hearing loss. Loss of hearing
can be either temporary or permanent and is considered, practically
speaking, total when the threshold is 85 to 90 dB above normal.

Two broad types of hearing loss are generally identified. These are
conductive hearing loss and perceptive hearing loss. ltearing loss that is
hysterical in origin will not be treated here, since obviously there is no
question of demonstrable damage. Conductive hearing loss involves the
external ear, the tympanic membrane, and/or the auditory ossicles. Per-
ceptive or sensorineural hearing loss involves the organ of Corti or any one
of a number of sites along the auditory pathway, that is, the cochlear nerve
or the auditory centers of the brain. Figure 14-7 indicates the audibility
curve in man under ideal conditions (solid line) and under conditions
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(broken line) of audiometry. The threshold for feeling is also shown. At

sound pressure levels in excess of 130 or 140 dB, sensations in addition to
hearing are perceived. These can include discomfort, tickling, and, finally,
pain.
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Figure 14-7. Audibility curve in man, showing thresholds of feeling and hearing.
(After Licklider, 1951; reprinted from Naval Flight Surgeon's Manual, 1968)

Conductive Hearing Loss

Persons with pure conductive hearing loss have normal inner ears. The
hearing decrement in these instances results from the fact that sound cannot

reach the cochlea for one reason or another. The abnormality may be in:

1. the external canal

2. the car drum

3. the middle ear bones, including the footplate of the stapes.

Hearing loss can result from obstruction of the auditory canal. The
canal may be impacted with wax or foreign bodies or be swollen during
infection, In the case of a birth defect, the external ear may be dosed or
the canal missing entirely. Damage to the drum by blast injury, for
example, causes hearing loss either by perforation or scarring. Repeated
middle ear infections also leave the drum scarred or perforated.

Hearing loss related to the bones of the middle ear _ the most common type of
conductive hearing loss. Figure 14-8 shows heating loss in otosclerosis. In this
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hereditary defect, the footplate of the stapes may become progressively

fixed. If the disease is purely conductive and does not involve sensorineural

elements as well, heating can be improved by surgery.
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Figure 14-8. Audiogram of otoselero_s. Fixation of the stapes is nearly complete. (From
DeWeese, D. D., & Saunders, W. H. Textbook of Otolaryngology (3rd ed.) St. Louis: C. V.
Mosby Co., 1968)

The conductive apparatus of the ear is equipped with a feature that

provides a limited amount of protection from prolonged intense noise. The

mechanism is called the stapedial reflex. Two muscles, one attached to the

malleus and the other to the stapes, act synergistically to limit rite amount

of stimulation reaching the inner ear. The muscles contract, after a brief

latency, in response to loud sound. It is, at best, poor protection.

Finally, conductive hearing loss can never be total since sound can

bypass the middle ear entirely and be conducted to the inner ear through
the bones of the skull.

Sensorineural Hearing Loss

Sensorineural hearing loss is caused primarily by loss of hair cells or acoustic

ganglion cells or both. It may be caused by lesions to the central auditory

pathway also, although this is an unlikely cause due to the fact that

beyond the first synapse the pathway is essentially doubled, with elements

487-858 0 - 73 - 44
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for both ears ascending in right and left tracts. Unlike conductive loss,
sensorineural loss can be complete.

Sensorineural loss comes about by a variety of agencies or events. These
include hereditary and congenital conditions, disease, drug toxicity,
presbycusis, and exposure to noise. Of these, the latter may well be far and
away the greatest single cause. It may, indeed, include "presbycusis."
Sensorineural hearing loss affects high frequency perception primarily, with
ultimate progression t'o lower frequencies. Figure 14-9 is an audiogram
showing heating loss characteristic of the gradual degenerative process in
"presbycusis." High tones are lost first.
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Figure 14-9. Audiogram of profound sensorineural hearing loss. (From DeWeese, D. D., &
Saunders, W. H. Textbook of Otolaryngology (3rd ed.) St. Louis: C. V. Mosby Co.,
1968)

When the human ear is exposed to excessively loud sounds, it shows a
loss of .acuity to sound, that is, a rise in threshold. This is called
"temporary threshold shift," and it will return to normal over a time
regulated by the parameters of the sound causing it. If the sound is
repeated, the return to normal may be less than complete and this may
progress with repeated exposure, the residual hearing loss being designated
as "permanent threshold shift." We presume that this is due to loss of hair
cells in the organ of Corti.

There is reason to believe that repetition of exposure over many years causes
a gradual loss of hair cells, and consequent loss of hearing. This is known as
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boilermakers' disease, a tribute to a bygone profession, the like of which is
reduplicated many times over in modem industry. The same thing has been
noted to occur among individuals who have engaged in frequent small arms fire,

such as soldiers, persistent hunters, skeet shooters, and the like. Significantly,
Bredberg (1968) found many examples of a similar affliction in his review of a
large number of elderly cases whose ears he examined at autopsy. Although he
had relatively few whose noise-exposure history was known, there were enough
to create the definite suspicion that he was dealing with chronic acoustic trauma
rather than merely the ravages of age.

Effects of High Intensity Pure Tones

Total or partial deafness can result from damage to the hair cells of the
cochlea. It is widely believed that there is a relationship between tonal frequency
and position on the cochlear partition at which it vibrates with maximum
amplitude. This vibration, if great enough, is believed to cause mechanical injury
to hair cells. Further, it is believed that there is an approximately inverse relation
between the logarithm of frequency and the distance from the base of the
cochlea with relation to the site of damage. Greenwood's function is probably
the best available expression for this relationship. It may be stated as follows:

f = 253(100A°5x -1)

Since stress equals mass times acceleration per unit area, and the mass of the
cochlear partition is thought to be the same over its entire length (Schuknecht &
Tonndorf, 1960), the stress on any segment of the cochlear partition duriug
displacement will be directly proportional to its acceleration. Since acceleration

varies directly with frequency, high frequencies will produce greater stress in the
region of maximum amplitude than do lower frequencies. High frequencies
should, therefore, cause greater hair cell damage.

In addition to mechanical stress, it is thought that prolonged exposure to
acoustic stimuli damages the hair cells by exhausting cytochemical or enzymatic

materials in the cells (Beagley, 1965; Engstrtm & Ades, 1960). Outer hair cells
are more sensitive to this type of destruction.

Recently, Stockwell, Ades, and EngstrOm (1969) studied the effects of high
intensity noise (130 to 150 dB) on the hair cells of the guinea pig cochlea, which
is similar in all important respects to the human cochlea. Various aspects of both
the mechanical and chemical theories of hair cell destruction were investigated as
were the relationship between exposure frequency and the site of hair cell
damage and the effects of exposure time on damage. Table 14-1 shows the plan
of exposure for the animals in this experiment.

The study reconfirmed that maximum damage bears some relation to
exposure frequency, but as frequency increases, the position of maximum
damage tends to move in the basalward direction. Figure 14-10 shows mean
damage curves for animals exposed to 130 dB. (The arrows indicate the position
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of maximum stimulation for exposure frequency calculated with Greenwood 's

formula.) Figure 14-11 shows mean damage curves for 150 dB exposures. These

indicate that inner hair cell damage is complete after 1 hour, but outer hair cell

damage increases between 1 and 4 hours.

Table 14-1

Plan of Exposures

Frequency

4000 Hz

2000 Hz

1000 Hz

500 Hz

125 Hz

2000 Hz

1000 Hz

125 Hz

Exposure Duration

1 Hour I 4 Hours
l

t

16 ears/10 animals

2 ears/1 animal

4 ears/2 animals

6 ears/3 animals

4 ears/2 animals

130 dB

150 dB

8 ears/4 animals

6 ears/3 animals

6 ears�3 animals

4 ears/2 animals

4 ears/2 animals 2 ears/1 animal

1 ear 2 ears/1 animal

18 ears/9 animals 1 ear

(From Stockwetl, Ades,& Engstr_m, 1969)

These results suggest that at higher frequencies, mechanical stress is the

important mechanism of hair cell damage; furthermore, outer hair cells are more

affected than inner hair cells. At lower frequencies, the same sound pressure

levels produce less mechanical stress, so hair cell damage may result from

gradually accumulating effects of stimulation, that is, enzyme exhaustion. Outer

hair cells also appear to be more sensitive than inner hair cells to this latter type

of damage.

Effect of Impulse Noise

Impulse noise (see also chapter 15) is the type of noise produced, for

example, by small arms fire and certain children's toys, notably cap pistols. This

type of noise, considered dangerous when it exceeds 140 dB at a distance of less

than 20 cm (NAS, 1965), produces mechanical destruction of hair cells

comparable in severity to that produced by prolonged exposure to high intensity

pure tones. Figure 14-12 shows hair cell damage demonstrated by Poche,

Stoekwell, and Ades (1969) in a guinea pig exposed to impulse noise and one

exposed to pure tone. Distribution of damage along the organ of Corti is
indicated. Table 14-2 indicates overall hair cell damage. The figure shows

considerable variation in susceptibility to damage. [n ears that did sustain

damage in this study, outer hair cells (OHC) were more susceptible than inner
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hair cells (IHC) (a finding one might expect when the mechanism of damage is
mechanical stress). When damage due to cap gun exposure is plotted against
damage caused by pure tone noise (figure 14-13), it is clear that cap gun
exposures produce damage equal in severity to a 4-hour exposure to 2000 Hz
tone of 125 to 130 dB.
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Figure 14-10. Mean damage curves for groups exposed to 130 dB SPL. The small arrow
above each curve indicates the position of maximum stimulation for the exposure

frequency. (Stockwell, Ades, & Engstf6m, 1969; reprinted by permission of the Annals of
Otology, Rhinology, and Laryngology)

The scanning electron microscope has been a further blessing for the study
of the structure of the ear. For example, this device has made it possible to see
changes in the surfaces of hair cells not visible by other means. We have observed
the hair cells of the cochlea alongside a serious lesion, that is, one in which the
acoustic papilla had been reduced to a simple epithelium (figure 14-14). On
either side of the lesion, numbers of hair cells are distorted in that the hairs are
fused, overgrown, or both (figure 14-15). It is not known to what extent these
cells are functional, but it seems probable that they are not, inasmuch as the
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damage to hearing is considerably wider in terms of frequency than would be

true if only the cells visibly damaged in surface specimen (Engstr_m, Ades, &

Andersso,, 1966) were functionally impaired. This then, would represent an

intermediate stage of damage in which the hair cell was not completely

destroyed, but was functionally impaired while retaining its viability.
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Figure 14 It. Mean damage curves for groups exposed to I50dB SPL. The smM! arrow
above each curve indicates the position of maximum stimulation for the exposure
frequency. (Stockwell, Aries, & Engstr_m, 1969; reprinted by permission of the Annals of

Otology, Rhinology, and Laryngology)

It is important to note that in these experiments, among the methods

of light/phase contrast, electron, and scanning electron microscopy, each has

its place in the study of the pathological cochlea, and none will stand

alone. Similarly, in the study of the noise-damaged cochlea, it is imperative

that each cell be seen in its proper place in relation to the other hair cells,

for otherwise, it is impossible to observe all the damage and relate it

appropriately to the intact regions.
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Figure 14-12• Percent hair-cell damage plotted as a function of distance from basal end of

the organ of Corti. (a) Left ear of an animal exposed to 500 rounds of cap-gun fire at

30 cm. (b) Right ear of an animal exposed for 4 hours to a 2000-Hz tone at 130 dB.

(Poche, Stoekwell, & Ades, 1969)
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Table 14-2

Overall Hair Cell Damage (Percent) in Ears From Unexposed Animals

and From Animals Exposed to 500 Rounds of Cap-gun Fire

Maximum

Minimum

Mean

Maximum

Minimum

Mean

IHC OHC 1 OHC 2 OHC 3

0.73

0.00

0.29

33.04

0.05

10.37

Normals 12 ears)

1.39 2.11

0.19 0.33

0.58 1.21

Cap Gun (27 ears)

55.19 56.84

0.23 0.93

17.80 18.86

3.30

2,40

3.08

54.18

2.53

21.50

(From Poche, Stockwell, & Ades, 1969)
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OC

Figure 14-14. Scanning electron micrograph of one-quarter turn of cochlea of guinea pig
exposed to 4000 Hz. MO = modiolus_ OC = organ of Corti; TM = rectorial membranc_ lcston
between arrows. Note abruj_t character of lesion, and simple epithelium replacing acoustic
papina. (breaberg, Acles, & Engstrfm, in press)

Figure 14-15. Highly magnified scanning electron micrograph of ten outer hair cells of
gmn"ea pig, showing abnormal stereocilia. Arrow points to a giant stereoeilia. Other cells
show varying degrees of abnormality. (Bredberg, Ades, Engstr_m, in press)
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CHAPTER I5

NOISE AND BLAST

by

David C. Hodge, Ph.D.

and

Georges R. Garinther

Aberdeen Proving Ground

Noise and blast problems may occur in all phases of aerospace activities.
Tremendous quantities of acoustical energy are developed by rocket engines on
the launch pad and during lift-off, and this may affect ground personnel as well
as the crew on board the space vehicle. As payloads become larger and boosters
increase in size and power, significant increases in noise and blast problems may
be expected. Noise from equipment used in assembling and static testing of
'boosters and payloads may adversely affect ground-support personnel. In
mission-control centers, noise from computers and monitoring devices may
interfere with voice communications. Current evidence suggests that noise and
blast problems in future space operations may be more severe at ground-service
crew locations and in nearby communities than in the space vehicles themselves.
However, control of noise levels inside spacecraft will still require consideration
in assessing the likelihood of mission success.

The most significant effects of noise and blast on man are damage to hearing,
masking of speech and warning signals, and annoyance. In addition, noise
interferes with some of man's sensory and perceptual capabilities and thereby
may degrade critical task performance. Noise also produces temporary or
permanent alterations in body chemistry.

This chapter describes the noise and blast environment. It provides a
definition'of units and techniques of noise measurement and gives representative
booster-launch and spacecraft noise data. It reviews the effects of noise on
hearing sensitivity and performance and discusses briefly community response to
noise exposure. Physiological, or nonauditory, effects of noise exposure are also

Reviewed by Henning E. yon Gierke
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treated,asaredesigncriteriaandmethodsfor minimizingthe effectsof
noiseonhearingsensitivityandoncommunications.Thereferencescitedin
thischapterrelateprimarilyto researchconductedduringthepast10years
in theUnitedStatesandseveralforeigncountries.

Descriptionof the Noise and Blast Environment

Definitions and Units

Airborne sound refers to a rapid variation in ambient atmospheric
pressure. By definition, noise is unwanted sound. Steady-state noise is a
periodic or random variation in atmospheric pressure which has a duration

in excess of lO00milliseconds. Impulse noise is a nonperiodic variation in
atmospheric pressure which has a duration of less than lO00msec, and a
peak to root-mean-square (RMS) ratio greater than 10 decibels (dB). Blast is

an anomalous term, but is most frequently used to describe very' large
amplitude and/or long duration pressure waves accompanying tile discharge
of large-caliber w¢_apons, the ignition of rocket motors, or the detonation of
conventional and nuclear explosives. Taken together, sound, noisc, and blast
all refer to airborne acoustical phenomena whose energy may be described
both in terms of their physical characteristics (amplitude, frequency content,
and/or duration)and their effects on man's physiology and behavior.

Amplitude The amplitude of sound at any given point is expressed as
sound-pressure level (SPL). Its physical unit is the decibel which is given as:

SPL = 20 log (P/Po) in dB

wbere p = the sound pressure being measured; and Po =a reference
pressure, usually 20 mieronewtons per square meter (/aN/m2). The reference
pressure of 20/.tN/m 2 is approximately equal to thc lowest pressure which a

young person with normal hearing can barely detect at a frequency of
1000 llertz (Hz). Other measures of sound pressure may be encountered in
the literature, such as dynes per _uare centimeter (dyn/cm2), microbar
(_bar) and pounds per square inch (psi). Table 15-1 shows the relationship
[_tween t\_ur such measures.

Common examples of representative SPL include:

A business office 50 dB

Speech at 3 feet 65
Subway at 20 feet 95
Jet aircraft at 35 feet 130

Atlas launch at 150 feet 150

On gantry during Saturn V launch 172.
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Table 15-1

Relationship Between Decibels, Newtons/Meter 2,
. .x-

Mlcrobar , and Pounds/Inch 2

dB

0

14

34

54

74

94

114

134

154

174

NIm 2

0.00002

0.0001

0.001

O.01

0.1

1

10

100

1000

10000

_bar PSI

0.0002 2.94 X 10 -9

0.001 14.70 X 10 -9

0.01 147.0 X 10-9

0.1 1.47 X 10-6

1 14.70 X 10-6

10 147.0 X 10 -6

100 1.47 X 10 -3

1000 14.70 X 10 -3

10000 147.0 X 10 -3

100000 1A7

*Also note that 1 #bar = 1 dyn/cm 2.

Velocity. The speed of sound is dependent only upon the absolute

temperature of the air, assuming that air behaves as an ideal gas. The equation

for the speed of sound (C) in meters per second is:

C = 20.05 _ m/sec

where T is the absolute temperature in degrees Kelvin (273.2 ° plus the

temperature in degrees Centigrade). Thus the speed of sound at 21.1 ° C is about

344 m/sec.

In English units:

C = 49.03 V/-ff ft/sec

where R is the temperature in degrees Rankine (459.7 ° plus the temperature in

degrees Fahrenheit). Again, at 70°F, the speed of sound is about 1128 ft/sec.

Wavelength. The wavelength (X) of a sound is the distance the wave travels

during one period or cycle. It is related to the speed of sound and to frequency

by the equation:
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where c = speed of sound (m/se'c or ft/sec), and f -- frequency (Hz). For
example, during one period a 100 tlz wave would move 3.44 meters or 11.3 feet
at 70°F (21.1°C). It is helpful to keep in mind that as frequency increases,
wavelength becomes shorter.

Frequency. The unit of frequency is Hertz (Hz) or cycles per second (cps).
Nominally, the range of aurally detectable sounds is 20 to 20,000 Hz. Pressure

oscillations at frequencies above this range are called ultrasonic. These
frequencies cannot normally be heard by man but they do produce some
biological effects and will be discussed in a later section. The effects of

infrasonic frequencies (<20Hz) will also be discussed briefly. The terms
supersonic and subsonic, which are related to the speed of sound, should not be
confused with those terms which describe frequency range.

When describing sound, noise or blast, it is not sufficient to.measure only the
overall SPL. The noise must also be analyzed to determine how the sound energy
is distributed over the frequency range. A noise is usually analyzed by passing it
through a constant-percentage bandwidth filter, such as an octave-band analyzer,
in which each passband has upper and lower limiting frequencies having a ratio
of 2:1. All octave-band analysis is usually sufficient to determine the effect of
steady-state noise upon humans and the surrounding community. A 1/3-octave
(or narrower) analysis is required when it is desired to localize which component
in a system is the major contributor to a noise problem, or if the noise contains a
pronounced narrow-band frequency component.

The preferred series of octave bands for acoustical measurements are

identified as multiples and submultiples of 1000 Hz which describe the center
frequency of each band. Another series of octave bands which has been widely
used in the past are the commercial octave bands. These are normally described
by their band-limiting frequencies.

Another type of frequency analysis which is gaining importance is the
"weighting network" which is included in all sound-level meters which meet the

requirements of the current American National Standards Institute's (ANSI)
specification for sound level meters (ANSI, 1971). The weighting networks
consist of three alternate frequency response characteristics, designated A-, B-,
and C-weighting. Whenever one of these networks is used, the reading obtained
must be identified properly. For instance, if an A-weighted sound pressure level
of 90 is obtained, it would be reported as 90 dBA. The A-weighting network is
particularly valuable if a quick estimate of the interference of noise upon speech
is required (Klumpp & Webster, 1963). Also there has been a recent movement
toward using the A-weighting network for evaluating the hearing hazard of
steady-state noise when it is not possible or practical to perform a complete
octave-band analysis (Botsford, 1967).

Definitions Peculiar to Impulse Noise and Blast.

Peak Pressure is the highest pressure achieved, expressed in dB re
20/aN/m2, or in psi.
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Rise Time is the time taken for the single pressure fluctuation that forms
the initial or principal positive peak to increase from ambient pressure to the
peak pressure level.

Pressure Wave Duration (A-_D_ is the time required for the
pressure to rise to its initial or principal positive peak and return momentarily to
ambient pressure.

Pressure Envelope Duration (B-Duration) is the total time that the
envelope of pressure fluctuations (positive and negative) is within 20 dB of the
peak pressure level. Included in this time would be the duration of that part of
any reflection pattern that is within 20 dB of the peak pressure level.

Psychological Terms. The measures of loudness are the phon and the sonc.
Sones are obtained by a conversion of eight octave bands into sones from an

appropriate table. The phon is merely a transformation of the sone into a
logarithmic scale. Sounds that are perceived as equally loud to the human ear
will have the same sone or phon value. The mel is used as a subjective measure of
the pitch differences in frequency between sounds.

Propagation of Sound

In an ideal, homogeneous, loss-free atmosphere SPL decreases, through
spherical divergence, inversely with distance in the far field. That is, there is a
6 dB decrease in SPL for each doubling of distance from the source. In addition,
when sound travels through still, homogeneous air, a significant amount of
energy is extracted through "molecular absorption" which is related to the
relaxation behavior of the oxygen molecules. This excess attenuation depends
not only on frequency, but also on temperature and humidity and is in addition
to losses resulting from spherical divergence. Figure 15-1 shows engineering
estimates of excess attenuation as a function of distance and frequency for air
temperatures ranging from 0 ° to lO0°F and over a relative humidity range from
10 to 90 percent. Data are given for the preferred octave bands ranging from
500 to 8000 Hz. While there is some absorption in the lower bands, it can

usually be neglected. A more complete discussion of atmospheric absorption is
provided by the Society of Automotive Engineers (SAE) (1964).

In certain cases "classical ab_rption" should also be considered. Classical
absorption is proportional to the frequency squared, is independent of humidity,
and its effects typically are much less than those of molecular absorption
(Nyborg & Mintzer, 1955).

In addition to the preceding, the refraction of sound waves produced by
meteorological conditions between the earth's surface and altitudes of 3 to
5 kilometers must be considered. This phenomenon may cause sound waves
produced at or near the surface of the earth to be focused near residential areas
adjacent to rocket launch sites (Perkins et al., 1960). This refraction is due to
changes in velocity of sound with altitude, and it is caused by variations in
temperature, humidity and wind with altitude. The SPL for various refraction

487-858 (9 - 73 - 45
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conditions and their focal points may be calculated by a modified ray acoustic
method if the directivity characteristics of the source are known. Experience has
shown, though, that quite often the effects of refraction and focusing do not
occur and the SPL approaches that predicted for a homogeneous medium.

Although those conditions causing focusing do sometimes occur in the Cape
Kennedy area, they are not prevalent (Chenoweth & Smith, 1961).

Noise Measurement.

The basic measuring system for evaluating the physical characteristics of
noise to relate them to their effect on man consists of the following elements:

1. transducer (microphone)

2. electronic amplifier and calibrated attenuator

3. data storage

4. octave-band analyzer

5. read-out.

The ci_oice of instrumentation for a particular situation must be based upon a

knowledge of the limitations and capabilities of the various types of
instrumentation available. Normally, the weakest item of a measuring system is
the transducer (microphone). Most of the discussion will, therefore, center
around tile selection of transducers and the techniques to be used in measuring

steady-state and impulse noise. The associated equipment will naturally require
characteristics which are as good as, or better than, those of the microphone
selected.

Steady-State Noise. Microphones are available in a variety of sensitivities.
When very" low noise Levels are to be measured, the minimum SPL to which a
micropilone can respond should be the determining factor in seicction. It must
also be ascertained that the self-noise of the microphone (and the entire

measuring system for that matter) is at least 10 dB below the noise that is to be
measured in each octave band of interest. On the other hand, for measuring

high-level noises such as those produced by rocket engines, the choice of
microphone to be used will be linfited by the maximum SPL to which the
microphone can respond without excessive distortion or failure. After the
preceding two considerations have narrowed the selection, the microphone that
should be selected is the one having the smoothest frequency response over the

range of interest.

The frequency response of most microphones varies with the direction of
arrival of the sound wave. At low frequencies (below 1 kHz), where the size of

the microphone is small in relation to the wavelength of sound, microphones are
omnidirectional. However, at higher frequencies the direction in which the

microphone is pointed, or its incidence angle s , must be carefully considered.

_The incidence angle for most microphones is that angle subtended between its longitudinal
axis and a line drawn between the noise source and the microphone.



700 Bioastronautics Data Book

The manufacturer's specifications should be consulted to obtain the incidence

angle which provides the smoothest possible frequency response.

If a moving noise source is to be measured, a microphone which has its best
response at 0 ° (normal) incidence should not be used since the measured
spectrum will change with noise-source location. Therefore, in this case, it would

be desirable to select a microphone with good response at 90 ° (grazing)
incidence and to position it so the moving noise source is always at 90 °
incidence to the microphone.

Impulse Noise and Blast. The measurement of impulse noise presents several
problems which must be discussed separately. The principal limitations in the
measurement of impulse noise lie in the ability of the transducer and its
associated equipment to respond to the pressure pulse accurately (Garinther &
Moreland, 1965; Coles & Rice, 1966). The minimum qualities of the transducers
and associated equipment for such measurements are:

1. A good phase response.

2. A uniform amplitude response characteristic over a wide frequency range.
[A bandwidth of from 100 Hz to 70 kHz is adequate for measuring most short
duration impulses such as from small arms, but longer duration impulses such as
from large caliber weapons and sonic booms require an extension of the low
frequency response, and may permit relaxation of the upper limit (Crocker,
1966).1

3. Less than 1.5 dB ringing and overshoot at the pressure being measured
(ringing should be completely damped after 100/.tsec).

4. Rise time capability of 10 #sec or less at the pressure being measured.

5. Sufficient robustness to withstand damage from the pressure pulse being
measured.

6. Mounting of all apparatus to eliminate microphonics.

7. Sufficient sensitivity to allow a signal-to-noise ratio of 25 dB or greater.

8. Minimum drift caused by temperature instability.

The angle of microphone incidence is even more important for measuring
impulse noise than for measuring steady-state noise. Garinther and Moreland
(1965) have shown that at 0 ° (normal) incidence, the measured peak pressure
level of various microphones may differ by as much as 10 dB. Since the peak
readings obtained from various microphones should theoretically be, and were in
fact found to be, in good agreement at 90 ° incidence, the transducer should be
oriented for impulse-noise measurements at an angle of 90 ° (grazing incidence)
between the longitudinal axis of the transducer and the direction of travel of the
pressure pulse or shock wave.

With the transducer positioned at grazing incidence, rise-time characteristics

will be affected by the transit time of the wave across the sensing dement.
Therefore, it is necessary that the transducer selected have a sensitive diameter
of about 4mm or less.
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Twoprecautionsmustbestatedregardingthemeasurementandanalysis
of short-durationimpulsenoise.First, great caremust be taken in
interpretingtheresultsof a frequencyanalysis.[Pease(1967)haspublished
a computerprogramfor spectrumanalysisof impulsenoises.]Second,in
tape recordingimpulsenoiseit hasbeenfound necessaryto useFM
recordingequipment."Direct"(AM)taperecordingproducesphaseshiftof
frequencyvs.time whichdistortsthe pressure-timehistoryof animpulse
noise.

Prediction of Launch Noise

The primary sources which must be considered in assessing mission-
associated noises are: (1)static and preflight tests, (2)launch, and
(3) flight operations. Consideration must be given to how each of these
phases of propulsion system noise affects the crew, ground-support
personnel, and the surrounding community.

In addition to the propulsion system, noise generated within the
command module must be carefully assessed with regard to its long-term
effects upon the crew. In space, the only sources which need to be
considered are those generating noise within the capsule and any structure-
borne noise.

The potential noise environment should be defined as early as possible
in the development of a system. Techniques are available for predicting
from a knowledge of certain parameters the sound spectrum of a propulsion
system. These have been shown to be accurate to within a few decibels. A
brief discussion of these follows, but the reader should consult Wilhold et

al. (1970) to obtain an understanding of the computations.

The area surrounding the rocket must be divided into three regions to
be properly analysed. In the acoustic near field (within 1 X) no accurate
predictive technique exists. The second region is the mid-field (3-5X). Here
it is possible to calculate a dimensionless spectrum function and source
position which is dependent upon frequency, using techniques outlined in
Dyer (1958). From these, and the known parameters of the propulsion
system, the acoustic environment may be determined. The far field of the
noise produced by the launch of a rocket is the area with which we are
most concerned in dealing with the effects of noise upon man. The
predictive method for this region is quite involved and is described in detail

by Wilhold et al. (1963). Excess attenuation and meteorological effects
described in an earlier section must, if appropriate, be included in
computation. This technique has proven to be very accurate in predicting
the band pressure levels of several rocket systems.

The acoustic environment of advanced Saturn V vehicles has been

calculated for strap-on configurations having 13.1 million and 32million
pounds of thrust (Wilhold et al., 1970). These are shown in figures 15-2
through 15-5.
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Apollo Launch Noise

Detailed measurements of Apollo launch noise have been made at many

positions in and around Cape Kennedy Launch Complex 39A. The range of
octave-band SPL around the vehicle at a distance of 400 meters is shown in

table 15-2. Also shown are the maximum levels achieved on the side of the

gantry closest to the rocket 10 m above ground.

Table 15-2

Octave Band Pressure Levels Around an Apollo Launch

at a Distance of 400 Meters and on the Gantry 10 Meters Above Ground

Center Frequency (Hz)

16

31

63

125

250

50O

1000

20OO

4000

800O

*re 20 #N/m 2.

Sound Pressure Level (dB)*

(J.F. Kennedy Space Center, 1969a)

At 400 Meters

122 -- 143

136 --155

141 -- 157

136 -- 158

135 -- 158

130 --152

129 -- 149

127 -- 146

125 -- 142

120 - 139

116 --138

118 -- 136

110 --131

On the Gantry

158

163

162

159

159

164

166

168

164

161

158

156

152

The SPL to which the Apollo astronauts are exposed remains above

85 dB for about 80seconds during liftoff (French, 1967). The maximum

SPL achieved at the crew position is shown in table 15-3. Since the crew

will be wearing helmets and space suits during launch, a conservative

estimate of the actual SPL at the ear is also shown in table 15-3.

It is important to note that the maximum SPL for the Apollo system

occurs at very low frequencies, below 100 Hz. This noise, which is produced

by the turbulent mixing of the booster propulsive flow with the

surrounding atmosphere, will continue to become higher in intensity, and

lower in frequency, as boosters increase in size and thrust. The very larg e

boosters, such as Nova, will probably produce their maximum noise energy

in the infrasonic region (below 20 Hz) (National Aeronautics and Space

Administration, Marshall Space Flight Center, 1961).
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Table 15--3

Sound l'ressure Level ill Crew Area and at Ear Position

of Apollo Astronauts at T + 60 Seconds

705

Center Frequency (Hz)

63

125

250

50O

1000

2000

Sound Pressure Level (dB)

Crew Area Ear Position

(French, 1967)

123

123

126

125

123

120

119

116

112

106

96

89

Low-frequency sounds must be measured accurately so research may be

continued on the effects of these sounds on man. ttearing protective

devices, such as helmets and circumaural muffs, provide their poorest

protection at low frequencies (discussed further in a later section), so

research must be continued on providing more efficient means of protecting

man from the possible damaging effects of low-frequency sound. Also, as

was discussed in the section on propagation of sound, low-frequency cnergy

is least affected by excess attenuation. Therefore, these are the frequencies

which are most likely to produce both physical and psychological effects in

the communities surrounding launch areas.

Spacecraft Noise Levels During Non-Powered Flight

Apollo crew compartment noi_ measurements are shown in figure 15-6

for non-powered flight. These data were acquired in the 2TV-I command

module which was used for combined thermal/vacuum tests at the NASA

Marshall Space Flight Center (MSFC) facility. Measurements were made with

the internal environment controlled by the spacecraft life support system,

and compartment pressure was maintained at about 5psia. During this

simulated flight, the interior noise sources included the glycol pumps, cabin

fans, suit compressors, B mags, inverters, and guidance and navigational

systems.

Effects of Noise and Blast on Hearing

This section treats the factors influencing the acquisition and recovery

of hearing loss for steady-state and impulse noise, and for blast (a special

case of impulse noise). A basic understanding of the anatomy, physiology

and functioning of the human auditory system is assumed. Readers not

possessing this background may find a preliminary reading of chapter 14

helpful.
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Types of Hearing Loss

The sensitivity of human hearing at a particular test frequency is
referred to as the threshold of audibility. Thresholds stated with reference
to standard criteria [such as ANSI-1951 or ISO-1964 audiometric zero

(International Standards Organization)] are called hearing levels re the
app,opriate reference level. When a loss of sensitivity is temporary, i.e., returns
to baseline after a suitable recovery interval, it is referred to as a temporary
threshold shift, or TTS. A loss of sensitivity which does not return to baseline is

called a permanent threshohl shift, PTS. TTS is usually measured at 2 minutes or
longer after exposure, and is referred to as TTS 2 min or, simply, TTS 2.

Relation Between TTS and PTS

Some relation is assumed to exist between TTS 2 experienced on a near-daily
basis and the likelihood of eventual accumulation of PTS. CItABA (Committee

on Hearing, Bioacoustics and Biomechanics) Working Group 46 (! 965) assumed

that 10 years of near-daily exposure would result in PTSI0 yr=TTS2 min- TTS
measures are widely used ill assessing noise effects on hearing because (1) TTS is
a valid measure of the temporary effects of noise exposure, and (2) TTS can

affect man's ability to perform tasks requiring maximum hearing sensitivity. In
fact, where life-or-death decisions rest on the acuteness of man's hearing, as in
astronauts' reception of speech signals, or in the perceiving of auditory warning
signals, prevention of excessive TTS is the most important consideration.
Absence of TTS may be responsible for saving a life or many lives. TTS will be
used here as the primary indieant of noise effects on hearing threshold

sensitivity.

Susceptibility to TTS

The concept of susceptibility refers jointly to the fact that for a given noise

exposure, different ears demonstratc varying amounts of TTS, and for a given
_mple of cars, difh_rent noise conditions may produce varying distributions of
TTS. Because of the unpredictable and uncontrollable variability in ears'
responses to noise--between days and among noise conditions--the possibili_ of
developing criteria for protecting specific ears from excessive TTS is at best slim
(Ward, 1968; l lodge & McCommons, 1966). As a result, criteria for determining
what constitutes hazardous vs. nonhazardous noise exposures are, in reality, a
form of actuarial or statistical tables in which tile responses of certain

proportions of noise-exposed populations are predicted.

Steady Sounds and Noise

Acquisition of TTS. The many factors influencing the acquisition of TTS
from steady sound and noise exposure have been reviewed by Ward (1963,

1969) and Nakamura (1964). Some of the salient aspects are summarized below.
When reading these, it should be kept in mind that the interaction of
variables is a most important consideration. The present discussion will be limited

primarily to TTS measured 2 minutes or longer after exposure.
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Stimulus Amplitude. TTS 2 increases linearly with average SPL over the

range of 75 to 120 dB and possibly higher. The difference between TTS

produced by 85- and 90-dB noise is about the same as the difference between

that produced by 90- and 95-dB SPL. This relationship is illustrated in

figure 15-7.
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Figure 15-7. TTS at 4 kHz as a function of SPL for exposure to octave band
of 2-4 kHz. Parameter is exposure time in minutes. (Shoji et al., 1966)

Exposure Frequency. For equal SPL in octave-bands of noise, low

frequencies present less hazard to the ear than higher frequencies up to 4 kHz.

This is due to the frequency-response characteristics of man's ear. Figure 15-8

illustrates the general relation between exposure frequency and TTS for octave
bands of noise.

Pure tones produce more TTS than corresponding octave bands of noise of

the same amplitude. Carter and Kryter (1962) showed that the overall level of an

octave band had to be about 5 dB higher than a pure tone at the octave center

frequency to produce an equal amount of TTS; this 5 dB correction was later

adopted for use in the CHABA (1965) steady-state noise damage-risk criterion.

Cohen and Bauman (1964), investigating TTS from broad-band noise,

showed that when pure tones below 2 kHz were present the combined tone and

noise condition produced more TTS than noise alone, even though the overall

SPLS for the two conditions were equated.

Jerger et al. (1966), and Alford et al. (1966) investigated TTS from

infrasonic tones, concluding that the most hazardous conditions were at or

above 141 dB SPL in the range of 10 to 12 Hz.
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Figure 15-8. Relation between exposure of frequency and TTS for octave bands of
noise: comparison of some iso-traumatic lines, all based on TTS. Within any one set of
data, the same exposure time or TTS criterion was used. (Plomp et al., 1963)

There is evidence that exposure to ultrasonic tones up to 120 dB SPL is

unlikely to produce TTS (Acton & Carson, 1967). No clear evidence exists
upon which to assess the effect of higher SPL.

Duration of Exposure. TTS 2 from steady noise grows linearly with
the logarithm of exposure time, as illustrated in figure 15-9. Most
experiments have involved relatively short exposures ( 8 hr), but Yuganov,

et al. (1967) have suggested that the rule is valid for exposure times of up
to 720 hours.

The effects of intermittent noise exposure have been reviewed by Ward

(1963, 1966) and Cohen and Jackson (1969), and others have compared the
effects of continuous and intermittent exposures. In general, intermittent

exposures produce less TTS than continuous exposures.

Test Frequency. TTS involves areas, not points, on the basilar
membrane (Ward, 1963). Thus, virtually ally type of tone or noise exposure
affects auditory thresholds at a range of test frequencies. For SPL above
60 dR, maximum TTS occurs at a frequency on the order of one-half to
one octave above the stimulating frequency for pure tones and bands of
noise. The relative TTS occurring at various frequencies with a broad-band

("white") noise exposure is shown in figure 15-10.

Preex_Dosure Hearing Level. The foregoing discussion has been based
almost entirely on ears with normal sensitivity. Impaired ears may
demonstrate different results. Ears with conductive hearing losses, for
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example, would be expected to show less TTS because less energy is
transmitted to the cochlea. Ears with pure sense organ losses should also
-show less TTS than normals, but this is due to their having less remaining
sensitivity to lose.
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Figure 15-9. TTS at 4 kHz from exposure to 2-4 kHz octave band noise.
Parameter is noise level in SPL. (Shoji et al., 1966)

Sex and Age. No systematic difference in TTS as a function of sex
and age have been reported (Ward et al., 1959b; Loeb & Fletcher, 1963),
nor have any systematic trends in TTS growth been reported solely as a
function of age. For a discussion of the PTS which normally accompanies
the aging process (presbycusis), see chapter 14.

Monaural vs. Binaural Exposure. Ward (1965) showed that monaural
exposures were accompanied in general by about 5dB more TTS than
binaural exposure to the same condition.

Recovery of TTS. When TTS2 does not exceed about 40 dB, and is

induced by relatively short exposures to continuous blocks of steady-state
noise, TTS recovers linearly in log time and occurs within a maximum of

16 to 48 hours (Ward, 1963; Smith & Loeb, 1969). Under these conditions
recovery rate is also independent of test frequency. The slope of the
recovery function may, however, vary as a function of the amount of
TTS 2. Representative recovery functions are shown in figure 15-11.
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Figure 15-10. Distribution of TTS resulting from 5-rain exposure to broad-band noise.
Parameter is amplitude in sensation level. (Nakamura, 1964)
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Since subsequent recovery is usually quite predictable once the value of

TTS 2 is known, generalized recovery functions can be developed for
TTSH4OdB. Such functions permit TTS measured at various times after

exposure to be converted backward or forward to TTS 2 for purposes of
direct comparison. Kryter (1963) published such a graph for converting
TTSt to TTS2 as shown in figure 15-12.

t-

a

TIME {sec}

/
/ '

J

i

Figure 15-12. Graph for conversion of TTS to TTS2 with TTS as the parameter.
Example: for TTS of 25 dB measured 500sec after exposure, add 10 dB to arrive at
TTS2 = 35 dB. Graph is based on exposure of subjects to continuous periods of steady-state
noise, and is probably invalid for application to TTS induced by other types of exposures.
(Krytcr, 1963)

When TTS is induced by exposures to steady noise longer than 8 hours,
or by intermittent noise, these generalized recovery functions are probably
invalid. Ward (1970) found that intermittent noise caused a significant
increase in recovery time, for equal TTS, and Yuganov et al. (1967) and
Mills et al. (1970) reported similar findings for exposures of 12to
720 hours.

As TTS 2 exceeds about 40 dB a change in the recovery function may
be noted. Recovery from high values of TTS is linear in time, rather than
hnear in log time, as illustrated in iigure 15-13.

Impulse Noise

An impulse may be defined as an aperiodic pressure phenomenon of less
than 1000 msec duration, having a fast rise time and a peak-to-RMS ratio greater
than 10 dB. Such a definition leaves much to be desired, including a 'gray' area

of pressure phenomena which may be considered either as long impulses or
short, steady sounds. Impulses are, however, characteristic of many working
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environments, and common examples.include the sound of gunfire, impact and

power-operated tools, drop forges, pile drivers, etc.
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Figure 15-13. (a) Average course of recovery at 3 and 4 kHz following exposure to
105 dB SPL 1.2-2.4 kHz noise whose duration was sufficient to produce 50 dB TTS 2. Time

is represented logarithmically. (b) Data repiotted in tern_ of time, rather than log time

(abscissa). (Ward, 1960)
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The literature on impulse noise effects has been reviewed by Ward (1963),
Chaillet et al. (1964), Coles et al. (1967, 1968), and Rice (1968). Some of the
more important findings are summarized below. As was the case with steady
noise, the interaction of variables is an extremely important consideration.

Acquisition of TTS..

Peak Pressure Level. The higher the peak pressure level, the greater is the
risk of TTS, other parameters being equal. This relation is illustrated in
figure 15-14 by data from the classic studies of Murray and Reid (1946), and in
figure 15-15 by data from Ward et ai. (1961). The peak pressure level where TTS
is first produced depends in part on other parameters such as impulse duration
or the number of impulses presented, as well as on individual susceptibility.

80

2O

170 _90180

PEAK PRESSURE LEVEL (dB re 20/zN/m 2)

Figure 15-14. TTS as a function of peak pressure level for ears exposed to 10 impulses
produced by various weapons. Notation "105 H" on abscissa indicates peak pressure level
found in crew area of a current Army howitzer. Graph underscores need for protection of
personnel exposed to high noise levels. (Murray & Reid, 1946)

Impulse Duration. Fletcher and Loeb (1967) have shown that, for a
peak level of 166 dB, 10 to 25 impulses of 92 psec duration had about the same
effect as 75 tto 100 impulses of 36 gsec duration. Similar results were later

obtained by the same investigators (1968). Acton et al. (1966) showed that
0.22 caliber rifles fired in the open (short duration) did not constitute a hazard

to hearing, whereas the same rifles fired in an indoor reverberant range (long
duration) did constitute a borderline hazard. The relation between impulse



Noise and Blast 715

duration and risk of TI_S is best described by reference to the CHABA

damage-risk criterion for impulse-noise exposure (discussed later).
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PEAK LEVEL OF CLICKS (dB re 20 /_ N/m 2)

Figure 15-15. TTS at 4 kHz as a function of peak level of clicks. Upper curve: 3 n_dn
exposure at 25 clicks/rain. Lower curve: 1 min exposure at 25 dieks/min. (Ward ¢t al.,
1961 )

Rise Time. Many impulses have rise times less than 1 gsec since a shock

wave is a major component of the event. To date, however, no serious attempt

has been made to relate impulse rise time to the risk of TTS, and this variable is

not treated systematically in damage-risk criteria.

Spectrum. Recently it has become possible to perform spectral analyses

of impulses with a computer (Pease, 1967). There are, however, few data relating

the spectrum of impulses to risk of TTS, and considerably more investigation

will be required before sucb information will be of any real benefit.

Number of Impulses., TTS appears to grow linearly with the number of

impulses, or linearly in time for a constant rate of presentation, as illustrated in

figure 15-16.

Rate of Impulse Presentation. TTS growth rate from impulses does

not differ significantly when the inter-pulse interval is between one and
9seconds. At less than one second between pulses, TTS growth rate is

reduced because of the protective action of the aural reflex. Also, when as

much as 30 seconds elapses between successive impulses, TTS grows more



716 Bioastronautics Data Book

:--lowly because of the recovery which takes place between impulses (Ward,

1962; Ward et ai., 1961).
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bo 1oo 9_00 300 400

--]-- I I I !

'"m 3o
_1 500 Hz

_D AV 1,2 kHz _ ,At
u_t3" AV 3, 4, 6 kHz /sss-
O 25 - - ..... AV 8, 10 kHz / s/ --

z .=I_EARS --/./
O_ //
F,.4: 20 - S/S j /_ --

Pt- P
LIJ

I-
IJ_ 1(} _ s S _'_'_ --

< i /._f" _..,._e.--._°'''_ °_ "'''""

z_ / . ..r _

p...
F o ___L .... L_ I ....... I I

0 2 4 8 12 16

EXPOSURE TIME (min) TO PULSES

Figure 15-16. Average growth of TTS from pulses as a function of exposure time
(lower abscissa), or of number of pulses (upper abscissa) when pulses are presented at
a constant rate. TTS from impulses increases linearly with time or with number of
pulses. (Ward et a., 1961)

Ear Orientation. When the impulse noise includes a shock wave, the

orientation of the cxternal ear with respect to the shock front is of

considerable importance. Hodge et al. (1964) showed that when the ear is at

normal incidence to thc shock wave, the TTS produced is approximately

txluivalent to that produced by an impulse having 5 dB greater amplitude but

arriving at grazing incidence. Golden and Clare (1965) reported a similar

difference. Hodge and McCommons (1967b) have also shown that when the

sbockwave strikes one ear at normal incidence, the other ear, which is shadowed

(protected) by the head, evidences considerably less TTS. This explains why it is

usually found that right-handed rifle shooters demonstrate more TTS in the left,

than right, ear: the right ear is at least partially protected by the head's shadow.

Test Frequency. TTS from impulse-noise exposure occurs at a wide

range of frequencies, with the maximum TTS usually occurring in the region of

4 to 6 kHZ. This effect is illustrated in figure 15-17. Note that whereas mean

and median TTS was between Oand +10 dB at all frequencies, the range of
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effect was from-25 dB (sensitization) at 3 kHz to +55 dB (loss) at 4 kHz.
Also note that this exposure produced TTS at frequencies up to 18 kHz. Loeb
and Fletcher (1968) believe that high-frequency TTS is a precursor of speech
range TTS, and they suggest that when speech range TTS exceeds the CHABA
(1968) allowable limits there is a chance of producing permanent high-frequency
hearing loss
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Figure 15-17. Distributions of TTS 2 following exposure to 25 gunfire impulses.
(Hodge & McCommons, 1966)

Monaural vs. Binaural Exposure. Hodge and McCommons (1967a) found
that, on the average, TTS growth rates for binaural and monaural exposure did

not differ significantly when the interpulse interval was 2 seconds. There were
large individual differences among the subjects, but no consistent trend favoring
either type of exposure.

Recovery of TTS. A growing body of data indicates that recovery from TTS
induced by various types of intermittent noise differs radically from that caused
by steady noise exposure. Rice and Coles (1965) observed instances of individual
subjects with TTS 2 _25 dB who showed little or no recovery for periods of up
to one hour after exposure, but thereafter recovery became approximately linear
in log time. Luz and Hodge (1971) have found four types of recovery curves for
impulse-noise-induced TTS in humans and monkeys: (1) recovery linear in log

time; (2) no apparent recovery for periods of up to one hour, followed by linear
in log time recovery; (3) slight recovery followed by an increase in TTS; and
(4) slight recovery followed by a long plateau of no change, and then further
recovery. These diverse functions occur to TTS 30 dB in humans, and suggest
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thatconsiderablefltrtherresearchwillberequired to deriw_ averaged, generalized
recovery functions for impulse noise induced TTS.

For TTS 2 40dB recovery may bc very slow; Fletcher and Cairns (1967)
suggest that 6 months of recovery may be necessary to accurately assess residual

PTS from excessive exposure to gunfire noise.

Blast

Blast differs little from impulse noise so far as tile hearing mechanism is
concerned. The term "blast" is typically used to refer to nmch higher pressures
and/or hmger durations than are uswally associated with common impulse-noise

sources. Ilowcver, so far as the development of TTS is concerned, the preceding
discussion of impulse-noise paramters is equally applicable to the parameters of
blast.

Single, large-amplitude blast waves may rupture the eardrum. The threshold
for eardrum rupture is about 5 psi; at 15 psi 50 percent of eardrums will
probably be ruptured (Hirsch, 1966). When the eardrum is ruptured loss of
hearing is sew, re in the affected ear, although after healing (2 to 6 wceks), the
ear's sensitivity may retvrn to normal, particularly if the middle ear _,ssielcs are
intact (llambcrger & Lidcn, 1951; Akiyoshi et al., 1966). Rupture of the
eardrum thus serves as a "safety valve." If the eardrum is not ruptured by the
blast, profound PTS may result from a single exposure, particularly at the higher
frequencies of hearing (Ward & Glorig, 1961; Singh & Atduwalia, 1968).

Long-Term Exposure to Spacecraft Noise

Short-term exposure to file high level, low frequency noise of spacecraft
launch will not likely adversely affect astronauts, especially when earmuffs,
hehnets, and other protectiw" gear are worn (Mohr et al., 1965). On the other
hand, the relatively lower level steady background noise to which they will be
exposed could adversely affect astronauts' hearing. Such back_ound noise is
produced by the life support system and other items of onboard equipment,
such as _.dycol pumps, c.abin fans, suit compressors, guidance and navigation
systems, and inw_rters.

Yugam_v et al. (1967) reported an extensive series of studies of the effects of
spacecraft background noise on bearing. Their studies were conducted in a
simulated spacecraft environment (complete with confinement and

hypoactivity) during ground static testing. FigaJre 15-18 illustrates the growth of
TTS resulting from successively longer exposures to 75 dB levels. _ Yuganov et
M. reported that recovery time for noise-induced TTS became progressively
longer with increased exposure time. This phenomenon has been verified by
NASA-sponsored studies conducted under the Gemini pro_am, and was also
reported by Mills ct al. (1970).

_Alihough it is not clearly stated in their report, it is assumed from the description of pro-
cedure and instrumentation that the noi_ levels stated refer to dBA.
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Figure 15-18. Growth of TTS with time for overall exposure level of 75 dB. Growth rate
was linear in log time, and compares favorably with other data for higher levels and shorter
durations (see figures 15-8 and 15-10). CHABA (1965) limit of 20 dB maximum TTS at any
frequency was exceeded at about 130 hr exposure. (Yuganov et al., 1967)

In followup studies with 60 to 65 dB noise levels, Yuganov et al. found no
evidence of TTS (or behavioral or physiological alterations) in astronauts
exposed up to 60 days (1440 hours). Thus these authors concluded, and
recommended, that for extended space flights of up to 60 days the background
noise levels inside spacecraft should not exceed 65 dB. The 65 dB overall
background noise limit recommendation compares favorably with the design
criterion for background noise for Apollo spacecraft, indicated by Dr. B. O.
French of the Manned Spacecraft Center (personal communication) to be
NC-55, or approximately 60 dBA.

Effects of Hearing Loss on Performance

Some persons are likely to suffer TTS or PTS from noise exposure in spite of
the application of safety criteria or the use of protective equipment. Other

persons may have PTS from disease or trauma. Accordingly, in this section the
effects of TTS and PTS on performance will be briefly considered.

Detection of Low-Level Sounds

Earlier, it was noted that an ear's threshold sensitivity (hearing level) is
stated with reference to audiometric zero, such as the ANSI-1951 or ISO-1964
values. Audiometric zero at various test frequencies represents ti_e lowest SPL
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which can be detected, on the aw_'rage, by listeners having "normal"

hearing. Table 15-4 shows the SPI, representing ISO-196,1 audiometric zero

at selected frequencies and the "allowable TTS" p_,rmitted by the CIIABA

(1965, 1968) damage-risk criteria for steady and impulse noise. The column

at the far right shows the minimum SPL detectable, on the average, by a

listener whose baseline hearing sensitivity equals ISO audiometric zero and

who has CttABA-limit TTS at the various frequencies. These values are also

descriptive of the detection limits for a listener who has PTS of tile
amounts si_own in colunm 3.

Table 15 4

SPL Representing ISO Audiometric Zero and Minimum Detectable

SPL for a Listener [laving CHABA-Limit TTS

Frequency SPL for ISO Zero CHABA Allowable Minimum Detectable SPL
(Hz) (dB re 20 #N/m 2) TTS (dB) (dB re 20 _N/m2) *

50O

1000

2000

3000

4000

6000

8OOO

11

6.5

8.5

7.5

9

8

9.5

10

10

15

20

20

20

20

21

16.5

23.5

27.5

29

28

29.5

*This interpretation assumes that the listener's preexposure hearing sensitivity was equal to

ISO audiometric zero.

Given a knowledge of the spectral characteristics of a low-level sound

which must be detected, and the lowest SPL at various test frequencies

which a particular listener can detect, predictions can be made of the

hstener's ability to detect the low-level sound. A convenient example from a

military context, well-known to the authors, may be cited. It has been

shown that sounds created by people walking over various types of terrain

contain em_rgy primarily in the 3 to 8 kllz range. Knowing this, it would be

hypothesized that persons having TTS or PTS in this range of frequencics

would be les_ able to detect such sounds than persons with normal hearing

sensitivity. This hypothesis has been confirmed by experimental test, and

these results suggest that, for example, military, personnel receiving TTS

from daytime exposure to weapon noise should not be assigned nighttime

duty as perimeter sentry where the preservation of a life, or many lives,

may depend on maximum hearing sensitivity, unimpaired by slowly-

recovering TTS. These results further suggest that in any detection situation

the' listeners selected should have the most sensitive hearing possiblc, free of
TTS or PTS.
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Reception of Speech

The spectral characteristics of speech must be considered in assessing the
effects of TTS or PTS on speech reception. Speech sounds range in

frequency from 0.2 to 7 kHz; peak energy occurs at about 0.5 kHz. Speech
sounds are of two basic types: vowels and consonants. Vowel sounds fall
roughly into the frequencies below 1.5 kHz, and consonants are above
1.5 kHz (Sataloff, 1966). Vowels are thus more powerful (i.e., contain more
energy) than consonants. Vowel sounds indicate that someone is saying
something, but consonants aid in discriminating what is being said. Thus,
consonants may be said to convey more information than vowels.

A person with TTS or PTS in the range of 0.2 to 1.5 kHZ has difficulty
hearing speech unless it is quite loud, and is unable to hear soft voices. If
the talker raises his voice level the listener will be able to understand what

is being said.

The person with TTS or PTS in the range of 1.5 to 7 kHz, on the other
hand, hears vowels normally but finds it difficult to discriminate
consonants. Increasing the speech level aids little, but careful enunciation by
the talker is of great benefit. This type of TTS or PTS is a particularly
severe problem in occupational deafness since the loss of hearing sensitivity
frequently occurs first in the 3 to 6 kHz range. The problem is compounded
by the presence of background masking noise, since the low-level consonant

sounds are masked to a greater extent by broad-band noise than the
higher-level vowel sounds. This fact has led some hearing conservation
groups to develop criteria for protecting hearing at frequencies up to 4 kHz
(e.g., Piesse et al., 1962). In the United States, however, this has not been
done: only frequencies of 0.5 to 2kHz are considered in assessing
occupational hearing impairment (Bonney, 1966).

Table 15-5 shows classes of hearing handicap which are defined by the
average of PTS at 0.5, 1, and 2 kHz, as recommended by the Committee on

Conservation of Hearing (1969). In general it may be said that TTS of the
same amount will constitute an equivalent degree of impairment, although
of course the impairment disappears when the individual has recovered from
the TTS.

Subjective and Behavioral Responses to Noise Exposure

An earlier section considered the effects of noise demonstrated after

exposure and indicative of a decrease in the responsiveness or neural activity
in the auditory receptors. In this section, by contrast, noise effects which
occur currently with exposure and result in increased neural activity will be
considered. These responses will be discussed in terms of (1)general
observations, (2) masking of auditory singals, (3) masking of speech, and
(4) annoyance. Methods for measuring speech intelligibility and assessing the
effect of noise on speech intelligibility will be presented. The treatment of
annoyance will introduce the notion of "community response" to noise

exposure.
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General Observations

Broadbent and Burns (1965) and Cohen (1969) have reviewed the
effects of noise on behavior and psychological state. In some respects the
existing literature does not yet support firm conclusions, but representative
subjective and behavioral responses are summarized in table 15-6.

Masking of Auditory Signals

The amount of masking is the number of decibels that the quiet

threshold of a signal must be raised to be intelligible because of the
presence of masking sound. Masking effects may be classed as monaural or
interaural. Monaural masking occurs when the signal and noise reach the
ear(s) at the same time; this type of masking is most critical in working
environments where personnel are not wearing earphones, and will be
discussed below. (Interaural masking occurs when the signal reaches one ear
and noise the other ear. No interaural masking occurs unless the noise
exceeds about 40 to 50 dB SPL, since below this level the listener can

readily distinguish between the sounds heard separately in his two ears. At
higher levels the noise is transmitted to the "signal" ear via bone
conduction; thus this situation may be regarded as a special case of
monaural masking with the head serving as an attenuator. Interaural masking

is a particular problem when the telephone is used in a noisy environment,
and when the SPL in one ear is much higher than in the other.)

The monaural masking effect of a pure tone, or of a noise having a
strong pure tone component, is greatest near the frequency of the tone but
also extends to frequencies adjacent to the masking tone. Curves of masking
effects as a function of frequency are shown in figure 15-19. Audible beats
near the frequency of the masking tone increase the audibility of the signal
and thus reduce the degree of masking at these frequencies. For tones of
low intensity masking is confined to a region near the masking tone; for
higher intensities the masking is extended, particularly at frequencies above
the masking tone. The masking effect of narrow-band noise is quite similar
to that for pure tones, except that the dips due to audible beats are absent.
Masking of signals by wide-band noise whose level does not exceed about
60 to 70 dB SPL is governed by the critical band concept. At low noise
levels pure tones are masked by only a narrow range of frequencies whose
width defines the critical band for that signal frequency. The width of the
critical band varies from about 40 to 200 Hz, over the tonal range of 0.5 to
8 kHz. Within this range, and for low noise levels, an increase of 10 dB in
noise level results in about 10 dB additional masking of tones within the
critical band. Above masking levels of about 70 dB SPL, however the width

of the critical band increases markedly in both directions. A 10 dB increase
in noise level will still cause about 10 dB more masking of frequencies
within the noise band, but it may also increase the masking effect at more

distant frequencies by as much as 20 dB.
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Figure 15-19. Masking as a function of frequency for masking by pure tones of various
frequencies and levels. Number at top of each graph is frequency of masking tone. Number
on each curve is level above threshold of masking tone. (Weg¢l & Lane, 1924)

Masking of Speech by Noise

Most of the energy required for near-perfect speech intelligibility is
contained in the range of 0.2 to 7 kHz. This range may be narrowed to
0.3 to 4.5 kHz without significant loss in intelligibility. (In reducing the
frequency range it must be remembered that 1.5 kHz constitutes the "center of
importance" of speech, and narrowed pass bands of a communications system
should be centered on about 1.5 kHz.) Consonants contain energy at frequencies
above 1.5 kHz, whereas vowels contain lower-frequency energy. Unfortunately,
the consonants, which convey most of the information in English speech,

contain very little energy. Thus, they are more subject to interference (masking)
from noise than are vowels. Conversely, vowels contain more energy but
transmit less information.

Communication System Design. It is desirable to maintain as high a speech
signal-to-noise ratio as possible in each frequency band, with particular emphasis
on those bands which contribute most to intelligibility. Another consideration is

the point of overload of the hearing mechanism: the level above which
intelligence is no longer extracted from the stimulus. The overload effect can be
demonstrated quite readily in a noisy environment when a voice comes over a
loudspeaker at a very high level. A listener will find the amplified speech more
intelligible when his ears are plugged than when listening without earplugs. This
effect occurs because with the ears plugged the speech signal does not overload
the hearing mechanism and, at the same time, the signal-to-noise ratio remains
cons¢tant. Overloading of the ear due to speech amplitude begins to occur when
the overall RMS level of the speech signal is about 100 dB at the listener's ear.

(The average overall RMS level of speech in a quiet environment may be
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approximatedbysubtracting3dBfromthearithmeticaverageof thepeaklevels
observedonasoundlevelmetersetforslowmeterdampingontheC-scale.)In
additionto not contributingto intelligibility,higherlevelsof speechsignals
producediscomfortandpossiblehearingloss.

Factors in Speech Intelligibility. Two types of communications must be
considered in discussing spcech intelligibility: electrically-aided, and direct. The
effectiveness of both types of coice communication are determined by the
fi_llowing parameters: (1) level and spectrum of ambient noise at the ear

(includes both acoustical uoise, and electronically-induced noise); (2) voice lew_l
and spectrum of speech; (3) distance between the speech source and the
listener's ear; and (4) the complexity and number of alternative messages
available to the listener. Electrically-aided speech more specifically also depends
upon the characteristics of all of the components of the transmission amt
receiving systems.

Recommended Approaches to Measurement of Speech Intelli-
_bility. Speech intelligibility is measured by determining the pcrcentage of
words correctly received by listeners. This may be done by conducting subjectiw_
tests with talkers and listeners, or by calculations based on the signal-to-noise

ratio in various frequene) bands. The choice of approach will be determined by
the amount of time, pcrsomtel and/or instrumentation available.

PB Word Intelligibility Test. In the bioastronautics field one usually
attemps to discriminate among, or evaluate, highly effective communications
systems. This requires a sensitive test of speech intelligibility-one that is capable
of detecting small differences between systenrs. Therefore, the use of the

"Phonetically Balanced (PB) Monosyllabic Word Intelligibility Test" (ANSI
Standard $3.2-1960) is rcct_mmended for applications requiring maximum
accuracy.

Some aspects of the test procedure are as follows. The test material consists

of 20 lists of 50 phonetically-balanced words each. Each list is of approximately
the _me difficulty. The talker reads the words in a "carrier sentence" at

4-second intervals and the listener writes down each key work. The hearing level
of hoth talkers and listeners must aw_ragc no more than 10 dB overall, with no

more than 15 dB at any of the frequencies 0.25, 0.5, 1, 2, and 4 ktlz (re ANSI
Standard Z24.5-1951). Talkers must have no obvious speech defects or strong
re_zional or national accents. Test personnel must be completely familiar with
each of the 1000 words and with the speech characteristics of the talkers. The

test must always be given in its entirety (i.e., all 1000 words must be used), and
if the test is to be repeated several times with the _me personnel, it is
recommended that the order of words within lists be randomized for each

presentation. Normally, 8 to 10 hours of talker and listener training are required
to properly utilize the PB intelligibility test.

PB intelligibility score may be acceptable in certain instances with values as

low as 50 percent (of words correctly received). Only rarely is an intelligibility
score of 90 percent required. Singtc digits may be transmitted with greater than
9_ percent reliability with a system providing a PB score of 60 to 70 percent,
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since the listener has only 10 alternatives from which to choose. The criterion of
acceptability for communication systems should be a mandatory score of
70 percent and a desirable score of 80percent when the ANSI PB method is
followed.

Modified Rhyme Test. If testing time is limited, or time is not available
to thoroughly train subjects for the PB method, the second recommended choice
is the Modified Rhyme Test (MRT) described by House et al. (1963). The test
material consists of 300 words which are printed on an answer sheet in
50 groups of six words each. The talker reads one of the six words in the first
group and each listener _lects one word from the closed set of six alternatives.
Unlike the PB test, little account is taken of word familiarity or of the relative
frequency of occurrence of sounds in the language. This test has the advantage

of requiring little or no training, and does not require a written response as is the
case with PB tests. A chart for converting MRT scores to PB test scores is shown
in figure 15-20.
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Figure 15-20. Relationship between MRT test scores and PB test scores.
(Based on unpublished data from K. D. Kryter, 1964)

Articulation Index Calculation. Intelligibility of speech in noise may

also be calculated from measures of the speech and noise levels through use of
the Articulation Index (AI) (Kryter, 1962). AI can be calculated from
octave-band measurements using the worksheets shown in figure 15-21 and
table 15-7, provided the noise does not have any severe pure tone components
and is steady in character without an extremely sloping spectrum. (Additional
worksheets are available in the source document if the situation requires the use
of 1/3-octave band measurements.)
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Figure 15-21. Worksheet for calculating Articulation Index

by the octave band method using ANSI preferred frequencies. (Kryter, 1962)

Table 15 7

Worksheet for Calculating Articulation
Index by the Octave Band Method

(Preferred Octave Bands)

Col 1

Octave Band

1. 180- 355Hz

2. 355- 710

3. 710-1400

4. 1400--2800

5. 2800--5600

Col 2

Speech Peak-to-Noise
Frequency Difference in dB

250 Hz

500

1000

2000

4000

Col 3 Col 4

Weight Col 2 X Col 3

0.0018

0.0050

0.0075

0.0107

0.0083

AI =

(Kryter, 1962)
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The octave band method of calculating AI is as follows: (1) Pint thc

measured octave band SPL of the noise. (2) Adjust the idealized speech

spectrum shown on the worksheet to reflect its actual level. (3) Measure

the difference between the speech and noise in each band, and assign a value

between zero and 30 dB. (4) Multiply this assigned value in each band by the

appropriate weighting factor (this accounts for the difference in the importance

among the several bands) and add the resultant numbers. This number, which is

between zero and one, is the AI which may then be converted to PB

intelligibility, score through the use of figure 15-22.
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Figure 15-22. Relation between Articulation Index and various measures
of speech intelligibility. (Kry ter, 1970b)

The AI method of calculating speech intelligibility may be used for either

direct or electrically-aided communication, provided only that the speech signal

and noise levels at the ear are known.

Annoyance: Community Response to Noise Exposure

The term annoyance refers to the perceived noisiness, unwantedness, ob-

jectionableness, or unacceptableness of noise. Communities of noise-exposed

residents may be annoyed and may respond collectively, or as individuals, in

attempts to rid themselves of the intruding noises. Individual differences among

group members make it very difficult to predict individual responses; however,

group response prediction has achieved a high degree of sophistication and

reliability.

487-858 0 - 73 - 47
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Quantification and prediction of community response to noise exposure
involves identification and/or measurement of many variables, including level,
spectrum, duration, time of day, frequency of occurrence, type of residential
neighborhood and amount of previous noise exposure. Integrating these data,
with appropriate weighting, into a predictive scheme results in a single
"composite" rating of the annoyance reaction to be expected. Such reactions
range from no response, through occasional complaints by individuals, to
concerted legal action by groups.

Two general approaches to the prediction of annoyance reactions enjoy wide
acceptance. The first approach, typified by the Composite Noise Rating of
Rosenblith and Stevens (1953), results in a qualitative prediction of community
response without attaching to it a precise numerical value. Botsford (1969) has
simplified this approach, as illustrated in figure 15-23, by reducing the
measurement of level and spectrum to A-and C-weighted sound levels. This
figure call thus be used to predict community responses to noise levels up to
95 dBA and 110 dBC.

The second approach involves computation of a numerical index of

perceived noisiness which is then used to predict community response. Kryter's
(1968) Effective Perceived Noise Level (EPNL) expressed in EPNdB, has found
particular application in the evaluation of community response to aircraft noise

[although, as Kryter (1970) indicates, the method is applicable to all types of
community noise exposure]. The general relationship between EPNL and
annoyance reactions is illustrated in figure 15-24.

It is not practical to recommend a single, optimum procedure for calculating
EPNL since many new developments are rapidly taking place. The various
existing procedures differ primarily in terms of the weighting to be assigned to
the highest SPL during an occurrence of a noise, and the length of the
integration time used in calculating perceived noise level. Sperry (1968) presents
the calculation procedure used for Federal Aviation Agency certification of new
commercial aircraft. Kryter (1968) reviews a variety of computation procedures,
and (Kryter, 1970) describes his latest recommendations for EPNL calculation,
including a discussion of its application to sonic boom problems. Department of
Defense (1964) reports related procedures helpful in land use planning. Cole and
yon Gierke (1957) discuss community response to noise from missile static
testing and launch operations.

Physiological (Nonauditory) Responses to Noise Exposure

Low Level Stimulation

It is now well established that noise exposure can affect human physiological
processes and that measureable effects are obtained with noise exposure conditions
involving little or no risk of TTS. The main concern of researchers is whether these

effects of noise, which in some instances appear to be correlated with pathological
effects and/or behavioral alterations, may represent a real hazard to the health
and well-being of exposed persons.
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Figure 15-23. Annoyance of neighborhood sound levels. To use graph, locate in curved
grid at bottom, point corresponding to sound levels of neighborhood noise under
consideration and project directly above it into first of the 6 correction sections bounded by
horizontal lines. Follow correction lane entered until reaching position opposite condition
listed at left which applies to noise under consideration, and then proceed vertically,
disregarding lanes, until next section is reached. Work upward through lanes of correction
seetions until reaching response to be expected at the top, e. g., if truck movements at a new
loading station are to be cued by a whistle that will produce 65 dBA and 70 dBC at the
nearest homes 10 to I5 times/day, then few complaints would be expected according to the
line traced through the chart above. (Botsford, 1969)

Jansen (1969) dichotomizes physiological responses to noise into stress

reactions and vegetative reactions. Stress reactions to unfamiliar stimuli, in

general, show adaptation with repeated exposure as the stimuli become

familiar and gain meaning to man, and hence are of less concern in the

present context. It is the vegetative reactions to meaningless noise

stimulation which is of primary concern here. Meaningless noise refers, for

example, to the background noise found in industry, in the community and

in the home. Adaptation to such noises has not been reported in many

instances, and continued exposure may involve some risk of eventual

interference with the health and well-being of workers.
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Figure 15-24. General reactions of people and communities to environmental noise.
(Kryter, 1970)

Representative observations from studies cited by Anticaglia and Cohen
(1969) and Jansen (1969) are summarized below:

• Noise exposure causes increases in the concentration of corticosteroids in
the blood and brain and affects the size of the adrenal cortex. Continued

exposure is also correlated with changes in the liver and kidneys and with the
production of gastrointestinal ulcers.

• Electrolytic imbalances (magnesium, potassium, sodium and calcium) and
changes in blood glucose level are associated with noise exposure.

• The possibility of effects on sex-hormone secretion and thyroid activity is
indicated.

• Vasoconstriction, fluctuations in blood pressure, and cardiac muscle
changes have been reported. Vasoconstriction in the extremeties, with
concomitant changes in blood pressure, have been found for noises of 70 dB

SPL, and these effects become progressively worsened with higher levels of
exposure.

• Abnormal heart rhythms have been associated with occupational noise
exposure and this and other evidence supports the tentative conclusion that
noise may cause cardiovascular disorders.

• Panian (1963) states that in Russia the cardiovascular symptoms outlined
above are collectively referred to as "noise sickness."

• Yuganov et al. (1967) found that 10 to 30 days of exposure to noise levels
of 75 dB produced electroencephalographic and cardiovascular alterations in
astronauts similar to those described above. Reduction of the noise level to

65 dB resulted in no such observations at all for exposures of up to 60 days.

• With respect to impulse-noise exposure, Yuganov et al. (1966) reported
that repeated exposure to simulated sonic booms having peak levels up to
9 kg/m2 ( 133 dB re 20 p.N/m2) caused alterations in electrocardiogram and
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electroencephalogramtracesaswellasmoderatebleedingin tympanicmembrane
epithelium,and they saidthat subjectsreportedheadache,tinnitusand
"fullness"in theirears.

Risk of Injury or Death from Steady Noise

Studies of very intense steady acoustic stimulation have been carried out
primarily with animals, and few data are available for human exposures. Three
relevant observations follow:

. One instance of a ruptured human eardrum has been reported for
exposure to 159 dB SPL at 6.5 kHz for 5 minutes (Davis et al, 1949).

• Mohr et al. (1965) reported no risk of bodily injury to astronauts from
the intense, low-frequency noise simulating a space rocket launch, but a number
of questions remain unanswered in this regard. Exposure to tones in the 1 to
100 Hz range should not exceed 2 minutes or 150 dB SPL, as these values appear
to be close to the limits of human tolerance.

• Parrack (1966) calculated that for a 2kHz whole-body exposure
(probably not attainable in a practical situation) human lethality from
overheating would require from 5 minutes at 167 dB SPL to 40 minutes at

161 dB. At 6 to 20kHz the exposures required for lethality range from
5 minutes at 187 dB to 40 minutes at 1811dB SPL. Parrack's paper further
indicates that ultrasonics pose no special hazard to man's life until the SPL
exceeds 180 dB.

Blast and Impulse Noise Effects

The effects of high-intensity blast waves on man are classed as primary,
secondary and tertiary: primary effects are those resulting from the impact of

blast waves on tissues; secondary effects are caused by flying debris set in
motion by the blast; tertiary effects result from propulsion of the body. Only
the primary effects of blast will be briefly summarized here.

The following extrapolations of animal data to human exposures are valid
only for exposure to single, fast-rising blast waves inw_lving classical or
near-classical waveforms:

• Risk of injury or death increases with increased pressure and/or
duration, and with the presence of nearby reflecting surfaces.

• Ri_ of injury is lessened with increased rise time, and
higher-than-normal ambient pressures.

• Gas-containing organs (ears, lungs, intestines) are very susceptible to
blast injury.

• The eardrum is most susceptible: its threshold for rupture is about
5 psi.

• The lungs are most critical with regard to possible lethality: the
threshold for lung damage (minor hemorrhage) is about 10 psi.
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• Animals exposed to blast show evidence of central nervous system

(concussive) damage--ataxia, paralysis, convulsions, dazed appearance, and

lethargy--and often do not respond to noxious stimuli.

• Figure 15-25 shows 99 percent survival limits and lung damage thresholds
as a function of peak overpressure and blast duration.
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Figure 15-25. Blast exposure limits as a function of peak overpressure and duration.
(A: 99% survival limits; B: threshold for lung damage; 1: long axis of body parallel to blast
wave; 2: long axis of body perpendicular to blast wave; 3: thorax near a reflecting _rface

which is perpendicular to blast wave.) All curves relate to subjects facing any direction.
(Bowen et al., 1968)

Few studies have been made of the effect of repeated, high-amplitude blast

waves and impulse-noise waves. De Candole (1967) states that repeated blast

exposure is responsible for the syndrome known as "battle fatigue." Anecdotal

reports indicate that large caliber weapon instructors exposed to 50 impulses per

day at about 10 psi complain of chest pains, nausea, and sleeplessness. Jacobson
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et al. (1962) felt that it was necessary for subjects exposed to repeated impulses
from a bowitzer to wear a foam rubber "chest protector" at levels of 6 psi and

higher. Tanenholtz (1968) recommends that artillery crewmen not be exposed
to repeated blast at pressures above 7 psi, even when utilizing protection.

Design Criteria

Design Goals

It seems unlikely that noise and blast will ever be completely eliminated
from man's environment. Therefore, steps must be taken to insure that the noise
which reaches man's receptors is tolerable. The term "tolerable" may be
interpreted in several ways. (1) It refers to the prevention of excessiw_ hearing
loss and unpleasant subjective sensations; criteria for this purpose are discus_'d
below. (2) Prew_ntion of injury from blast is also considered. (3) Further,
tolerable noise exposure refers to limiting back_ound noise levels to the extent
required to minimize masking of speech communications, and (4) to providing
noise levels in work areas that do not interfere with the performance of duties.
(5) Also, community noise levels must bc limited tt> prevent annoyance,
complaints or threats of legal action.

Finally, one method of achieving tolerable noise levels at a person's ear is by
the use of hearing protectors. Various protective devices and techniques are
presented at the end of this section.

Noise Exposure Limits

Documents developed to aid in specifying noise exposure limits are variously
referred to as damage-risk criteria (DRC), damage risk contours, and hearing
conservation criteria. The first two names point to a consideration which must

not be ignored. "Damage risk" implicsjust that: there is always the risk of some
TTS or PTS in a portion of the noise-exposed population. Because of the wide
range of susceptibility to hearing loss (discussed earlier), it is neither
philosophically realistic nor economically feasible to enforce DRC which will
protect cve_one (Coben, 1963). Always, there is a risk that someone will lose a

portion of his hearing sensitivity either temporarily or permanently. Thus, it is
incumbent upon the user of any DRC to insure that he understands the risks
involved.

It should be noted that the noise limits imposed by DRC refer to the noise
which actually enters the ear canal. If the environmental noise exceeds the
allowable limits, sew_ral means are available for reducing the levels to or below
acceptable limits.

Steady-State and Intermittent Noise DRC.

CHABA DRC. The CHABA Damage Risk Criteria (DRC) (1965) was
developed through the efforts of Working Group 46of the NAS-NRC
Committee on Hearing, Bioacoustics and Biomechanics. The acceptable limits
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for end-of-day TTS 2 are: 'lOdB at or below 1 kHz, 15dB at 2 kHz, and
20 dB at or above 3 kHz, in 50percent of exposed ears. These TTS limits
are considered to be, equal to the maximum acceptable amounts of PTS
after "about 10 years of near-daily exposure. The allowance of less TTS in
the lower frequencies is designed to provide additional protection for the
speech-range frequencies, and the 10-15-20 dB TTS limits are related to the

borderline criteria for compensable hearing loss. It is ,lot safe to attempt to
extrapolate the criteria to prevent PTS at intermediate number of years, nor
the protection of different amounts of hearing. For such individualized
applications, special criteria should be developed.

The CHABA steady noise DRC is presented in the form of 11 graphs
relating the trade-offs among (1) spectrum, (2) exposure time up to 8 hours
and, (3)SPL. Figure 15-26 shows the exposure limits for octave (and
narrower) bands of noise, and figure 15-27 gives the limits for exposure to
pure tones.

8C 75
!00 _0 500 1000 2000 5000 I0000

BAND CENTER FREQUENCY [Hz)

Figure 15 26. Damage risk contours for 1 exposure/day to octave (left-hand ordinate)and
1/3 octave or narrower (right-hand ordinate) bands of t,oise. Graph can be applied to
individual band levels present in broad band noise. (CHABA, 1965)

The CHABA DRC's 8-hour exposure limit makes it inapplicable as a
design criterion for extended space flight, but it is applicable to the
protection of _ound-service crews and other personnel who typically work
8-hour shifts each day. (See below for design criteria for extended space
flight.)

Those regulations, which apply to noise, under the Occupational
Safety and Health Act of 1970 include the limits on occupational noise



Noise and Blast 737

exposure. Noise exposure limits are stated ill terms of A-weighted sound levels,
and table 15-8 shows tile permissible levels for exposures of 15 minutes to

8 hours per day. For octave band SPL data, a graph is provided for determining
equivalent A-weighted sound levels, as shown in figure 15-28.
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Figure 15-27. Damage risk contours for 1 exposure/day to pure tones. (CHABA, 1965)

Table 15-8

Occupational Safety and Health Act
Permissible Daily Noise Exposure*

Duration (hr) Sound Level (dBA)

8 90

6 92

4 95

3 97

2 100

1.5 102

1 105

0.5 110

0.25 115

*When the exposure is intermittent at different levels the fraction C1/T 1

+ C2/T 2. . .Cn/T n should not exceed unity to meet the exposure limit.

C n = total exposure time at the specified noise level.

T n = total exposure time permitted at the specified level.
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Figure 15-28. Contours for determining equivalent A-weighted sound level. Graph is used
in interpreting octave-band sound levels according to the provisions of Occupational Safety
and Health Act. (OSHA, 1970)

Noise Limits for Extended Space Flight. To obviate the possibility of

TTS during extended space flights (up to 60 days) the background noise level

inside spacecraft should not exceed 65 dB overall (Yuganov et al., 1967).

Ultrasonic Noise Limits. To prevent TTS and unpleasant subjective

responses to ultrasonic noise, the SPL must not exceed 75 dB in 1/3-octave

bands centered at 8 to 16 kHz or 110 dB at 20 to 31.5 kHz (Action, 1968).

Low-Frequency and Infrasonic Noise Limits. To prevent physiological

injury from low-frequency and infrasonic noise (1 to 100 Hz) the limits shown

in table 15-9 must not be exceeded. Even at these limits, experienced astronauts

may report transient unpleasant sensations. Above these levels wearing of

hearing protective devices is mandatory.

Table 15-9

Low-Frequency and Infrasonic Noise Exposure Limits

Frequency*
(Hz)

1-- 7

8-- 11

12-- 20

21 - 100

21 - 100

SPL
(dB)

150

145

140

135

150

Duration** [(min/day) Notes

4 _ Use of ear plugs will reduce un-
4 t4 pleasant sensations

20 [ Without protection
&

20 J With ear plugs

*Refers to pure tones or to octave bands with center frequencies as indicated.
**Refers to one exposure per day with at least 24 hr elapsing between successiveexposures.

(Wilhold et al., 1970)
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Impulse-Noise Limits. The most comprehensive DRC for impulse noise
exposure is that published by CHABA (1968) and based on the formulations of
Coles et al. (1967, 1968). This DRC assumes the same TTS limits as does the
CHABA (1965) steady noise DRC. However, the impulse noise DRC is designed
to protect 95 percent of ears exposed. The basic DRC (figure 15-29) assumes a
daily exposure of 100 impulses distributed over a period of from 4 minutes to
several hours and that the impulses reach the ear at normal incidence.
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Figure 15-29. Basic limits for impulse noise exposure assuming 100 impulses/day
and other conditions as stated in text. (CHABA, 1968)

Two correction factors are included in the DRC. First, if the pulses reach the

ear at grazing incidence (rather than normal) the curves can be shifted upward
by 5 dB. Second, if the number of impulses in a daily exposure is some value
other than 100 (i.e., 1 to 1000) all adjustment can be made according to the

curve shown in figure 15-30.

Blast Exposure Limits

To minimize temporary or permanent hearing loss from blast, the impulse
noise criteria stated above should be used. To avoid other physiological injury

from fast rising, long duration blast waves, the following pressures must not he
exceeded"

5 psi (unprotected) to prevent eardrum rupture

10 psi (ears protected) to prevent lung damage. (See figure 15-25)

Speech Interference Criteria

In a preceding section, calculation of the Articulation Index was discussed.
AI, as a method of estimating the masking effect of noise on speech
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intelligibility, is quite involved. A relatively simple method was devised by
Beranek (1947) and later modified by Webster (1969). Webster's method, called
the three-band preferred octave speech-interference level (PSIL), is obtained by
averaging the noise levels in the 500, 1000, and 2000 Hz octave bands.

+10

w 0
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NUMBER OF IMPULSES

Figure 15-30. Correction factors to be added to ordinate of figure 15-29 to allow
for daily impuse noise exposures different from 100 impulses. (CHABA, 1968)

Once the PSIL value has been calculated, reference to figure 15-31 may be
made to determine what voice level is required to provide acceptable

intelligibility at a given talker-to-listener distance. "Acceptable intelligibility"
here corresponds to a PB intelligibility score of 75 percent and assumes that no
lipreading occurs. The "expected voice level" results from the fact that a speaker
tends to raise his voice level about 3 dB for each 10 dB increase in ambient noise

starting at about 50dB PSIL when he receives no feedback from the
listener. The "communicating voice" is that effort produced when a talker
receives instantaneous feedback of success or failure from the listener.

Workspace Noise Criteria

Beranek (1960) presents criteria for limiting workspaee background noise
where communications interference, loudness, or annoyance of noises are an
important design consideration. These noise criterion curves, or "NC"
curves, are widely used as workspaee design criteria. Figure 15-32 shows the
allowable octave-band SPL (for both commercial and preferred octave
bands) and table 15-10 identifies typical work spaces with the appropriate NC
curves. These curves were derived in such a way that each octave band contributes
about equally to the loudness of the background noise. To be acceptable, the noise
level in each octave band must not exceed the level permitted by the selected NC
curve. It should be noted that when using commercial frequencies the NC number
is also the SIL for that particular spectrum.
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Figure 15-31. Voice level and distance between talker and listener for satisfactory
face-to-face speech communications, as limited by ambient noise level. Along abscissa are

two generally equivalent objective measures of noise level: average octave-band level in
octaves centered at 500, 1000, and 2000 Hz, called the three-band preferred octave

speech-interference level (PSIL), and A-weighted sound level meter reading (dBA).
Example: Jet aircraft cabin noise is roughly 80 +2 dBA. At 80 dBA with raised voices,
seatmates can converse at 2 ft, and, by moving a little, can lower their voices to normal level
and converse at 1 ft. To ask the stewardess for an extra cup of coffee from the window seat
(4 ft)_ one would need to use his communicating (very loud) voice. (Webster, 1969)

The recommended NC level inside a spacecraft without engines operating is
NC-55.

Community Noise Criteria

It should be clearly recognized that the final decision as to criteria for

community noise exposure is an administrative one. Scientific and tecimical data

may aid in answering questions, but it remains the province of society and legal

administrative officials to make ultimate decisions (Galloway & yon Gierke,

1966). Only society, and its official representatives, can decide what price it is

willing to pay for community noise control.

FAA (1969) lists EPNL limits for new commercial aircraft. Department of

Defense (1964) recommends PNL limits for land use planning around airports.

Fredrikson (1970) discusses zoning ordinances for limiting community noise.

Hearing Protection

Four general approaches may be taken to prevent sound from reaching the

ear: (1) The person may be removed to a distance from the noise source such

that spherical divergence and excess attenuation reduce the noise level to an
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acceptable extent. (2) A physical barrier may be placed between the noise or

blast source and the man. (3) The natural "aural reflex" action of man's

middle-ear muscles may be stimulated as a means of protection. (4)A

mechanical hearing protector may be placed over, or in, the ear canal to

attenuate sound energy. Discussion of this latter approach to noise reduction

will occupy the bulk of this section.
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Figure 15-32. Noise criteria (NC curves) referred to preferred octave bands (lower abscissa)
and commercial octave bands (upper abscissa). (From Schultz, 1968) NC 75-90 curves are

present authors' own extrapolations which have been found to be very useful in practical
applications. NC-55 is design criterion for Apollo spacecraft during nonpowered flight.

Mechanical Hearing Protection. Situations often arise in which it is neither

economical nor practical to remove people to a distance from a noise

source or to place a barrier between them and the source. In such cases the

use of mechanical hearing protection is recommended to reduce the noise to

a level which is not hazardous to hearing and/or will permit effective
communication.
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Hearing protectors will often improve person-to-person and loudspeaker-
to-person communication in noise (Acton, 1967). The same speech signal-to-
noise ratio reaches the ear with and without protection in such cases, but the use
of protection may cause the speech signal to reach the ear at a level in the

optimum range for speech intelligibility (i.e., overall RMS level of about 70 dB).
This effect may, therefore, influence the selection of hearing protection for use

in a given situation. It would be undesirable to recommend a highly effective
hearing protector for use in a relatively low noise level, for example, since this
might reduce the speech signal to below the optimum speech level.

Mechanical hearing protectors fall into four general categories: earplugs,
_mi-inserts, earmuffs, and helmets.

are available in two forms: (1) preformed rubber or plastic
plugs supplied in up to seven sizes, and (2)disposable plugs, such as

wax-impregnated cotton, or "glass down" (a very fine, nonirritating glass wool).

Dry cotton is not recommended for use since it provides negligible sound
attenuation (2 to 5 dB in the lower frequencies: 6 to 10dB at tile higher
frequencies) and may provide a false sense of security.

In order to be maximally effective, earplugs must be properly fitted for size.
It is not unusual to find people who require a different size plug for each ear.

Furthermore, the plugs must be properly inserted each time they are used: they
must be tight to be effective. Finally, the plugs must be kept clean to minimize
the possibility of ear infections.

Semi-inserts are available in one size only and are pressed against the
entrance to the ear canal by a light, spring-loaded headband. If frequent donning
and doffing are required they are very convenient and, unlike bulky earmuffs,
may easily be hung around the neck when not in use. On the other hand,

_mi-inserts may not provide as effective a seal against sound as either earplugs
or earmuffs.

Earmuffs are made in one size only and almost everyone can be fitted
satisfactorily with little difficulty. They attenuate sound as well as, or better

than, earplugs at high frequencies, but are slightly poorer than plugs below
1 kHz. The primary disadvantages of earmuffs are their bulk and relative

expense. They do not, however, entail the fitting and insertion problems of
earplugs. Another advantage, in certain situations, is that a supervisor can readily
determine from a distance that all of his personnel are wearing their hearing
protectors. Where very intense noise levels exist, it may be desirable to wear
both earplugs and earmuffs. The total sound attenuation does not, of course,
equal the sum of the individual protector attenuations, but this combination will
ordinarily provide increased attenuation at most frequencies, with particular
benefit being derived at the low frequencies (Webster & Rubin, 1962).

Helmets can provide more attenuation than the aforementioned devices
if they cover the greater portion of the head. The acoustical importance of a
helmet increases when the SPL reaches a point where bone-conducted _und
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transmission through the skull becomes a controlling factor. In cases other than

this the use of helmets for hearing-protective purposes alone is not justified. The

maximum attenuation which can be provided by a plug, muff or semi-insert is

about 35 dB at 250 Hz and is greater at higher frequencies (Zwislocki, 1955).

After reductions of this magnitude, the remaining sound is conducted through

the bones of the skull directly to the inner ear (Rice & Coles, 1966). An

astronaut's helmet, which _als off the whole head, can provide an additional

10 dB of protection. Beyond this point, conduction of sound by the body is the

limiting factor.
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CHAPTER 16

HUMAN CONTROL CAPABILITIES

by

Laurence Retman Young, Sc.D

Massachusetts Institute of Technology

This chapter concentrates on the capabilities and limitations of man as an ele-
ment in a closed loop control system under normal environmental conditions. Only

by careful consideration of the engineering aspects of man as a control element can
performances of man-vehicle systems be assessed, stability and power assists be de-
signed, and trade_ffs between manual and automatic functions be determined
objectively.

The usual breakdown of man's functions in a piloting task is shown in

figure 16-1. The human operator uses his various senses to gain information on
vehicle state and the command situation, integrates this information centrally
where the appropriate control actions are decided upon, and through the use of
effectors such as control sticks, changes the inputs to the vehicle or plant which is

being controlled. In the typical piloting application, man participates in two levels
of this man-machine system; control and guidance. In his control function, man
establishes an equilibrium state of vehicle motion and regulates departures of the
vehicle from equilibrium. In guidance man determines the appropriate course and
speed to reach a desired point under constraints of time, fuel, position error, and
accelerations. Typically the progression from control to guidance involves manual
control functions which are successively slower in their characteristics but require a
higher level of decision-making. The remainder of this chapter considers the human
controller, controls, and displays. The effects of other-than-normal environments
on the human senses and effectors are discussed in other chapters of this book.

Controller Characteristics

Nature of Manual Control

The controlle, _ characteristics considered in this section correspond to

continuous pilotiitg tasks. Information i8 received by observing meters, CRT

Reviewed by Duane T. McRuer, M.S., Systems Technology, Inc.
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displays,or other continuous information presentations, and responses are made
by continuous movements of control sticks, rudder pedals, or other manual
devices. This section includes empirical data on performance limitations and

relative ease of controlhng in different types of situations. It also summarizes
mathematical models for the human operator proposed as attempts to make

engineering approximations to the pilot which can be used in systems design.
Some of the more important variables which affect the human controller char-
acteristics are: task variables (dynamics of the controlled element, characteristics
of the manipulator, command inputs), environmental variables (temperature,

vibration, acceleration), operator-centered variables (experience, training,
alertness, fatigue, motivation), and procedural variables (instructions, order of
presentations in competing configurations, analysis procedures).

THE "HUMAN OPERATOR"

fi_*S_AL coe_eE N_ T_oe_ MANU.L VEHICLECOMMANOS v,Ig_C. o............. TAT
AURAL *O_l_vt =t.t =UL J,_ _ C $ E

Figure 16-1. Human operator in a control task.

Modes of Tracking: Compensatory, Pursuit, and Precognitive

Three major modes of human tracking are distinguished and illustrated in
figure 16-2.

In compensatory tracking the operator observes only the system error or the
difference between the system command and the actual system output. He has
no explicit information on whether changes in this error result from a change in
the command or a change in the vehicle output. Of course he may always
estimate the contribution of changes in vehicle output to the observed error
changes on the basis of the controls he has applied. Typical examples of
compensatory situations are tracking a target through a telescopic sight or
following a glideslope descent schedule by nulhng ILS needles. In the next stage
of manual control, pursuit tracking, the human operator has explicit displays of
system command and vehicle output separately. He can derive system error by
direct comparison of the two. The pursuit situation simplifies the problem of
stability by "allowing the operator to observe the vehicle output directly without
interference from changing inputs. It also enables him to somewhat predict input
by extrapolating from the current input and its derivatives. Examples are
following a descent schedule in which command altitude and actual altitude are
displayed simultaneously on the same altimeter, or tracking a moving object in
which the azimuth and elevation of both the target and the tracking device are
simultaneously displayed on the same instrument using different symbols.
Finally, for precognitive tracking the operator has explicit or implicit
information about future values of the input. Thus for driving an automobile on
a curved road or lining up an airplane for a landing on a runway, the future
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requiredpathaswellasthe currentpositionof thevehicleareexplicitly
available.Similarly,displays,whichshowwhereobstaclesor desiredpathswill
bein thefuture,leadto precognitivetracking.In addition,theoperatormay
performprecognitivetrackingif he is ableto extractreliablepredictive
informationaboutinputordisturbancefromtheperiodicitiesorpredictability
of thesesignals.In general,theoperatoris ableto overcomemostof the
limitationsassociatedwithhisdecisiontimesandneuromusculardynamicsinthe
casesofprecognitiveorpreviewtracking.
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Pilol E lemeat
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Detec¢ot
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(cJ f,_o¢ P/,as¢ _ECOGIVlrJVE (OP,'._ Local

Figure 16-2. Successive organization of perception. (McRuer et al., 1968)

Quasilinear Models

Precision and Approximate Models. The most generally applied model of
the human operator used in analysis of man-machine performance is the

quasilinear model, so named because it represents the human operator as a "best
linear approximation" plus a remnant to account for the human control outputs
other than those predicted by the linear approximation (figure 16-3).
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Figure 16-3. Quasilinear human operator model. (MeRuer & Weir, 1969)

The linear approximation generally used is the Gaussian input describing

function. It varies significandy with the dynamics of the controlled element, as

well as with the nature of the display and the bandwidth of the input. It is

applicable only for tracking situations involving random or random appearing

continuons inputs or disturbances and without additions, does not accurately

predict responses to transient input such as steps or impulses, or in situations

where one can preview the input. The most detailed form of this model is the

precision model of McRuer et al. (1965), leading to a human operator describing

function given in the following equation:

Yp(jCd) : Kp_+ \T_j-----_+ T l)F/it,_\2Lt_)TN1 j60 +

r I i I
H.O. De- Vari- Adjustable Approximation

scribing able Lead-Lag to Low

Function Gain Equalization Frequency Gain

and Phase

e-jc0r

+ _ joe+ O)

High Frequency Delay

Neuromuscular Time

Characteristics

The use of this equation in systems design is limited to cases where accurate

characterization at very high frequencies (>4 rad/sec) or very low frequencies

are required (McRuer et al., 1965). Primary adjustment of operator

characteristics is through the gain (Kp) and the lead and lag time constants (TL

and TI). The neuromuscular characteristics change primarily with forcing-

function bandwidth and with manipulator (control stick) restraints. A typical

Bode plot for the neuromuscular system portion is shown in figure 164.

(TLj_ + 1) e_J_Ze (2)
Yp(jr_):Kp (TIj _ + 1)
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For practical systems design purposes, the above simplified model is
generally adequate, r e is the effective time delay comprising the delays
associated with reading and interpreting the display, deciding upon the

appropriate control motion, and the high frequency neuromuscular lags. TL, the
lead time constant, expresses the ratio of the weight the operator attributes to

the displayed velocity compared to the displayed position. TI, the integral time
constant, represents the amount of data smoothing the operator applies.

There havc been a number of attempts to generate empirical and

theoretically based adjustment rules for selecting the variable parameters of the
pilot describing function appropriate to each compensatory tracking case. The
simplest of these is the crossover model popularized by McRuer and his
associates.

The Crossover Model. The crossover model is based on the notion that the

human operator adjusts his parameters so that the open loop frequency response

[Yp (jo_) Yc (j6_)] satisfies conditions for closed loop stability and reasonably
low error. The pilot adjusts his own transfer function to compensate, insofar as
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possible, for the transfer function of the controlled element. To quote from
McRuer and Jex (1967, p. 234):

The pilot adopts sufficient lead or lag equalization so that the slope
of IYoLI = ]YpY¢I lies very close to -20dB/decade in the region of
crossover frequencies. Besides the -90 deg phase shift associated with
the 20dB/decade amplitude ratio, there is an accumulation of

additional lags due to transport delays and high frequency
neuromuscular dynamics. All of these can be represented (near
crossover frequencies) by an effective time delay "re .

[The crossover frequency (¢Oc) is the frequency at which the open loop
amplitude ratio is unity, or zero dB.] The crossover model is:

YOL(J 6°) " YpYc -
COce

j60
, near COc. (3)

Thus the open loop transfer function approximates an integrator and time delay
in the region of the crossover frequency. Notice that in this simplified model

only two parameters, me and "re, are functions of the task variables; plant
dynamics, Yc, input bandwith, 60i, and manipulator characteristics. In situations
involving rotational motion, the first-order effects of motion can also be

accounted for in "re"

Using the simple human operator describing function model of Equation 2,
the parameters are varied according to the form of Yc, such that the system is
stable, the magnitude ratio YpYc has a sl_,ve of approximately -20 dB/decade
near _c, and the low frequency amplitude ratio is much greater than 1. Forms
of the pilot's describing function for a variety of common controlled elements
are given in table 16-1.

Selection of actual values of ¢oc and "re for particular values of plant
dynamics and input bandwidths is somewhat empirical.

¢°c (Yc' 6_i) -'- %0 (Yc) + A¢°c and

(Yc' ¢°i) " 7"0(Yc) A'r(¢°i)

(4)

The following are u_ful linear approximations to the dependency of crossover
frequency and time delay on input bandwidth:

/x6_ c = 0.18 60 i and

A_" = 0.G8¢o i
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The crossover frequency increases with input bandwidth until 6o. "_ 086o ,
I -- ° C O

when it is again reduced. Data on 6oc and _T is given in figure 16-5. Tlie
dependency of 6oco and 7"0 (the values for crossover and effective time delay
with no forcing function) for several plants are summarized in table 16-2. The
value of _c can be used if the effect of input bandwidth on 6oc is ignored. Note
that tile operator effective time delay also varies with the amount of lead
equalization he must supply. When the pilot is acting as a pure amplifier with a
delay (Yc = K/j6o), the effective time delay is of the order of 0.36 second. As
more lead is required [Yc = Kc/(J6o)2]then the operator's effective time delay
also increases. When the operator introduces lag, however, in the case of
controlling a pure gain, his effective time delay is slightly reduced.

6

_5

3°4

c

g 3
or

u. 2

t.)

I --

0
0

K c

Kc/(ju-2 )

m Kc/(j=) =

I I ] I
! 2 3 4

Fotcin 9 Function Bandwidth, _i (rod/sec)

(a) Variations of crossover frequency with forcing function bandwidth

0.3 m
fib

u

<3 02 -

_9o

-6 E) Kc/jW

_ Kc/(j_- 2)

0 I t I
0 I 2 3 4

Forcin9 Function Bandwidth , _i (rod/see)

(b) Dependence of incremental time delay on forcing function bandwidth

Figure 16-5. Variation of describing function parameters with forcing function bandwidth.
(McRuer et al., 1965)
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Table 16-2

Summary of Crossover Parameters

759

TO co_o _o_
Y c (sec) (tad/sec) (rad/sec)

K C

Kc/j (tO

Kc/iJ CO- 1Pr)

Kc/(jbj)2

(McRuer et al., 1965)

0.33

0.36

0.36

0.51

4.8

4.4

4.4

3.0

5.8

4.75

4.9

3.25

The performance expected of a dosed loop system including a human
operator using the crossover model can be approximated very simply on the
basis of the crossover model. If the input spectrum is assumed to be
rectangular and band limited (maximum frequency 60i, uniform power
spectral density t_ii , and mean square input power oi2), then the ratio of
mean square error to mean square input is easily found by use of
figure 16-6.

L

oo,! i
0005 05 qO

re_c

Figure 16-6. Mean square error ealeulated from the crossover model.
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A typical example of measured open loop frequency respon_ for a simple
rate control plant at three input bandwidths is shown in figure 16-7.

I

ol

Figure 16-7. Measured open loop frequency response data. Averaged open loop describing

function for Yc = Kc/JCO with ¢,di as parameter. (McRuer et al., 1965)

Remnant. In addition to the quasilinear portion of describing functions, the
remnant, or added disturbance injected by the operator, must be considered to
establish the total error in a tracking loop. For certain conditions in which pilot

behavior is particularly nonstationary and nonlinear (especially in tracking high
order systems requiring pulsatile control), the contribution of remnant to error
may be very significant. Levison et al., (1969) have shown certain simplifications

if the remnant is referred to equivalent observation noise appearing at the
operator's input, that is, added to the system error. (In most literature prior to
1968, the remnant is given as additive noise at the operator's output.) By
normalizing the observation noise spectrum with respect to the input noise
spectrum, the injected observation noises seem to be relatively constant at

approximately(-20 dB)and independent of frequency, input amplitude, vehicle
dynamics, or input bandwidth (figure 16-8). The observed remnant in terms of
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normalized observation noise spectrum increases significantly when the display is

used peripherally rather than foveally. The effect of remnant on system error
can be minimized by control design which does not require the operator to

generate low frequency lead. Optimum controlled element gain and filtering of
the operator's output can further reduce the contribution of remnant to error or
to exciting high order system modes.
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(a) Effect of mean squared input on the normalized observation noise spectrum.

Vehicle dynamics = K/s

Input bandwidth = 0.5 Rad/Sec

Average of 3 subjects
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(b) Effect of vehicle dynamics on the normalized observation noise spectrum.

Average of 3 subjects (K and K/s 2)
Average of 4 subjects (K/s)

Figure 16-8. Remnant expressed as normalized observation noise spectrum.
(Levison et al., 1969)
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Figure 16-8. Remnant expressed as normalized observation noise spectrum.
(Levison et al., 1965) - Continued

Pursuit Tracking. Little experimental data on pursuit tracking is available. It

is surmised that the pilot uses information on input alone to attempt open loop

tracking. To this extent, he can be considered to operate on the input signal with

a transfer function Ypi, which is just equal to the reciprocal of the controlled

element (Ypi = 1/Yc). The remaining errors associated with inaccuracies inopen loop

tracking and injected remnant are compensated by dosed loop compensatory

tracking. The effect of pursuit tracking is to permit the operator to overcome
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internal delays and reduce his phase lag, thereby producing higher gains than for

compensatory tracking at frequencies above 0.4 Hz. Figure 16-9 shows some

compensatory-pursuit frequency response comparisons for Ye = K.
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Figure 16-9. Pursuit and compensatory Yc (j60)frequency characteristics

for Yc = K and various input bandwidths. (Elkind, 1956)
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Figure 16-9. Pursuit and compensatory Yc (jCO)frequency characteristics
for Yc = K and various input bandwidths. (Elkind, 1956) - Continued

Further study of pure pursuit tracking with input only [i (t)] or pursuit plus
disturbance [g(t)], shown in figure 16-10, has explored pursuit behavior as the
sum of an operation on the inputs, output, and error. Precision pilot model



tluman Control Capabilities 765

parameters, using the model of Equation 1, are given for the various cases in
table 16-3. The use of pursuit tracking in the presence of disturbances yielded no

improvement in performance over simple compensatory tracking.

i(t)

.......... PILOT ...... 1

MODEl, n(t_ I g(1)
I

,,

(a)

PILOT .....
r ......... 1

I MODE/, n(t) I g(I)

_,l,_:(t,r----7 i i I
w_.l _ / v EmCl._. /

(b)

o'(t)

@
n(t)

Figure 16-10. Pure pursuit tracking: a. with input only [i (t)];
b. plus disturbance [g (t)]. (Reid, 1969)
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Pilot Opinion and Ratings

In addition to satisfying specifications on performance (e.g., stability and
error) it is important to consider the operator acceptability of a given vehicle
system. Pilot rating for aerospace vehicles is usually given in terms of the Cooper
rating shown in table 164. In general the pilot can make wide compensation for
controlled element dynamics resulting in equivalent performance but with
varying Cooper ratings.

A review of pilot rating scales to eliminate uncertainty in definitions
and increase the reliability of ratings led to the handling qualities rating
_ale proposed by Cooper and Harper (1969) shown in figure 16-11.

Particular emphasis in flight and ground base simulation has been paid
to pilot opinion and aircraft handling qualities. Handling qualities for
longitudinal aircraft attitude control are governed by the short period

natural frequency _s-, the short period damping ratio _'sp, the numerator
• IJ ....

time constant T02 , and the aa-'plane gain. F_'ure 16-12 shows approximate
boundaries of pilot opinion for one value of TOo as a function of _ andsp
_'sp- These boundaries would be different _r other values of T02.
Figure 16-13 shows similar trends of acceptable and controllable regions
plotted in a somewhat different format for longitudinal control of a reentry
vehicle. A discussion of lateral handling qualities is beyond the scope of this
chapter. Pilot rating depends upon gain, roll mode time constants, spiral
mode time constant, and dutch roll mode natural frequency and damping.
(For further discussions, see Harper, 1961; Ashkenas & McRuer, 1962.)

Pilot ratings can also be related to parameters of the pilot model. The
gain which the pilot adapts for a particular application affects his rating.
Although the absolute level of the optimum gain depends upon a great
number of factors, including the type of control stick, deviations from this
optimum result in poorer ratings, as shown in figure 16-14. Pilot ratings also
suffer when the pilot is forced to introduce lead compensation
(figure 16-15). No particular penalty is apparently associated with increased
lag compensation. Pilot rating also has been observed to show a decrement
of 2 to 3 points as the pilot's effective time delay Te decreases, associated
with greater lead generation, as discussed earlier.

To handle multiaxis tracking situations it has been suggested that the
decrements in pilot rating (relative to optimum) for each axis individually
be added to indicate the resulting decrement in the multiaxis rating
(McRuer and Jex, 1967). A recent attempt to predict pilot ratings for
VTOL on the basis of weighted sums of performance and pilot lead time
constants shows some promise. The empirical relationship is

R=R 1 +R 2+R 3+1.0 (5)
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R 1 is the weighted sum of pitch and displacement errors relative to a
criterion level

0 <R1 <2.5O

R 2 = 2.5(TL0 )

and is limited to R 2 <__3.25. TL0 is the pilot lead time constant in the
inner pitch loop.

=10(TL,)

is limited to R 3 < 1.20. TL, is the pilot lead time constant in the outer

displacement loop _Anderson _ Dillow, 1970).
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"Rule of Thumb" for Compensatory Tracking

A useful rule of thumb which includes some aspects of the dependence
of pilot workload on lead and lag equalization as well as the easily achieved

levels of crossover frequency for single axis compensatory tracking may be
stated as follows: Design the controlled element and display so that the

controlled element is approximately a pure integrator, input frequencies are

limited to less than 0.5 Hz, and the human can act as a simple amplifier

with a time delay.

Although the optimum control and display depends upon input

spectrum and performance criteria in a somewhat complex way, it is

generally true that a pure integral plant is easily controlled for low

frequency inputs. By the same token, without special training or assistance

in display, men should not be expected to control elements with dynamics

containing more phase lag than Ye=K/s 2. (Under certain conditions, using

pulsatile control, plants as high as Ye=K/s 3 may be controllable for short

periods.)

Optimum Control Models

Several attempts have been made to reduce some of the arbitrariness of

the quasilinear describing function model for describing human operator

characteristics by substituting the techniques of optimal control theory. The

goal is still to estimate loop closures, pilot dynamics, crossover frequencies,

etc., but the desire is to substitute the systematic optimal control
calculation techniques for the previously described artistic conventional

methods. This requires that a cost function to be minimized be specified.

The peculiar nature of this function must be such that when the input and

vehicle dynamics are given, the minimization of the cost function results in

control law(s) which mimic those the human would adopt. The artistry has

now shifted to the selection of the cost function. A promising approach

using optimal control is shown schematically in figure 16-16. The block
(e -sT) represents an approximation to the human operator's invariant

equivalent simple time delay. State feedbacks for the human are assumed to

be only gains and first derivatives of explicitly displayed information. The

effect of the usual remnant, including motor uncertainties, and the effects

of visual scanning are represented by a vector observation noise Vo_(t ).
Because of his inherent delay and the observation noise, the human

operator must estimate the true state which had existed T seconds ago
[estimated state _(t-T)], predict the current state [__(t)], and generate the

optimum control law control vector [u(t)] which minimizes the cost

functional, subject to the constraints on state variables fed back. Although

the application of optimal control techniques to estimation of human

operator dynamics is still a very new art, reasonable agreement with
conventional results for several simple plants and a V/STOL vehicle in

hovering flight has been achieved (Elkind et al., 1968).
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Figure 16-16. Optimum control model for manual control. (Elkind et al., 1968)

Motion Cues

Describing function data for human operators gathered in laboratory

fixed base experiments frequently must be extrapolated to moving base or

flight tests. The presence of motion cues in flight, as sensed by the
vestibular and tactile senses, influences the describing functions. At extremes

of high vibration and acceleration levels it results in important performance
decrements; for moderate motions, however, the information is generally

useful to the pilot. In particular, angular rate information sensed by the

semicircular canals may be used to generate additional lead compensation

and reduce the effective reaction time. Gravicaptor cues help alignment to

the apparent vertical. Roll motion cues are most useful at high frequencies

and for plants in which high frequency variations in roll can occur. The

effect of roll motion cues in allowing the operator to exhibit additional

lead, and thereby increase his crossover frequency and reduce RMS error, is

shown schematically in figure 16-17.

Table 16-5 gives approximate linear models of the human operator

describing function for a wide variety of controlled elements under fixed

base or roll motion. (The0.1 sec delay in all controlled elements

approximates the dynamics of the simulator utilized). When motion is in

yaw rather than roll or pitch, presumably the linear acceleration sensors of

the body are not stimulated. Experiments indicate that although the
additional linear acceleration contributes to a higher gain of the human

operator, the contribution is relatively less significant than that attributable

to sensation of rotation (Dinsdale, 1968).
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Multiple-Input Tracking

When multiple inputs are presented on separated displays the operator

tends to adopt an optimal scanning pattern, devoting most time to those

displays having the most information and linking scans between related

displays. The implications for display layout and details of optimization are

beyond the scope of this chapter (see Carbonell et al., 1968, and Clement,

Jex, & Graham, 1968). One of the effects of multiple inputs on separated

displays is a net increase in effective time delay associated with the
scanning time.

When multiple inputs can be displayed on a single integrated display,

the effects of more than one input can be assessed according to the

following cases: (a) homogeneous dynamics and homogeneous input,

(b) homogeneous dynamics and heterogeneous inputs, and (c) heterogeneous

dynamics. Two-axis tracking performance is nearly as good as single-axis

performance with compatible integrated displays, when the dynamics in the

two axes are the same, whether or not the inputs are identical. However,

when the dynamics are different in the two axes, requiring different

operator equalization, significant increases in normalized mean square error

occur, ranging from 15 to 125 percent (Levison and Elkind, 1966). The
equalization associated with one axis seems to affect that used on the

other, resulting in an increase in error on both axes. Figure 16-18 shows the

describing function for tracking with dynamics K in one axis, with and

without a second axis task of K/s 2 dynamics.

OPEN LOOP
AMPLITUDE
RATIO

lVpVc(W)l

OPEN LOOP
PHASE
(DEGREES)

4YpYc(W)

CROSS-OVER
100" FREQUENCIES

10 _.---_ -- -- _-_.

.1

zo-. I-1

o.
-20'

-40,

I

,?
",d

[ 110 '

J _ (rad/sec)

VISUAL CUES 0 I

..... VISUAL AND MOTION CUES

Figure 16-17. Schematic indication of effects of roll motion cues. (Shirley & Young, 1968;
used by permission of the Institute of Electrical and Electronics Engineers)
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Table 16-5

Human Operator Describing Functions
for Various Dynamics - Compensatory Roll Tracking

777

Controlled Fixed Base Roll Moving Base
Element

Ye Pilot Model Yp Pilot Model Yp

4.5e-'08S(7s+l ) (1.9s+1) 4.5(7s+1 ) (5s+1)e-.ls

s

20e-.ls

s(s + 20)

5e--.ls

s(s + 5)

4e-.ls

s(s + 4)

2e--.1 s

s(s+ 2)

e--.ls

s(s + 1)

e--.ls

s2

_e--.ls

s(s -- 1)

5e--.ls

s2+5

20e-.ls

s2 + 20

_2.5e-.1s

s2 + s - 2.5

5e-.ls

s2 +ss + 5

10e--.ls

s2 +2s + 10

(15s+1) (1.75s+1) (.08s+1)

10e--'O7s(6s+l ) (1.1 s+l )

(27s+1) (.56s+1) (.08s+1)

8e-'lS(7s+1) (.85s+1)

(31s+1) (.13s+1) (.08s+1)

16e--'lS(7s+1) (1.55s+1)

(31s+1) (.15s+1)(.(_s+l)

10.5e--.1S(7s+1)(2s+1)

(31s+1) i.23s+1) (.08s+1)

4.3e--1S(7s+l ) (3.8s+1)

(31s+1) (.12s+1) (.08s+1)

.15e--25s( 10s+1 ) (3s+1)

(.01s+1) (1.5s+1)(.08s+1)

.2e--'2s(10s+1) (3s+1)

(.01s+1) (1.5s+1)

3e-'38s( 1.75+1 ) (s2+2s+5)

5(12s+1) (.08s+1)

9e--'3s(1.5s+1 ) (s2+s+20)

20(14s+1) (.08s+1)

3e -1-5S(s2+1.5s+2.5)

2.5(.2s+1) (.25s+1)

11.5e-'25s(1.9s+1 ) (s2+4s+5)

5(7.5s+1) (.5s+1)

19e-.3s(2.5s+1) (s2+3s+10)

10(10s+1 ) (.43s+1)

(15s+1) (1.75s+1) (.08s+1)

10(6s+1) (2.5s+1)

(27s+1) (.9s+1) (.08s+1)

8(7s+1) (1.6s+1)

(31s+I) (.29s+1)(.OBs+l)

16(7s+1 ) (4s+1)

(31s+1) (.6s+1) (.08s+1)

15(7s+1 ) (2s+1)

(31s+1) (.23s+1)(.08s+1)

5.5(7s+1) (3.8s+1)

(31s+1) (.12s+1) (.08s+1)

.18e--" 15s( 10s+1 ) (3s+1)

(.01 s+l ) (1.5s+1) (.08s+1)

.4e--.15s(10s+1) (3s+1)

(.01 s+l ) (1.5s+1)

5e--'25s(1.75s+1 ) (s2+2s+5)

5(12s+1 ) (.08s+1)

20e---2s(1.5s+1 ) (s2+s+20)

20(14s+1) (.08s+1)

5e--'O5S(s2+1.5s+2.5)

2.5(.38s+1) (.3s+1)

20e--" 14s( 1.9s+1 ) (s2+4s+5)

5(7.5s+1) (.5S+1)

23e---2s(2.5s+1) (s2+3s+10)

10(10s+1) (.43s+1)

487-858 O - 73 - 50
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Table 16-5 (Continued)

Human Operator Describing Functions

for Various Dynamics - Compensatory Roll Tracking

Controlled
Element

Yc

5e--.ls

s2+Ss+5

25e--.1s

s2 + 5s + 25

lOe--.ls

s(s2 + 10)

4e-.ls

s2 (s + 4)

lOe--.ls

s (s2+ 2s + 10)

lOe-.ls

s (s2 + 4s + 10

Fixed Base Roll Moving Base

Pilot Model Yp Pilot Model Yp

19e-'28s(4.3s+1 ) (s2+5s+4.5) 30e-" 15s(4.3s+ 1) (s2+5s+4)

4.5(10s+1) (.65s+1)

4.5e---3s(1.75s+1 ) (s2+5s+24)

25(9s+1 ) (.17s+1 )

.9e-.4S(3s+1) (s2+s+5)

(12s+1)

.4e--'32s(10s+l ) (3s+ 1)

(1.2s+1) (.01s+1)

•45e--'43s(.8s+1 ) (s2+4s+1 O)

(.15s+1) (.15s+1)

e--.35s(.9s+1 ) (s2+4s+10)

(.15s+1 ) (.25s+1)

4.5(10s+1) (.8s+1)

6.8e_-2s (1.75s+1) (s2+Ss+2)
25(9s+1) (.17s+1)

1.5e-'35s(3s+1 ) (s2+s+5)

(12s+1)

.48e-'25s(10s+1) (3s+1)

(1.2s_1) (.01s+1)

.8e--43s(.8s+l) (s2+4s+10)

(.15s+1) (.15s+1)

1.15e---35s(.9s+l) (s2+4s+1)

(.15s+1) (.25s+1)

(Adapted from Shirley, 1968)
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Figure 16-18. One- and two-axis describing functions Yc = K (other axis = K/s2).
(Levison & Elkind, 1966)
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Multiple Loop Tracking

On many occasions, the operator is faced with a multi-loop control task

in which he must participate in one or more coupled loops. Examples are

control of aircraft pitch angle and angle of attack which, in turn, affects
the control of airspeed and altitude. As another example, control of VTOL

roll angle affects lateral position. A discussion of the extension of the

single-axis models to multi4oop situations is given in McRuer and Jex

(1967). A cascade model of the human operator suffices as an example of

VTOL control (figure 16-19). The pilot adopts an inner loop equalization to

stabilize pitch attitude and a separate slower outer loop equalization for

commanding altitude to achieve the desired longitudinal position.

PILOT GIllED P&NAMIr T_A$

NEUIqOWU$CUL&N LAG, T N • O,$S S(C

#-LOOP TIqANSPq_T LAG, Tll • O.04J SEC

I_LQOP TIqANSPOIqT LAG, r_, GOa S£C

PILOT AOAP TABLE PAlUlA Idq[ T _ R $

0- LOOP GAIN, Kp# 0N /mA0)

fl - LOOP LEA0. TLI p (SEC)

• - LOOP GAIN , Kpm (RAD/FT)

• - LOOP LEAD, TLL |$EC)

K T 4- I " FOS p_SlTt(_, i

pip( Lips )e AIR¢ AFT

T,.*I "1[ ,o0[R P'_C'oc.9

I_IIEPt LOOP

OUTER jeLO0_

Figure 16-19. A multi-loop pilot model. (Vinje & Miller, 1967)

Transmission Delays

Manual control with transmission delays is a practical problem for

remote manipulation across great distances. Delay in transmission of

command information to the remote element and delay in receiving
feedback information from the remote element forces manual controllers to

adopt a move and wait strategy to cope with the delay. (The round trip

delay from earth to moon is 2.6 seconds.) The time to complete a task

depends on the delay and the number of discrete moves required.
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Completion time can be lowered by reducing the number of discrete
motions (making larger open loop steps) at the expense of accuracy. For
delayed manipulation, Ferrell (1965) uses two approximations (%1 and t¢2 )
to total movement time:

tel = to + N(t d + tr) + td

tc2 = tN + (N + 1)t d

(6)

where

to

N

td

tr

tN

= time to complete a task with no time delay

= number of open loop steps required to perform the task

= transmission delay

= reaction time

= average time to perform the task with no delay and no feedback
between looks.

Completion time estimates for tel are consistently lower than average times,
and for tc2 are consistently higher. The average of these two

tel + tc2
tea - 2 (7)

is a good predictor of actual completion time.

The average number of times feedback is required is nearly independent
of the delay time and depends only on the difficulty of the task. Task
difficulty may be measured by the information index of difficulty proposed
by Fitts (Fitts & Peterson, 1964).

distance moved

I = log 2 average clearance of final placement (8)
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Both task difficulty and delay increase completion time, as seen in
figure l6-20. For more complex remote manipulation tasks, involving
movement and operation of tools, the same accuracy of prediction of
completion time as a function of delay time seems to hold. The average
number of open loop moves to perform a task depends on the task
difficulty and can be estimated for simple one dimensional tasks from
figure 16-21.

z

oo

z
u

D-

=J

I i I
$ 4 S

INDEX OF DIFFICULTY I IN 81TS

Figure 16-20. Effects of Iransrnission delay and task difficulty on completion time.
(Ferrell, 1965; used by permission of the Institute of Electrical and Electronics
Engineers)

For continuous control of a dynamic system with transmission delay,
phase lags associated with human operator and system delay would lead to
instability unless the human reduced his gain and the crossover frequency.
For a fixed input spectrum tracking errors increase with transmission time
delay. To maintain a constant error level the input bandwidth must be
reduced. Stated in terms of operating a remotely controlled vehicle, the
vehicle speed must be reduced with increasing time delay for a constant
path spatial frequency of path. Experiments on remotely controlled vehicles
with variable time delay and two types of control (velocity and acceleration
control) are summarized in figure 16-22. Notice that the curves indicate a
relative trade-off between time lag and speed or speed and accuracy, as in
the remote manipulation experiments referred to above.
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Figure 16-21. Number of open loop moves as a function of task difficulty. (Ferrell, 1965;
used by permission of the Institute of Electrical and Electronics Engineers)

Adaptive Manual Control

The ability of the human controller to adapt his control according to

requirements in changing conditions constitutes one of his major virtues as

an element in dosed loop systems. The major classes of adaptation of

interest are shown in figure 16-23.

Input adaptation and prediction refer to man's ability to detect familiar

or repeated patterns in the input and track these in a predictive or open

loop fashion.

Controlled element adaptation refers to the well-known ability of men

to adapt different control strategies appropriate to changing dynamics of the

system being controlled.

Task adaptation encompasses the complex matter of optimization of the

manual control loop on the basis of various control objectives. Thus, the

human changes his strategy, for the same input and controlled elements,

depending on the relative penalties associated with system error, vehicle

accelerations, time to reach a terminal state, fuel penalties, or control
effort.
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Programmed adaptation, or open loop adaptive control, and the role it
plays must not be overlooked. In this mode the environmental status, for
example, attitude, road surface condition, sea state, or time-to-go, is used
by the human to adopt control strategies which he has been taught
(programmed) are appropriate for that situation.

Behavior of the human operator following sudden failures of the
controlled element is fundamental to assessing the overall reliability of a
manual, automatic, or manual backup system. The process of adaptive
control is thought to consist of four phases: retention of prefailure
dynamics, detection of the failure, identification of the failure and

adaptation of appropriate dynamic form for the postfailure situation, and,
finally, optimization of postfailure control. In the model reference schema,
detection occurs when the observed change in error deviates from the

expected change in error (based upon an internal model) by more than
some threshold level. Typical detection times for laboratory experiments
with sudden changes in gain or velocity range from 0.5 to 3 seconds. Times
to detect failures involving higher order plants are increased to several
seconds and may be considerably longer if emergency training is insufficient.

I ,_poT 1 / CONT,OLLEO/
AOAPTAT,ONh rt tLEMENT

_EO'CT'O'I_ /I *OAPTAT,O_/

£___ Ol ST URBANC E

ERROR mm ADAPTIVE

CONTROL I I / \ l_l ENVIRONMENTAL

OBJECTIVES _| TASK _/ _ PROGRAMMED I_ STATUS

/ / I-A"°T*E
Figure 16-23. Major adaptive functions in manual control. (Young, 1969)

Controls and Manipulators

Control-Display Compatibility

A control function and the corresponding display should be
geometrically compatible. Linear translations of the controls should

correspond to colinear translations of the displayed variable. (The direction
of display motion is opposite to control motion in a "fly-to" or inside-out
display.) Rotations of controls corresponding to translation of a display are
inherently ambiguous.
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In certain cases, a rotation between display axes and control axes is

unavoidable. The resulting ambiguity can be overcome partially by indicating

the instantaneous deflection of the control stick resolved in display axes on

the display itself, as in configuration c of figure 16-24. Controls should be

in conventional positions, well separated, associated with the task, and easily

distinguished by touch (see figure 16-25).

/ 1

a

DISPLAY CONFIGURATIONS

Figure 16-24. Display configurations for rotated display reference.
(Bemotat, 1969)

Figure 16-25. Control knob shapes. (Chapanis, Garner, & Morgan, 1955)
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Control Forces

A wide variety of manipulators are in common use in vehicle control,
including steering wheels, "joy sticks," pencil controllers, and pedals. (Less
commonly used are head position and eye position.) As a general rule,
satisfactory control feel requires the normal use of forces well below
maximum without being so sensitive that inadvertent muscular movements
or tremors result in errors in control. Control stick specifications include
consideration of flexibility, springback, minimum control increment, friction,
preload and hysteresis. For a review of this problem see Glenn (1963).

Control Stick Characteristics

The two basic modes of control stick operation are position control, in
which the displacement or angle of the control stick is the control signal, and
force control (or pressure control), in which the force on the control stick
(which is usually maintained nearly stationary) is the control signal. Pressure
control yields significantly less phase lag at high frequencies and is consequently
preferable for use in situations such as control of high order systems, where
excessive delay is a problem. Pressure control, spring restrained position control,
and free moving control yield similar tracking results at low frequencies. For
spring restrained position control sticks, an optimum value of spring constant
usually exists. Increasing the moment of inertia of the control stick decreases the
crossover frequency and increases tracking error for high order controlled
elements (Magdaleno & McRuer, 1966).

Effects of Control Stick Nonlinearities

Common control stick nonlinearities include coulomb friction, control stick

preload, control displacement limits, nonlinear gearing, control system hysteresis
and backlash, and control stick velocity limits. In a vibrating environment, low

levels of static friction may improve tracking performance. In controlled fixed
base simulations using fore and aft motion of a light center stick and simple rate
control, control stick friction and preload are found to have no significant effect
on tracking performance.

For the case of control velocity limits, however, the effects on error are
quite noticeable and show a marked decrement in performance as the control

velocity limit is lowered, accompanied by rapid deterioration of the pilot rating.
Graham (1967) concludes that human operators tend to linearize the

nonlinearities of control sticks where possible by use of dither and high gain
feedback around the nonlinearity. However, in the case of velocity limit, this
linearization is not possible and performance degrades.

Quantization and Pulsatile Control

Deliberate quantization of the control stick output into relatively few
discrete levels may be desirable for stability and ease of operation. For example,
a common five-position control stick would permit fast slewing or slow control
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As mentioned earlier, the pursuit display permits the pilot to generate
greater lead and anticipate the input, and consequently is of particular use for

high frequency inputs or for controlling high order plants. On the other hand,
error magnification can be far greater in a eompensatory display, since the scale

need only accommodate maximum tracking error rather than maximum output.
Thus, highly accurate null readings can be achieved for low frequency inputs and
well controlled vehicles.

Inside-Out versus Outside-ln

The inside-out display, which is the conventional attitude instrument for
aircraft, takes the aircraft as the fixed frame of reference and shows vehicle
motion by movement of external reference lines or grids: the view from the
inside of the vehicle looking out at the horizon.

The alternative view takes the external reference frame as fixed and shows

the moving vehicle motion with respect to this frame. This approach is the
outside4n method and corresponds to the view of a moving vehicle seen by an
observer on the earth. Both are shown in figure 16-27. An interesting alternative

suggestion by Fogel (1963) is the "Kinalog display," in which the pilot's
sensation of rotation in a turn, attributable to interpretation of vestibular

stimuli, is made compatible with the display format, so that both the aircraft
symbol and the horizon rotate in conformity with the pilot's kinesthetic
adaptation to a turn.

Where problems of vertigo may be present, general practice is to rely upon
inside-out displays and to train pilots to suppress or ignore motion cues.

AI INSIDE-OUT B) OUTSIDE-IN

Figure 16-27. Inside-out and outside-in attitude displays.
(The aircraft is pitched nose-up and rolled left.)

Display Fomts

Information is usually displayed in either a digital format, as numbers on a
counter, or in a pure analog format such as length of a llne or position of a
pointer. There are, however, a number of mixed analog-digital displays, in which
information is either presented both ways or in which the slowly changing

portion is displayed digitally for unambiguous readout (as in the case of
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to left or right, as well as null. The three-level controller of either the on-off or
the pulse modulated type is useful for tracking situations requiring considerable
operator lead. In controlling systems containing several integrators, for example,
operators may prefer counting pulses to integrating their continuous control
output (Young and Meiry, 1965).

Displays

This section discusses techniques for visual displays. Hardware, including
developments in cathode ray tubes, electroluminescence, holographic displays,
and other new techniques, is discussed fully in NASA SP-159 (1967), Poole

(1966), and Luxeuberg and Kuehn (1968). Some interesting aerospace
applications of audio and tactile displays for control have been explored, but
these are mostly in the research stage and are not, therefore, discussed here.

Compensatory and Pursuit Displays

Pursuit and compensatory displays correspond to pursuit and compensatory

tracking, as discussed previously. In a pursuit display, the commanded state of
the system (input) as well as the actual system state (output) is displayed
separately, and the operator's task is to control the actual output so that it
tracks the command. An example of a pursuit display is shown in

figure 16-26(a). When only the error between ordered and actual system state is
displayed, as in figure 16-26(b), the display is compensatory.

10(30

800

700

60O

(COMMAND)_
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4OO

3OO

2OO

100

4O

20

-0 ....

-20

-40

_0

_0

-100

tO0

i
6O

ERROR

i

A) B)

PURSUIT COMPENSATORY

Figure 16-26. Pursuit and compensatory displays.
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altimeters) and the rapidly moving portion is shown in an analog fashion. A

variety of single quantitative instrument displays is shown in figure 16-28. Some

of the pros and cons of various indicators are summarized in table 16-6.

Moving tape displays have the advantage of permitting a very wide range of

readings to be displayed (as in the case of pursuit displays) while still offering a

large magnification or error between command input and actual output.
However, they may he difficult to read when they are in motion.

(1) (2)

(3) (4)

.....
(5) (6)

Combined analog and symbolic displays of submarine pitcn
angle with an increasingly symbolic emphasis: (a) pictorial;
(b) moving pointer (angular correspondence preserved); (c) mov-
ing pointer (angular correspondence distorted); (d) rotating
scale; (e) moving dial; (f) electronic digital display.

(a) (Kelley, 1968)

Figure 16-28. Various display formats.
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Table 16-6

Recommended Indicators According To Use

791

Method
Counter Moving Scale Moving Pointer

of Use

Fair FairQuantitative

reading

Qualitative

and check

reading

Setting

Tracking

Good

Minimum time and

error in obtaining

exact numericat value

Poor

Numbers must be read.

Position changes not

easily detected

Good

Most accurate monitor-

ing of numerical setting

Relation to motion of

setting knob less direct

than for moving

pointer. Not readable

during rapid setting

Poor

No gross position

changes to aid monitor-

ing. Ambiguous rela-

tion to control motion.

Not readable during

rapid changes

Poor

Difficult to judge direc-

tion and magnitude of

deviation without read-

ing numbers and scale

Fair

Somewhat ambiguous

relation to motion of

setting knob. No

pointer position change

to aid monitoring. Not

readable during rapid

setting

Fair

No pointer position

changes to aid monitor-

ing. Somewhat ambig-

uous relation to con-

trol motion. Not read-

able during rapid

changes

Good

Location of pointer

easily detected.

Numbers and scale

need not be read.

Change in position

easily detected

Good

Simple and direct rela-

tion of pointer motion

to motion of setting

knob. Pointer position

change aids monitor-

ing

Good

Pointer position

readily monitored

and controlled. Most

simple relation to

manual control

motion

(Baker & Grethar, 1954)

Peripheral Displays

While most conventional displays are designed for foveal viewing, and require
fixation and accommodation for accurate reading of the instrument, there are a
number of applications for displays which can be read in peripheral vision.
Peripheral displays may be used to avoid interference with the primary scan
pattern and to present additional information outside the central instrument

display area. Although the rods of the eye are capable of poorer resolution than
are the cones, they respond well to motion, Several examples of motion displays
are shown in figure16-29. Peripheral motion displays are particularly
appropriate for displaying vehicle rates of turn or linear velocities. Flashing lights
are useful principally as warning indicators.
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Rate o! turn Forward velocdy

Rate of dive

Figure 16 29. Motion displays. (Kelley, 1968)

Coding of Visual Information

Further information can be added to the two dimensions of a displayed
point by appropriate coding of the symbol. Coding may help in identifying the
particular point (as in the case of air traffic control displays) or giving
information on other dimensions. Use of alphanumeric identification tags is of

great value, providing there is sufficient room to present legible alphanumerics
without cluttering. A summary of other coding dimensions is given in table 16-7.

Integrated Displays, Contact Analog Displays, and Head-up Displays

In complex multi-axis control tasks, such as are typical of piloting aircraft or

space vehicles, considerable assistance can be given the pilot by integrating
related information on a single display. Generally, integrated displays show the
rates of change of variables in proximity to the variable itself. Integrated displays

permit the pilot to view a single display containing all relevant information and
simplify his problem of reconstructing the geometrical status of a vehicle.

If the integrated display contains symbols or lines unrelated to real
geometrical variables it is a symbolic display. If the elements of the display bear
some relation to a picture of the outside reference frame, such as a pilot might
view looking through a window, then the display is of the contact analog variety.
(This is analogous to flying in "contact" or under visual flight rule conditions.)
Examples of contact analog displays for terrain avoidance and for submarine
control are given in figure 16-30.
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m m R
v

(a) Terrain avoidance display. (Ketchel & Jenney, 1968,
from Kaiser Aerospace and Electronics data)

(b) Simulation of the Norden contact analog perspectively
quickened display. (McLane & Wolf, 1968)

Figure 16-30. Contact analog displays.
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An integrated display presented by reflecting a CRT-gencratcd picture at

optical infinity, so the operator can view the display while continuing to look

out the window, is known as a head-up display. This configuration and an

example are shown in figure 16-31. Integrated displays of the schematic or

contact analog variety have been used with integration of pictures of the outside

environment, which may be gathered from T.V., sonar, or radar data. Displays

which emphasize attitude and position in a vertical plane may be thought of as

forward-looking for a vehicle in level flight, and are known as vertical situation

displays. Those which emphasize geographical information or position over the

ground are horizontal situation indicators. Examples of each are given in

figure 16-32.

(a) (Poole, 1966)

PILOT'S
EYE

ERED_ WINDSHIELD
HkLF-SIL¥ S

LENS

/ (b) (Ketchel & Jenney,

1968, after Sperry)

Figure 16-31. Head-up display.
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_ i

/

3 Z _ 0 t

NIU LTISENSOR (RADAR/I R)

/
/

TV DISPLAY

Figure 16-32. Vertical situation, horizontal situation and pictorial displays.
(Ketehel & Jenney, 1968)
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Control Augmentation and Display Quickening

The human operator has difficulty controlling systems which contain more
than two integrations, and operates best in systems approximating a single

integration. When the controlled element is of a higher order than desired from a
point of view of manual control, the designer can improve the dynamics of the
total man-machine loop by control augmentation or quickening, as shown in

figure 16-33. In control augmentation the dynamic compensation is performed
on the man's output, by feedback of system output and its derivatives to the
controlled element. Position and rate feedback in stability augmentation systems

is a common technique to change the handling qualities of vehicles. As a
consequence of control augmentation, however, man loses his direct control over
the controlled element actuators, and controls the vehicle only indirectly

through a servomechanism. Typically, with control augmentation the man has
fidl information on vehicle output and operates with a status display.

An alternative method of improving the loop dynamics by derivative
feedback is adding lead through the addition of output derivatives in the display,
thereby operating on the operator's input. When the displayed signal is a
weighted sum of output and several of its derivatives, the technique is known as
quickening (figure 16-34a). If some derivative signal is added to the display but
the human operator must still generate lead equalization to perform the task,
then it is known as a partially quickened display. If, on the other hand, just
enough derivative feedback is added to the display so that the operator need
merely move the control stick in proportion to the deflection on the _splay,
then the display is fully quickened.

The appropriate gains on the output derivatives for fully quickened displays
are selected by assuming that the operator is a pure time delay of 0.2 to

0.3 second for single axis tracking. The principal disadvantage of the display
quickening technique is that the operator functions merely as a control amplifier
and no longer has status information on the vehicle output, tie is thus deprived
of his ability to exercise choice in the method of control. The pros and cons of
display augmentation versus control augmentation are summarized in table 16-8.

Command and status displays are closely related to the question of control

display quickening and control augmentation. A status display presents

DISPLAY ()PERAi £)N ELEMENT [

IT
OUT_UT

AU(_ME NTATION

Figure 16-33. Control augmentation.
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information on the ordered system output, the current system output, and
whatever additional state variables may be necessary to help its operator control
the system. The additional status information may include derivatives or
integrals of system output, or settings of intermediate control variables, such as

rocket gimbal angles or aerodynamic surfaces. The operator uses the status
display to choose an appropriate control action, which may take into account

many additionM constraints, such as acceleration, fuel, or time. By having

b) SUPPLEMENTARY VELOCITY DISPLAY

c) PMASE PLANE d) SUPPLEMENT DERIVATIVES

Figure 16-34. Display quickening.

Table 16-8

Display vs. Control Augmentation

Display Augmentation

Operations performed on man's input

Attention is transferred from outer-loop

goal to inner-loop functioning

Can employ man's muscular strength at

the control junction in the inner loop to

move a control surface, open a hydraulic

valve, etc

Man iskept aware of control signal

Requires higher frequency, more com-

plex human output

(Kelley. 1968)

Control Augmentation

Operations performed on man's output

Attention is transferred from inner-loop

functioning to outer-loop goal

Can employ man's senses in the outer

loop to observe the controlled variable

and the environment

Man is kept aware of system output

Requires simpler, lower frequency out-

put.
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complete status information the operator can exercise his judgment in selecting a
control sequence. To help him in this control, he may be assisted by varying
degrees of control augmentation, as discussed above.

In the case of a pure command display, the operator is given information on
required control action to achieve the desired system output. The display may
be quickened or include other computation to ease the operator's task and, in
the extreme, he need merely act as a proportional controller. Mthough the
results may be satisfactory according to the computed response, the operator
loses the ability to adapt to changing situations.

Frequently, command and status displays are combined, so that the pilot can
follow the commanded control if he wishes or take alternative action based on
the status information.

Supplementary Velocity Indication

Several techniques have been used to present supplementary velocity
indication without the loss of output state or error information associated with

quickening. For example, supplementary velocity may be displayed by a variable
length vector attached to the display spot, as shown in figure 16-34(b) or by use
of a second axis to indicate velocity, as in the phase plane of figure 16-34(c).
Finally, separate needle indicators on the derivatives for a two-axis display when
appropriately arranged can yield supplementary velocity information to be used
by the pilot, as shown in figure 16-34(d).

Predictor Displays

A powerful technique for stabilizing man-machine loops by putting lead

information into the display, without removing the human operator from his
role as an adaptive controller, is the use of a predictor instrument. A trace

extends from the current output or error into the future. The trace representing
future output is generated rapidly and repeatedly by use of a fast time model of
the controlled element, which has the same initial conditions and control signals
as those being applied to the actual controlled element. When used with systems
having several integrations or with very slowly responding systems, the predictor
display is of great value. It allows the operator to experiment with several
different control possibilities off-line before actually applying one to the
controlled element. Possible formats for the predictor display are shown in
figure 16-35.

Preview Displays

Preview displays are related to predictor displays. In most control
apphcations involving human operators, some explicit information concerning
the input which will reach him in the future is available, and his control actions
are based to a great extent on this preview. A view of the road and obstacles
ahead or of the runway on which he will be landing is used by the operator in his
role as a preview controller. Displays which can incorporate information on
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X2

(a) (Senders et al., 1964, from Kelley, 1960)

Xl

S_= _=w Front v_,,

¢=}

(b) (Kelley, 1968)

0 0IKI_0 L*

I_'C=¢IIK _VBB0_ O _STAC=.(

(c) (McLane & Wolf, 1966)

Figure 16-35. Predictor displays.
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future inputs may be presented in a manner analogous to those of predicted
future outputs for the predictor display. Models of the human controller,
developed for compensatory tracking situations and extendable to pursuit
tracking, are clearly inappropriate for the preview situations so common in
controlling vehicles with a view of the external surround. Some optimal control
models applicable to the preview situation have been developed and tested
(Sheridan, 1966).

Display Intennitteney

Intermittent flashing of a display, or low frequency updating of a display,
may lead to increased tracking errors. Well below the theoretical limits of
sampling (twice the highest input frequency), tracking degrades because of
interference with the ability to extract rate information and the appearance of
flicker. The on-time of the display as well as the flash rate influences the
performance, as shown in figure 16-36.

1.20

$

tu

1..15
z

_ 1.10

1.2s_ I IJI
,f

n 00, Ec-rL--
_co,,,D.,o,,o,., p/i

/-/

:>2 -"/ I

m 20 15 I0 5 0

FREQUENCY OF PRESENTATION - flashes/see

Figure 16-36. Display intermiHency. (Senderset M., 1966)

Display Layout

Most display layouts follow usual workspace guidelines and common sense.
Related instruments should be grouped together. Instruments requiring frequent
attention should be in the optimum viewing zone. Null indicating instruments
should be oriented so that the pointers are all directed the same way for normal

conditions, to assist monitoring. Recommended console dimensions and viewing
angles for a seated operator are given in figure 16-37. Other such layout
considerations exist for aircraft panel design (for example see A. F. Systems
Command, 1969).
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CHAPTER 17

ATMOSPHERE CONTROL

by

Walton L. Jones, M.D.

and

A. L. Ingelfinger

National Aeronautics and Space Administration

l'he life support system regulates the temperature, pressure and humidity of
the spacecraft atmosphere. In addition, the system controls the constituents of
the atmosphere, removing carbon dioxide and trace contaminants; supplying
oxygen to replace that lost by leakage and metabolic consumption; and
supplying nitrogen to replace that lost by leakage. In order to design an
acceptable life support system a number of design parameters must be
established. Many of these parameters are related to the requirements of the
crew and, therefore, are established in large degree by medical personnel. In
addition, vehicle configuration will significantly influence the Tequirements for
the life support system. When the man, mission and vehicle characteristics are
established, however, then subsystem parameters must be selected which best
integrate into the most effective life support/environmental control system. This
chapter examines all functions of the atmosphere control system and presents
representative performance data and physiological data for the most promising
subsystems developed to date.

Figure 17-1 indicates schematically the principal functions of an atmosphere
control system and the interconnection of the various subsystems. An
operational system is, of course, greatly more complicated than the schematic
suggests, but the figure is included as an aid to those who may be unfamiliar
with the essentials of providing breatheable atmospheres in spacecraft. Very
briefly stated, the system operates as follows. Cabin air laden with humidity is
dried, and trace gas contaminants generated by the crew and equipment are
removed. Carbon dioxide is then extracted and concentrated in the carbon

removal unit and purified air is returned to the cabin. The concentrated carbon

Reviewed by Karl H. Houghton, M.D., and Mouhoud M. Yakut, McDonnell Douglas
Astronautics Company, Huntington Beach, California
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dioxide is then processed to recover oxygen, and carbon compounds are dumped

overboard (or, in future systems, possibly cracked or used in attitude control). It

should be emphasized that a typical system is being illustrated here. Particular

processes will depend upon both mission parameters and available technology.

Table 17-1 shows a materials mass for a one-man life support system. It also

includes urine and wash water reclamation units (Jackson, 1971).

Table 17-1

Space Cabin Mass Balance

(Pounds/Man-Day, Based On

2800 KCal/Day)

Potable Water Recovery

Output 3.45 Ib urine

3.08 Ib respiration and perspiration

.25 Ib feces and H20

Total Output 6.78 Ib H20

- .66 Ib metabolic H20 from 1.3 Ib dry food

Total required 6.12 Ib/man for drinking and rehydrating food

Oxygen Recovery

To produce

Total

To produce

2.12 Ib CO2 from concentrator

.24 Ib H2 (electrolysis and stores--Sabatier reactantsl

1.01 Ib H20 from Sabatier

1.06 Ib H20 from storage

2.07 Ib H20 electrolyzed

1.83 Ib 02

Wash Water

25 Ib recovered and recycled

Oxygen and Nitrogen leakage

1-5 Ib/day

(Jackson, 1971 )

Carbon Dioxide

Man functions as a combustion heat engine, continuously consuming oxygen
and producing carbon dioxide and water vapor as a part of the life processes. In
closed atmospheres, the concentrations of these waste products must be
controlled. Carbon dioxide management implies its removal from the breathing

48'/-858 O - 73 _ 52
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gas supply and its disposal. The removal process can be accomplished by a

variety of different methods, including adsorbents, solid and liquid absorbents,

diffusion cells, and electrochemical cells. The carbon dioxide which is separated

from the breathing gas can be dumped overboard, stored onboard, or processed

to recover the oxygen contained therein for reuse. Presented in this section are

representative data for the most promising carbon dioxide removal and/or

collection methods, discussed in the following order:

1. Lithium ttydroxide

2. Solid Amines

3. Hydrogen-Depolarized Cells

4. Molecular Sieves

Lithium Hydroxide

Of all the CO 2 removal methods, lithium hydroxide has been used most in

spacecraft application. This choice was based on the relatively high CO2

absorption capacity of LiOH per unit mass of material, coupled with a

lower-than-average heat of absorption. Table 17-2 compares the performance of

LiOH with a number of other CO2 absorbents.

Table 17-2

Theoretical Performance of Carbon Dioxide Absorbents

Substance Formula

Theo. CO2 Capacity Heat of Carbonate

(Ib CO2/Ib Absorption Decomposition

Absorbent) (Btu/Ib CO2)Temperature (OF)

Lithium oxide Li20 1.47 2210

Lithium hydroxide LiOH 0.92 875

Sodium oxide Na20 0.71 3140 1290

Sodium hydroxide NaOH 0.55 1228 1290

Potassium oxide K20 0.47 3820 1340

Potassium hydroxide KOH 0.39 1395 1340

Magnesium oxide MgO 1.09 1150 840-1020

Magnesium hydroxide Mg (OH)2 0.76 358 840-1020
Calcium oxide CaO 0.79 1738 1345-1515

Calcium hydroxide Ca(OH) 2 0.60 670 1345-1515

Silver oxide Ag20 0.19 151 250-300

Cadmium oxide CdO 0.34 975 660

(Coe et el., 1962)

LiOH absorbs CO2 from a gas mixture and in the presence of water vapor. A

cabin relative humidity of 50 to 70 percent usually provides sufficient water
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vapor for the absorption reaction to take place. The reaction is given by the

following equation:

2LiOH + CO2 _ Li2CO3 + H20

This reaction is exothermal, producing 875 BTU per pound of CO 2 absorbed,

assuming the water of reaction is evolved as vapor. Table 17-3 lists some of the

properties of LiOH as a CO2 absorbent.

Table 17-3

Properties of Lithium Hydroxide

Chemical formula

Molecular weight

Melting point

Density of crystals

Bulk density of granular LiOH

Theoretical CO2 absorption capacity

Heat of absorption (H20 gas)
Water of reaction

(Coe et el., 1962)

LiOH

23.95

862°F

0.0918 Ibcu in.

0.0145-0.0162 Ib/cu in.

0.917 Ib CO2/Ib LiOH

875 Btu/Ib CO2

0.409 Ib/Ib CO2 (or

0.375 Ib/Ib LiOH)

The dynamic removal efficiency which expresses the reduction in CO 2

concentration across the bed varies with time in the operation of a LiOH

canister as _he absorbent is used up. Usua_y, as _own in Figure 17-2,

removal efficiency remains high (in excess of 70percent) until the

"breakthrough" point in time is approached. The breakthrough point is

defined as the time when the CO 2 concentration in the effluent gas from a

given canister reaches a specified value. It is apparent that utilization

efficiency to some extent will be a function of the breakthrough point

specified. Typically, a breakthrough point corresponding to a Pco2 of

8.0 mm Hg is used for rating or performance comparison purposes.

Figure I7-3 shows the temperature rise across a lithium hydroxide

canister assuming that all of the water of reaction is evolved as vapor.

Inspection of a psyehrometric chart shows that, for any case where the

temperature of the air is not lower than 32°F and the pressure is not

higher than one atmosphere, the slope of the process line in the LiOH bed is

such that the increase in temperature of the air will be ample to provide

vaporization of all the moisture produced in the chemical reaction. Operation of

the LiOH canister with inlet gas temperatures around 120°F appears to result in

higher utilization efficiencies than does operation at lower temperatures.
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Figure 17-2. Typical curve showing LiOH canister performance. (Coe et ai., 1962)

Solid Amines

Another type of chemical CO 2 absorption is based on the use of organic
amines. These compounds are highly basic and react with CO 2 to form
carhonates. At elevated temperatures, the reaction can be reversed, enabling the
u_e of amines in a regenerative system. Liquid amines have been used in
industrial applications and on submarines. These systems usually employ
monoethanol amine (MEA), although other members of the same chemical series
are also effective. 3'he attractive regenerative properties of the aliphatic amines
have led to research on the possibility of employing solid amines, preferably in
the form of resins, in order to avoid the zero-g liquid handling problems
associated with solutions.

Investigations of the use of amine resins for CO2 absorption have been
carried out using both commercially available ion exchange resins and special
resins synthesized for this purpose. Tests of the commercial resins have indicated

that the strongly basic resins absorb CO 2 at relatively rapid rates, but that only
limited regeneration is possible with the application of heat. The weakly basic
resins, on the other hand, exhibit slow CO2 absorption ratcs but permit greater
thermal regeneration. Specially prepared amine resins, in which excess aliphatic
amines are added to epoxy resins, in certain cases yield resins that can be
regenerated completely by heating and that show rapid CO 2 absorption rates.
Solid amine systems remove CO 2 from cabin air by means of cyclic
absorption/desorption in suitable granular amine resins. The chemical nature of
the bonding between CO 2 and these resins provides a CO 2 removal method
which is feasible for cabin PCO 2 levels of 3 mm Hg or less.
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Figure 17-3. Temperature rise across LiOH canister. (Coe et al., 1962)

Dynamic CO2 absorption and desorption processes, as well as equilibrium

CO 2 bed loading conditions, are extremely sensitive to the amount of water
present. For example, for Rohm and Haas IR-45 resin, increases in bed water
content up to as high as 40 percent weight result in correspondingly increased
absorption efficiencies. However, for this resin, water vapor content higher than
25 percent causes excessive pressure drop and flooding. Table 17-4 lists some of
the physical and chemical characteristics of IR-45. Also shown in Figure 17-4 is
the transient outlet PC02 as a function of time and bed water content.
Representative dynamic removal efficiency curves and the overall time inte-

grated removal efficiency, which may be used in sizing IR-45 beds, are also
presented in Figure 17-4.

With the solid amines bed cooler than approximately 140°F, the absorption

process takes place according to the following relationship:

R * NH 2 + CO 2 + H20"q_RNH _ + HCO 3
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Table 17-4

Manufacturer's Data on Rohm and Haas IR-45 Resin

Physical Characteristic_

Physical form

Density

Moisture content

Screen grading

Effective size

Uniformity coefficient

Voids

Chemical Characteristics

Exchange capacity

pH Range

Chemical stability

Stability at elevated

temperatures

Uniform, beadtike particles

3943 Ib/ft 3

37_15%

20-50 mesh

0.35-0.50mm

1.6 max

35-45%

43 Kg/ft 3 max as CaCo 3

(27 Kg dynamic capacity)

0-7

Excellent; completely insoluble

and inert in strong acids (except

nitric), concd alkalies,

aliphatic and aromatic hydrocarbons,

alcohols, ethers and all other

common solvents; prolonged exposure

to strong oxidixing agents should

be avoided

Outstanding; exchange capacity

unchanged after prolonged

exposure to boiling water

(Martin & Brose, 1970)

The desorption of solid amines may be accomplished by the application of

heat and/or vacuum, or steam. For the case of steam desorbed resins, desorption

is accomplished by flowing superheated steam into the bed in the axial direction.

The steam condenses on the resin, heats the resin and displaces the CO 2 and air.

The process occurs in "chromatographic" fashion. That is, steam, C02, and air

are found in individual zones which travel along the length of the bed. The

displaced CO 2 is reabsorbed immediately ahead of the steam zone and the air is

displaced ahead of the C02-rich zone. This chromatographic feature of the

desorption process facilitates separation of CO 2 from air and steam. Flows of

the separate quantities of gas in each of the zones have associated physical

properties which can be sensed and used in control schemes for diverting the

CO 2-rich flow to the CO 2 accumulator and also for diverting the air and steam

flows back to the cabin via a condensing heat exchanger. Figure 17-5 shows

representative performance data for the steam desorbed resin C02 concentrator

used in the NASA Langley Research Center/McDonnell Douglas 90-day manned

test. The lower curve shows the mixed PCO 2 downstream of the two absorption
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beds. As shown, the effluent PCO2 drops rapidly at the start of the absorption
phase, reaches a minimum value, and then rises with a plateau characteristic
observed partway through the PCO2 rise.
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Figure 17-4. Transient outlet PCO_ and removal efficiences for IR-45.
(Tepper et-al., 1968)
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Hydrogen-Depolarized Cells

Hydrogen-depolarized cells are basically electrochemical concentration cells
which employ an aqueous carbonate electrolyte to transfer CO2 from the
cathode side of the cell, where CO2-|aden cabin atmosphere is introduced, to the
anode side where hydrogen is introduced. The chemical and electrochemical
reactions occurring in the cell are as shown in Figure 17-6.

The necessary number of hydrogen-depolarized cells should be series
connected. Tests (Heubscher & Blakely, 1970) have indicated that uniform
distribution of hydrogen flow could not be continuously achieved when the cells
were in a parallel H 2 flow configuration. On the other hand, when a series
configuration was used in which the first of 10 cells received pure hydrogen and
the last cell received 70percent hydrogen and 30percent CO2, stable
performance was obtained. Figure 17-7 shows performance curves for the series
connected hydrogen-depolarized cell module tested in the study referred to here.
Cesium carbonate was much more desirable in the CO 2 collection application

than other electrolytes with lesser solubility in water (Heubscher & Blakely,
1970). Electrochemical devices that employ aqueous electrolytes are especially
sensitive to water balance. When the electrolyte becomes too concentrated as a

result of a water imbalance, precipitates form at the anode of the cell, reducing
cell voltage and CO 2 transfer rate and may even result in gas crossover from
anode to cathode. Consequently, electrolytes with high solubility in water are
favored. The physical characteristics of a hydrogen-depolarized cell module
currently undergoing development testing are shown in Table 17-5. The
hydrogen-depolarized cell system readily lends itself to zero gravity operation
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since mass transfer occurs only in the gaseous state. There are no free liquids or
components dependent upon gravity operation.
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Figure 17-5. NASA Langley Research Center/McDonnell Douglas manned test: amine

resin CO 2 concentrator performance. (Jackson, 1971)

Molecular Sieves

Regenerative molecular sieve units use granular synthetic zeolites as the basic
CO 2 collecting material. The zeo|ites are metal ion alumino silicates which have
a relatively high affinity for CO2, but a still higher affinity for water. Thus,
desiccants must be used to reduce the moisture content in the cabin atmosphere
before it is introduced into the zeolite beds. Desiccant materials may be either

silica gel or another synthetic zeolite. Molecular sieve units usually include air
coolers to lower the temperature of the atmosphere being fed to the zeolite
canisters to increase the CO 2 adsorption capacity of these beds. The synthetic
zeolites of interest for CO 2 adsorption have a heat of adsorption of 300 BTU/Ib
of CO2, a specific heat of 0.25 BTU/Ib°F, a thermal conductivity of
0.34 BTU/hr ft°F, and a density of approximately 45 Ib/ft 3. Figures 17-8 and
17-9 show equilibrium adsorption isotherms for molecular sieves and silica
gel.
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Figure 17Mi. Hydrogen depolarized cell. (Wynveen & Quatrone, 1971 )

Table 17-5

Physical Characteristics of Developmental Hydrogen Depolarized Cell

Electrode area 35 in 2 (per cell)

Electrode type AB-6

Electrolyte matrix Asbestos

Electrolyte Cs2CO 3

Cell material Injection molded polysulfone

Gas cavity spacer Expanded titanium

Heat removal plates (current

collectors) Titanium-clad copper

Seals Flat, ethylene-propylene gaskets

Cell size (overall) 7.7 x 13.7 x 0.15

Current density (max) 40 ASF

No. of cells per module 15

Module size (overall) 7.7 x 13.7 x 4.5

CO 2 transfer rate 0.234 Ib/hr

CO 2 partial pressure 3.8 mm Hg

(Huebscher & Babinsky, 1970)
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Figure 17-8. Adsorption isotherms for Type 5A molecular sieve. (Jackson & Blakely, 1967)
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Figure 17-9. Adsorption isotherms for silica gel. (Jackson & Blakely, 1967)

Three typical methods of CO 2 removal by molecular sieve materials which
may be used for different spacecraft applications are considered here. These are

all of the regenerative type. They are: (1) a two-bed adiapatic system utilizing
two types of sieve material within each bed (one type for water adsorption, one
for CO2 adsorption); (2) a two-bed system similar to the first type but having
silica gel as the desiccant and a fluid heat exchanger in the silica gel; and (3) an
isothermal four-bed system whereby the silica gel and molecular sieve materials
are contained in separate beds and in which each bed is provided with integral
fluid heat exchangers. The first two methods vent both water and CO 2 to space.
The third provides water recovery and, if desired, CO 2 collection for oxygen
recovery. The operating characteristics for each of these methods are discussed
in the following paragraphs.
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Two-Bed Molecular Sieve- Water Adsorption/CO2Adsorption. This type
system is primarily for low gas flow rate application. It has a small pressure drop
and high removal efficiency. The molecular sieve beds are provided with a Linde
Type 13X zeolite for water removal and a Linde Type 5A zeolite for CO 2
removal. Electrical heaters are provided for bakeout of the beds should they
become "poisoned" with water; otherwise, normal regeneration simply involves
venting the beds to tile space environment. This system usually operates on a
15-minute adsorption/desorption cycle. Inlet process air is 45 ° to 55°F and
saturated.

Two-Bed Molecular Sieve - Silica Gel Desiccant and Fluid Heat Exchanger.
This system utilizes silica gel as a desiccant in each bed. The silica gel bed
contains an integral fluid heat exchanger to improve its water adsorption and
desorption characteristics. The molecular sieve portion of the bed also contains
electrical heaters to aid adsorption and desorption of the molecular sieve bed if
it becomes "poisoned" with water. This system is also a low gas flow, small
pressure drop, high removal efficiency type. Operation usually involves a
30-minute adsorption/desorption cycle, 120°F heating fluid, 60°F cooling fluid,
and 45 to 55°F saturated inlet air.

Isothermal, Four-Bed Sieve. In this method, the silica gel and molecular sieve
materials are packaged in separate beds. Each bed is provided with an
integral heat exchanger to improve adsorption and desorption characteristics.

A schematic of the system is shown in Figure 17-10. In the operational
mode shown in the schematic, silica gel bed No. 1 and molecular sieve bed

No. 1 are being cooled and are in their adsorption cycle. The gas from
molecular sieve bed No. 1 is then passed through silica gel bed No. 2 which
is concurrently heated to desorb trapped water and return it to the cabin.
At this time, molecular sieve bed No. 2 is being heated and desorbed. The
CO2 may be vented to space. If, however, an oxygen recovery subsystem is
used, recovered CO 2 is pumped into an accumulator or recovery unit. When
pumps are used, a higher temperature is required for CO2 desorption
because of the pump limitations. The isothermal, four-bed molecular sieve
system usually operates on a 30-minute adsorption/desorption cycle, with
process air supplied saturated at 40°F. Cooling fluid is supplied at
approximately 40°F, and heating fluid at approximately 300°F.

Experimental work with molecular sieves (ttouck et al., 1970) shows
that as the heating fluid temperature decreases, the equilibrium chamber

CO 2 concentration increases. This fact is illustrated in Figure 17-11. Heating fluid
temperature in the study reprc_nted was varied over a range of 200 ° to 338°F.

The high weight penalties associated with providing fluids at the elevated

temperatures required for efficient molecular sieve operation led to the search
for other CO2 concentration methods, notably solid amines and hydrogen-
depolarized cells. Another factor militating against the use of molecular sieves is

their decreased adsorptive capacity at low CO2 partial pressures (negligible at
1.0 mm tlg) which is incompatible with the current trend toward low cabin

PC O 2 levels.
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Figure 17-11. Effect of heating fluid temperature on molecular sieve system performance.

(Houek et al., 1970)

Oxygen Regeneration

The recovery of oxygen from exhaled carbon dioxide is essential for

long-duration space flights. The recovery process of choice involves, first, carbon

dioxide reduction, and, second, electrolysis of the product water to liberate

oxygen. Several techniques for the reduction of CO2 have been under

consideration. The four methods which have received the most intensive study

and development efforts are described in this section. These are: the Sabatier,

Bosch, solid electrolyte, and molten carbonate processes.
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Carbon Dioxide Reduction

Sabatier Process. The Sabatier process involves the hydrogenation of CO 2

over a 400 ° to 700°F catalyst in a reactor. The Sabatier reaction is summarized
by the following equation:

CO 2 + 4H2-t_CH 4 + 21120

The Sabatier water product is electrolyzed to oxygen, for breathing, and to
hydrogen for return to the Sabatier reactor. The methane produced may be
disposed of in one of the following ways:

1. Overboard dumping.

2. Decomposing the methane to carbon and hydrogen, with return of the
hydrogen to process streams and collection of solid carbon.

3. Converting the methane to a compound containing a smaller proportion
of hydrogen (e.g., acetylene), separating the gases, dumping the acetylene
overboard, and returning hydrogen to process streams.

From the equilibrium equation for the Sabatier reaction, Gibb's free energy
relation, enthalpies and standard heat of formation, the theoretical degree of
CO2 conversion can be related directly to the equilibrium temperature (Jackson,
1971). This relationship is depicted in Figure 17-12, which shows the maximum
possible CO 2 conversion at atmospheric pressure and any given temperature for
a stiochiometric tt 2 :CO 2 ratio of 4:1. From this curve it can be seen that, from
equilibrium considerations, it is desirable to operate the reaction at temperatures
approximating 300°F for 100 percent CO 2 conversion, or up to 400°F for
99 percent conversion; operation at temperatures higher than these prohibits this
high degree of CO 2 conversion. At low temperatures (300 ° to 500°F),
conversion occurs only with the proper choice of catalyst. The precious metals
ruthenium, rhodium, and iridium are the most effective catalyzing materials for
promoting the reduction reaction, with 0.5 percent ruthenium-on-alumina the
best of these (Thompson, 1964 1967).

The Sabatier stoichiometric H2 :CO 2 ratio of 4:1 for complete conversion of
CO 2 to methane is not optimum in an actual unit. Optimum reaction rates have

been experimentally determined to be a molar ratio of 4.35:1 (Yakut & Barker,
1969). However, the ratio used should be based on mission tradeoffs, including
water availability, stored 02 and H 2 gas weight penalties and water electrolysis
penalty. For some mission applications, it may be advantageous not to store H2
onboard but to use a C02-rich mixture to insure maximum conversion of

hydrogen. Such a mission application was simulated in a 90-day manned test
conducted by the NASA Langley Research Center and McDonnell Douglas
Astronautics Company. Figure 17-13 shows the Sabatier feed gas mixture ratio
for this test.

Hydrogenation catalysts are poisoned by halogen or sulfur-containing
compounds, so these must be excluded from the feed gas. The effect of

contaminants on the conversion of CO 2 to CH4 is shown in Figure 17-14. As
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the figure indicates, halogen-containing compounds are more poisonous than

sulfur-containing compounds.

CO 2 + 4H2-1_CH 4 + 2H20

R = H2:CO 2 ratio, volumetric
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Figure 17-12. Theoretical CO 2 equilibrium conversion vs temperature

for Sabatier reaction. (Remus et al., 1965)

Other factors also influence the efficiency of CO 2 conversion. Extremely

short reactor beds may introduce channeling and extremely long beds result

in a large pressure drop, both of which reduce conversion efficiency. Space

velocity appears to have a much greater negative influence on the reaction

rate than mass velocity. Space velocity is volume-dependent and is

characterized by the volume of feed in a unit time per volume of catalyst.

The reaction products, CH4 and water, have little effect on the Sabatier

reaction rate.



824 Bioastronautics Data Book

loo

90

80

q¢
T
U 70

O
I--
Q
UJ 60
I-
n"
LLI

>
z 50
o
(J

(N
o
o 40

30--

20
0

"'-" 2000 ppm CH3OH

'000__

--',- 2000 ppm CCI 4

CATALYST: NO. 543- 127 (50%
RUTHENIUM ON

ALUMINA)

SPACE VELOCITY: 4000 HR -1

CATALYST BED DEPTH: 23.5 in

BATH TEMPERATURE: 275°C (527°F)

H 2 EXCESS: 10%

I I I I I I P I
2 4 6 8 10 12 14 16

TIME (hr)

Figure 17-13. NASA Langley Research Center/McDonnell Douglas 90-day test Sabatier
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to overcome poisoning. (Jackson, 1971)
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A summary material balance for the 90-day test Sabatier reactor is presented

in Table 17-6. The table shows that the overall conversion of H 2 to water and

CH 4 was 95 percent and overall CO 2 conversion was 66 percent.

Table 17-6

Sabatier Subsystem Material Balance for 90-Day Test

Material In Material Out

Carbon dioxide 636.9 Ib Water to electric cell 332.0 Ib

Hydrogen 81.0 Methane 152.5

Nitrogen 16.6 Carbon dioxide 217.6

Oxygen 8.1 Nitrogen 16.6

Water vapor 5.5 Oxygen .5

Hydrogen 3.8
Water exhausted 25.1

TOTAL 748.1 Ib TOTAL 748.2 Ib

Bosch Reaction. The Bosch carbon dioxide reduction reaction is usually

summarized by the followhlg equation :

(:0 2 2H2_C + 2H20 + 595 W-hr/kg CO 2

The reaction occurs in the presence of an iron catalyst at temperatures of 1100 °

to 1800°F. Partial conversion is achieved, ranging from 30 percent at file lower

temperatures up to 98 percent at higher temperatures. Unfortunately, maximum

carbon formation occurs in the Bosch reaction temperature range. Within this

range, additional reaction also occur. This results in the production of carbon
monoxide and methane, as follows:

CO 2 + C_2CO

2112 ÷ C _CH 4

The gases resulting from the side reactions above are usually recycled to achicvc

a higher degree of conversion.

The rate of the Bosch reaction is controlled by many apparently inde-

pendent but nonetheless interrelated variables. The most important variables

relate to the conditions in the reactor. Reaction kinetics are, for example,

influenced by reactor temperature and gas flow rate or recycle rate, which is

487 B5B O 73 53
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controlled by the recycle compressor. Increasing the flow rate through the
reactor increases the probable number of collisions per unit time, thereby

increasing the reaction rate, and this, in turn, calls for higher compressor power
requirements. Experiments conducted to investigate the effects of reactant gas
H2:CO 2 volume ratio on conversion rates (Clark, 1967) have shown that
conversion rates are somewhat insensitive to gas ratios. However, a hydrogen-rich

ratio appears more conducive to higher conversion rates.

One of the major development problems encountered with the Bosch reactor
is that of solid carbon collection. Two catalyst configurations have been utilized.

One consists of an expendable static cartridge of steel wool and the other is a
rotating assembly of low-carbon steel plates. Emphasis is placed at the present
time on developing a Bosch CO 2 reduction unit with expendable catalyst
cartridges. Typical test data from a Bosch system are shown in Table 17-7. The
data in the table were taken after a 12-hour leadtime for warm-up.

Solid Electrolyte System. The solid electrolyte system utilizes a solid

electrolyte reactor and a carbon monoxide disproportionation reactor for the
complete reduction of carbon dioxide to carbon and oxygen. A typical solid
electrolyte reactor (Weissbart & Smart, 1970) is comprised of a number of
two-cell drums. Each drum consists of two electrolyte disks, each having 20-cm2
electrodes, sealed to a 6.3-cm diameter zirconia-calcia ring body. Disks (0.08 to

0.22 cm thick) are made from hot-pressed compacts of scandia-stabilized
zirconia. Typical electrolyzer modules are assembled by connecting drums to
alumina manifold tubes by means of metal gas-feed tubulations. Modules
incorporate parallel gas flow through the drums and series electrical connection
between the cells. For a gas stream including CO 2 and water vapor the following
reactions occur at the cathode:

2CO 2 ÷ 4e----_2CO + 20:

H20 + 2e---_ H 2 + O=

At temperatures of 525 ° to 700°C (1000 ° to 1300°F), the 0: ions are
transported across the oxide film by the potential gradient. (The reactions are
enhanced by the presence of water in the gas stream.) The oxygen ion then
migrates through vacancies in the crystal lattice of the solid electrolyte material
to the anode, where the ion is converted to an oxygen atom. The cell material is

essentially impermeable to non-ionic species (in particular to CO) so that pure
02 is formed at the anode and may be sent to the cabin with no further

processing other than cooling. The cell consumes power for decomposition of
CO2 and resistance heating of the solid electrolyte. The unit must be well
insulated to prevent heat leakage which would decrease performance. An
auxiliary heater in the cell is designed to bring it to operating temperature.

The free energy change involved in the decomposition of CO2 to CO and to
02 is 123 kcal/gram-mole of 02. This corresponds to a theoretical power

requirement for a cell of 136 W/kg of CO 2 per day. The mixture of CO and CO 2
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from the cell cathode is passed through a catalytic reactor which converts

CO to CO 2 (returned to the electrolytic cell) and to solid carbon. The free

energy change in this reaction is 29kcal/gram-mole of carbon. This

corresponds to a heat dissipation requirement of 735 W/kg of CO2 per day.

Table 17-7

Typical Bosch Carbon Dioxide Reduction System Test Data*

Data Collection Time 1535 1600 1630 1700 1730

CO 2 Feed Rate, lb/day 9.7 I0.2 I0.8 11.2 11.1

H 2 Feed Rate, lb/day 0.900 0.960 1.02 1.02 1.02

Recycle Rate, cfm 2.25 2.25 2.25 2.25 2.25

Purge Rate, cfm 0. 005 0. 005 0. 005 0. 005 0. 005

Water Separator Pressure, pslg 2.20 2.18 2.10 2.00 1.95

Bosch Reactor Pressure, psig 9.6 9.3 9.2 9.1 8.9

Temperature, o F

Bosch Reactor 1230 1240 1240 1240 1240

Carbon Collector 115 115 120 125 125

Water Separator 47.3 47.0 46.0 44.7 44.0

Compressor Discharge 150 150 150 150 148

Bosch Reactor Inlet 800 810 820 820 820

Bosch Reactor Power, watts

Main Heater ** 200 200 200 200 200

Auxtl iary Heater 610 610 320 320 620

Gas Analysis, volume %

H2 43.0 69.4 56.0 -

CO 2 11.7 6.4 - 9.8 -

CH 4 12.0 5.7 13.0 -
CO 12.0 6.0 11.0 -

N 2 18.0 11.0 9.2 -

02 3.0 1.5 0.7 -

Water Rate, lb/day 5.8 5.8 5.8 7.2 7.4

Theoretical Water Rate, Ib/day 7.91 8.31 8.88 8.94 8.94

* NASA/Langley I LSS Bosch reactor operated at 10 psia.
* * Main heater started at 500 W and reduced gradually to 200 W as reactor came up to temp-

pereture,
(Armstrong, 1966)

A flow diagram of a typical solid electrolyte system is presented in

Figure 17-15. The regenerative heat exchanger pictured cools the gas

products to approximately 950°F, which is the operating temperature of

the catalytic reactor. The catalyst used in the reactor is nickel or stainless

steel. Carbon build-up is sensed by a pressure switch which signals for a
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change of catalyst bed when necessary. The catalytic reaction is exothermic

and no heating is needed once the system has reached operating

temperature.

ELECTRICAL

POWER

OXYGEN • T REACTOR (ISOO°FI

TO CABIN _ I 2C02 _ CO + O,_2H20_ 2H 2 ÷ 02

t I .....

CATALYTIC REACTOR

(1000°EI CARSON AND

SPENT CATALYST

2CO-"11_CO 2 + C +

Figure 17-15. Solid electrolyte system schematic. (Weissbart et al., 1971)

A comparison of a number of solid electrolyte reactors is presented in
Table 17-8.

Molten Carbonate Process. The molten carbonate process involves both
chemical and electrochemical reactions. When C02 is introduced into a

molten lithium carbonate electrolysis cell, first, Li2CO 3 is electrolyzed to
Li20 , carbon, and 02. Lithium oxide then reacts with CO 2 to reform

Li2CO 3. Carbon, from the first reaction, is deposited on the cathode, while

the 02 to be collected is generated at the anode. Electrolysis of pure

molten carbonate can be satisfactorily accomplished in a gravity field (Stein,

1965); however, a satisfactory solution for phase separation of the gases

from the molten salts in zero gravity has not been found. The high

operating temperature also requires heat-resistant materials and accelerates

corrosion of the equipment.
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Water Electrolyfis
An electrolysis unit is required in the oxygen recovery system to convert

water generated in either the Sabatier or Bosch carbon dioxide reduction process

to oxygen and hydrogen, so that oxygen can be returned to the atmosphere for
breathing. With an electrolysis cell available, water can be used for making up
oxygen lost through leakage or extravehicular operations, which simplifies the
resupply process.

Commercial electrolysis units have been used reliably for many years, but

they cannot operate in zero-g. The phase separation problems of the space
environment complicate the design and make more difficult the achievement of
a reliable system. The design of a flight-type electrolysis unit for long duration
usage has been one of the most difficult technological problems to solve. Yet it
is a major "key" to both low-weight oxygen supply, ease of resupply, and

recovery.

The several most attractive concepts under development are discussed in this
section.

Static Feed Electrolysis Unit. This electrolysis cell uses a potassium

hydroxide electrolyte (35 percent KOH in water) which is contained in an
asbestos matrix held between electrodes. 02 and H2, generated at the anode and

cathode, respectively, are collected in cell cavities and passed into integral gas
manifolds. Water is fed to the water pocket behind the water transport matrix,
which also contains a potassium hydroxide solution. Water is transported to the

electrolyte matrix by diffusion of water vapor across the H 2 gas cavity to the
more concentrated electrolyte solution. Zero-g capability of the electrolysis cell

design is provided by containing the electrolyte and water feed in asbestos
matrices. Capillary retention of the liquid at the matrix interfaces prevents
mixing of the gases and liquids. In addition, the matrix prevents 02 and H 2 from
mixing as they are produced.

The unit operates at about 150°F and consists of a number of modules, a
condenser-separator, current controllers (one for each module), back-pressure
regulators, and necessary plumbing, wiring, and control devices. Major develop-
ment problems encountered with the unit include difficulties in startup,
shutdown, automatic electronic control, cell flooding with KOH in startup and
shutdown, and cell drying. Data from a representative life test and performance
tests of a static-feed water electrolysis system are given in Figures 17-16 and

17-17, respectively.

Circulating Electrolyte Electrolysis Unit. In this unit, the alkaline (potassium
hydroxide) is circulated between the dual asbestos matrix of the cell and is

cooled by a heat exchanger external to the cell. The electrolyte temperature is
well regulated with the external heat exchanger and, consequently, so is the
water vapor content of the 0 2 and H 2 gases generated in the cell. The
circulation of the electrolyte helps to minimize concentration polarization and

decrease the time required to reach steady-state operation after either starting up
or adding makeup water to the electrolyte. The purposes for the asbestos matrix
were previously described.
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Figure 17-16. Representative life test of a static-feed water electrolysis module.
(Babinsky & O'Grady, 1970)

A typical continuous flow electrolysis system uses 30percent KOH
diluted in water, operates at near-ambient temperature and pressure, and has

the following design features. The body and matrix screen and spacers are
cast of epoxy resin. The dual matrix located on either side of the
electrolyte pocket consists of an asbestos fuel cell sandwiched between a
nickel matrix-support screen and a fuel cell electrode (type AB).
Spot-welded to the electrodes are nickel electrode support screens and
electrical leads. The electrical lead is nickel sheet cut in a picture frame

configuration and spot-welded around the edge of an electrode. The
modules are sealed by O-tings and fastened together by end plates and
bolts. The electrodes from adjacent cells are supported by four intercell
spacers. A liquid-level sensor in the electrolyte reservoir, located external to
the cell, provides the signal for adding makeup water to the module when
it is in operation. To prevent the electrolyte from passing through the
matrix and into the gas manifolds, a differential pressure controller

maintains the pressure in the gas marrifolds higher than the electrolyte

pressure (AP : 3 psig).
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Figure 17-17. Representative pedormance tests of static-feed water electrolysis module

after 0.6, 81, 2500, 6671 hr of operation. (Schubert, 1969)

Some of the more serious development problems encountered with the
unit have included: (1) difficulty in maintaining differential pressure
control; (2) a small increase in cell voltage required at startup to maintain a
constant current; (3) slow deterioration in cell performance; and (4) some
degradation of the epoxy resin plates. A continuous flow KOH electrolysis
unit was tested in the NASA Langley Research Center/McDonnell Douglas
90-day test. Figure 17-18 shows the 02 generation characteristics of the unit
during the test (Jackson, 1971).

Vapor Feed Electrolysis Unit. The vapor feed cell is unique among
electrolysis cell concepts because it is designed to operate directly off
humid cabin air. Therefore, the cell can assist the cabin air-conditioning
system in controlling humidity. Furthermore, since the vapor cell uses
expired and perspired water vapor for its water supply, it is not
contaminated by dissolved solids normally present in undistilled, liquid
water. The vapor cells have an acid rather than alkaline electrolyte and,
thus, are not contaminated by expired CO2. The vapor cell utilizes a
wicking material which holds the electrolyte, usually sulfuric acid, between
the anode and cathode. The unit is made of a number of cells, each
consisting of anode and cathode screens with a pad of microporous rubber,
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or the like, acting as the wicking material. Electrolysis dehydrates the

electrolyte and delivers H 2 at the cathode and 02 at the anode. New

moisture then rehydrates the electrolyte, and the process is continued.

Theoretically, 1520amp-hr are required for the electrolysis of water to

produce one pound of 02. On a 24-hour operational basis, this corresponds

to 63.3 amp/lb of 02 per day. The corresponding theoretical reversible

voltage necessary to electrolyze liquid water at room temperature is 1.23 V,

an unusually high operational voltage (Figure l7-19). As figure l7-19

illustrates, the observed voltage, Ecell, between the connecting terminals of

the electrolysis cell is the summation of Eo, the theoretical minimum

reversible potential, and the polarization voltages. The following equation

expresses this relationship.

Ecell = E o + Eaa + Eca + Eac + Ecc + EIR

where,

Eoot =

Eta =

Eac =

E/R =

Activation polarization at anode

Activation polarization at cathode

Polarization at the anode created by concentration

(diffusion) gradient at the anode

Polarization at the cathode created by concentration

(diffusiorr) gradient at the cathode

(Ohmic) polarization, tile voltage loss due to ohmic

resistance of the electrolyte or electrolyte media, leads,

and electrode metal.
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Figure 17-18. Oxygen generation characteristics of a continuous flow KOH electrolysis
unit operated in the NASA Langley Research Center/McDonnell Douglas 90-day test.
(Jackson, 1971)
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Solid Polymer Electrolysis. Solid polymer electrolysis utilizes an
ion-exdlange membrane (cation exchange membrane about 12 mils thick)
which, when saturated with water, is the only electrolyte used. The system
uses no free acid or alkaline liquids. Water is supplied to the 02 evolution
electrode (anode) where it is electrochemically decomposed to provide
oxygen, hydrogen ions, and electrons. The hydrogen ions move to the
hydrogen-evolving electrode (cathode) by migrating through the solid
polymer electrolyte (SPE). The electrons pass through the external circuit to
reach the hydrogen electrode, where hydrogen ions and electrons recombine
electrochemically to produce hydrogen gas. An excess of water is usually
supplied to the system and recirculated to remove any waste heat. The

gases are generated at a stoichiometric ratio of H 2 and 02 at any pressure
required of the system. The SPE can withstand large differential pressures
(>1000 psia) as well as high generating pressures which can easily be
attained simply by back-pressuring the system.

The ion-exchange membrane in a system under development is a
perfluorinated sulfonic acid which meets the stability and performance
requirements of a long-lived electrolysis system. The development of
electrocatalysts, made of platinum-iridium or other noble metals, has
reportedly (Nuttal & Fiteriugton, 1971) reduced cell voltage from values
over 2.0 VDC at 200 amp/ft2 to less than 1.60 VDC at 200 amp/ft2 in an

acid SPE electrolysis cell (figure 17-20), thereby reducing power
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consumption. Figure I7-21 indicates the performance capability of a
one-man SPE module developed for the NASA Langley Research Center
with current density inputs up to 260 amp/ft 2, which were obtained prior
to subjecting the unit to life testing.
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Figure 17-20. Solid polymer electrolyte electrolysis performance at ambient pressure

as a function of anode catalyst and temperature. (Nuttal & Fiterington, 1971)
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Figure 17-21. Performance data for a seven-cell module solid polymer electrolyte tested

for the NASA Langley Research Center. (Nuttal & Fiterington, 1971)
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Trace Contaminants Removal

Trace contaminant removal equipment maintains atmospheric contaminants
at a physiologically acceptable level. Contaminants may be separated into the
broad categories of particles and gases. Particles include solids such as dust and
small liquid droplets. Those gases which have been identified as potential
contaminants and those which have been detected in the Mercury and Gemini
space vehicles, submarines, Apollo outgassing tests, and Earth-based space cabin
simulator tests are rather extensive. Discussions of these gases and the measured

generation rates are available in the literature (Olcott, 1970; see also Chapter 10,
Toxicology). Table 17-9 shows the major trace contaminants identified in the
NASA/McDonnell Douglas 90-day test (Jackson, 1971). Contaminant levels
during the test were at all times below the allowable levels established by the
National Academy of Sciences.

Trace contaminant removal equipment includes particulate filters, activated
charcoal, sorbent beds, and catalytic burners. Particulate filters may include not
only a debris falter but also an absolute f'dter used in conjunction with charcoal
or other sorbent beds. The debris filter traps coarse particles entering the
atmosphere purification loop and the absolute filter removes particles as small as
0.3 it.

Trace Contaminant Removal by Solid Adsorbents

Activated charcoal is used primarily to remove trace contaminant gases
having high molecular weights, including many hydrocarbons, alcohols, ketones,
aldehydes, mercaptans, organic acids, halogenated materials, and ozone.
Figure 17-22 shows adsorption capability of activated charcoal for NO 2. Most of
the odor-causing and toxic materials expected to accumulate in a space cabin are
effectively adsorbed by charcoal. Activated charcoal, however, is a poor
adsorbent of CO4, CO2, and CO. Water is adsorbed but not retained. Activated
charcoal is sometimes impregnated with phosphoric acid for the removal of
ammonia and basic (i.e., high pH) compounds.

Other solid adsorbents, notably molecular sieves and silica gel, have been
shown to adsorb most of the organic contaminants found in low
concentrations in a space cabin simulator as well as those normally adsorbed
by activated charcoal (Mader, 1969). However, they have a great affinity for
CO2 and/or water and, thus, cannot be used effectively without prior
removal of these compounds.

Trace Contaminants Removal by Catalytic Oxidation

Catalytic burners are used to oxidize various low molecular weight gases in
the cabin atmosphere to CO2, water vapor, or other compounds. Catalytic
burners are not necessary for short missions (of the Mercury, Gemini, and
Apollo type) but they are likely to be included in life support systems for
future, long-term missions in which contaminant level buildup could become a
problem.
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Figure 17-22. Breakthrough curves for NO2 adsorbed on activated carbon.
(Gully et al., 1969)

A typical catalytic burner includes a catalytic bed, electrical heaters, and
a regenerative heat exchanger, all contained within an insulated jacket. The
pre- and post-sorbent bed filters are connected to the catalytic burner with
tubing, and the filter canisters and catalytic burner are assembled on a
lightweight structural frame. A number of catalysts have been used in
catalytic burners, including 0.5 to 1.0percent palladium or platinum
deposited on alumina, Hopcalite, and other proprietary materials. Hopcalite,
a mixture of the oxides of manganese, copper, cobalt, and silver, has been
used for many years as a catalyst for removal of CO in air. Pre- and

post_sorbent beds are used to prevent catalyst poisoning and to remove
undesirable oxidation products. These beds utilized acid-impregnated
activated charcoal, Linde-type 13 zeolite, and lithium hydroxide sorbents. Of
these, LiOH is the most desirable. During use, the presorbent LiOH is
partially converted to LiCO3 as it absorbs CO2. The combination of LiOH
and LiCO3 presorbent effectively removes such compounds as SO2, H2S,

HCI, and HF. As a postsorbent, LiOH-LiCO3 removes such acid gases as
HCI and HF resulting from the catalytic oxidation processes.

Figure 17-23 shows the concentration of CH 4 and CO 2 during a 90-day
test referred to previously. The catalytic burner was purposely turned off
between test days 68 to 82. After test day 68, the CO level had increased
from about 16ppm to 26 ppm. When the catalytic burner was reactivated,
the level was gradually reduced to 17 ppm by the end of the test.
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Humidity Control

Humidity control in spacecraft may be achieved by one of two methods:
(1) condensation of atmospheric water vapor, followed by phase separation
of condensate from the air, or (2)drying of cabin air by passage through a
bed of granular material. The moisture in this case is either absorbed
chemically, by, for example, sodium hydroxide, or adsorbed physically by
silica gel or molecular sieves. However, because of the high penalty
associated with drying air over granular material, this method is used only
in low flow, essential applications, such as drying air prior to CO2
adsorption on molecular sieves.

Humidity control by condensation/water separation is now universally
used in spacecraft. In this method, a heat exchanger cools the cabin air
below its dew point, thus condensing water from the moist airstream. Most
of the water droplets are then separated from the main airstream in a water
separator and channeled to the water management equipment. The air, now
reaching the saturation state, is returned to the cabin or routed to another
subsystem for further processing. Airflow through the condenser is a
function of (1)the inlet and outlet water concentrations in the process
airstream; (2)the cabin pressure; and (3) the water'separator efficiency.
Figure 17-24 is a graphic presentation of the flow requirement and heat
load for a humidity control condenser utilized to collect 2.2 lb/man_tay of
water and operating with a 35°F process airflow. Figure 17-24 also shows a
sharp rise in flow requirement and cooling load at low cabin relative
humidity with a flattening characteristic at about 60percent relative
humidity. This points to the desirability of maintaining high cabin humidity.
It also indicates the savings ensuing from low condenser outlet temperatures.
The latter is, however, more difficult to satisfy than the former. Heat sink



840 Bioastronauties Data Book

temperatures lower than about 40° to 45°F normally impose very high
weight penalties on space vehicle liquid cooling loops. These penalties result
from the large radiator areas required to cool the heat _ransport fluid to
the temperature level desired for operation of the humidity control system.
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Figure 17-24. Flow requirement and heat load for humidity control.
(Rousseau, 1963)

Water separation may be accomplished in a number of ways. These
indude wick condenser/separators, hydrophobic-hydrophilic types and
centrifugal, porous plate, elbow, and vortex separators. Of these, the
hydrophobic-hydrophilic and the wick condenser separators are considered
superior.
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Hydrophobic-Hydrophilic Separator

The hydrophobic-hydrophilic separator unit is based on two capillary
concepts, the hydrophobic (non-wetting) and hydrophilic (wetting) liquid/gas
separation phenomena. The moist gas stream contacts a conical-shaped screen,
with the apex of the cone facing the gas stream. The screen cone is coated with a
hydrophobic materinl. The free water droplets are deflected to the base of the
cone while the gas flows through the screen. A hydrophilic sump is provided at
the base of the cone around its circumference. A pressure differential maintained
across the sump by a pressure-controlled pumping system transfers the water to

storage tanks. A hydrophobic-hydrophilic water separator was tested in a 60-day
chamber study where it operated for the full 60 days with free water separation
of 99 percent or better (Lamparter, 1970).

Wick.Type Condenser/Separator

In wick-type condenser/separators, wicking material is located in the unit
between layers of heat exchanger surfaces. Moisture condenses on the fins and
coolant passage surfaces of the heat exchanger. The condensed water is

transferred along the fins by surface tension forces to the wick material. The
flow of water within the wick occurs by a combination of capillary action and

pressure gradient. If the pressure gradient is kept below a certain value, there is
no air leakage through the wick. If the pressure gradient is not large enough (i.e.,
either the pressure source is too weak or the wick material is not dense enough),
a cellular material may be installed at the wick-drain interface. The wick material
acts in a manner similar to the hydrophilic screen. This type of water separator
was used in Gemini and Apollo spacecraft.

Table 17-10 presents an excellent compilation of data on the important
characteristics of existing water separators including those already flight-tested
in the Gemini and Apollo programs.

Storage Systems for Atmospheric Constituents

Three methods for storing atmosphere gases in the gaseous
considered for spacecraft applications:

1. High-pressure storage at ambient temperature

2. Supercritical storage at cryogenic temperature

3. Subcritical storage at cryogenic temperature

phase are

High-pressure gaseous storage is usually heavier than cryogenic storage
because of the heavy vessels dictated by the high storage pressure (about
6000psi). The primary advantages of high-pressure storage are that the
equipment is relatively simple and the gas is readily available for the
requirements of rapid repressurization and emergency operation.

Storage of atmospheric constituents at cryogenic temperatures generally
entails lower tankage weight. This reduction in weight is attributed mainly to
two eCects: (1)smaller volumes because the gas is stored as a fluid, and

487-858 0 - 73 - 54
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(2) lower working pressures which permit thinner pressure vessel walls. On the

other hand, cryogenic systems have the relative disadvantages of more complex

control systems, more sophisticated hardware, loss by boiloff, greater electrical

power requirements, lower reliability and higher maintenance requirements.
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CHAPTER 18

_WORK, HEAT, AND OXYGEN COST

by

Paul Webb, M.D.

Webb Associates, Inc.

Yellow Springs, Ohio

Human energy exchange is discussed in this chapter in terms of the whole
man. The physical work a man does, the heat he produces, and the quantity of
oxygen he takes from the air to combine with food, the fuel source of his
energy, are described. Work, heat, and oxygen all are closely tied together in
animal energetics, as Kleiber (1961) has written in a historically interesting
review, The Fire of Life. At the cellular level, not dealt with here, Lehninger's
Bioenergetics (1965) is an excellent and readable introduction to the
biochemistry involved.

The human animal, like most machines which do work, oxidizes fuel to

obtain energy. But unlike man-made engines that convert the heat of
combustion into work, the body oxidizes fuel at a low temperature, 37°C, and
converts chemical energy directly into work. In other words, humans are
chemical engines.

The work man does is not impressive. A man cannot generate a lot of power.
Humans fancy themselves as thinkers and manipulators of tools. Machines do the
heavy work. Nevertheless, man is a muscular animal, with some 40 percent of his
weight in skeletal muscles. He moves about under his own muscle power, and
does some mechanical (external) work in certain activities.

Whether performing mechanical work or not, just staying alive requires
energy. Cells do chemical work in biosynthesis; there is work involved in active
transport of solutes across cell membranes; and there is osmotic work in
concentrating solutes. Some cells, especially muscle, do mechanical work, much
of which is internal and only visible from outside as heat. For example, the work

done by heart muscle in pumping blood against the resistance of the vascular
distribution network, and the work done by skeletal muscle in supporting
ourselves upright in Earth's gravity field, are all internal.

Reviewed by John B. West, Ph.D., University of California, San Diego.
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Thereis continualenergyexchangein livinganddoingthings.Quantifying
energyexchangeis importantin designinglife supportequipmentsinceit
determinesfoodsupplies,the oxygento becarried,wasteproductsto be
removed,andtheheattobedissipated.Thedesignofrespiratoryequipmentand
oxygensuppliesmustallowthemanto dotheheaviestworkamissionmay
require,andthecoolingof protectiveclothing,e.g.aspacesuit,mustcarryoff
thegreatestamountof heat he can generate.

Heat is the dominant expression of human energy exchange. Heat is
generated within the body while one sleeps and during all waking hours. The
more active one is, the more heat there is to be dissipated. When a task is carried
out in which mechanical work is done, 10to 30 percent of the energy
expenditure is applied to the external load; the rest comes out as heat.

The rate of energy exchange varies over a wide range. A man asleep may

operate at a level as low as 1.1 kcal/min (77 watts, or 262 BTU/hr). When doing
sustained hard work he may operate at 15kcal/min (1046watts, or
3571 BTU/hr).

Units for the description of energy exchange are varied. Physiologists think
in terms of kilogram calories (kcal); the calories used in nutrition are kcals, and
body heat production is generally expressed as kcal/min. In international

convention the basic energy unit is the joule, or its rate derivative, the watt (W),
which is 1 joule/see. Older units which have been in common use are the met

(1 met = 50 kcal per square meter of body surface an hour), and the BTU, or
BTU/hr.

1 kcal = 4184 joules = 1.162 watt-hours = 3.968 BTU
1 kcai/min = 69.7 watts = 238 BTU/hr
100 watts = 1.43 kcal/min = 341 BTU/hr
100 BTU/hr = 0.42 kcal/min = 29.3 watts

In this chapter the energy unit will be the kcal, with rates expressed in both
kcal/min and watts.

It has been noted that living involves heat production as a major by-product
of the oxidation of fuel to supply energy for "work." The work of staying alive
is hard to measure since it takes place in a closed and hidden system-the
body-but the total heat produced by all the separate activities is known and

measurable. It is possible to estimate the internal work done individually by the
heart, the kidneys, the brain, and other organs and tissues. Data of this kind
based on measuring blood flow and oxygen use appear in table 18-1.

Some organs, particularly the brain, oxidize fuel at a high and steady rate
throughout the 24 hours; the liver is typical of organs which oxidize fuel at
slowly changing levels depending on the work required; some tissues oxidize at a

slow pace, like the skin. Skeletal muscle changes its level of fuel consumption
and heat production manyfold between quiescent and active states. Since

skeletal muscle is 40 percent of the body mass, this change in muscle heat
production is the dominant factor when total heat production varies over a
10:1 range.



Work,Heat, and Oxygen Cost

Table 18-1

Oxygen Consumption and Heat Production of Organs in _lan

849

Organ OxygenConsumption Typical OrganWeight Heat Production
(ml/min -- 100 gin) (gm) (kcal/min)

Heart 9.5 (7.8 - 10.5) 320 0.15

Brain 3.6 (3.3 -- 3.9) 1380 0.25

Kidneys 10.2 (6.2 -- 16.0) 300 0.15

Muscle
Rest 0.17 28 000 0.24

Exercise 11.2 28 000 15.7

(Basedon averageddatafrom Altman& Dittmer, 1968)

Measuring total body heat production is called direct calorimetry. The
technique is complex and the machinery for doing it has always in the past
confined and restrained the subject unnaturally. A new and less constraining
method is evolving from research done with water cooled garments, about which
more will be said later. But our body of knowledge about human work and
energy exchange rests on a small number of direct calorimetric measurements,
and a very large number of indirect calorimetric measurements.

Indirect calorimetry measures energy exchange by seeing how much oxygen
a man uses to burn fuel, and how much carbon dioxide, water, and nitrogen he
excretes as the chemical residues of oxidation. By measuring these material
exchanges in the respired air, and nitrogen in urine, one may estimate with
reasonable accuracy the amount and type of fuel burned, hence the total energy
being released.

Given the three measured quantities of O2 consumed, CO 2 produced, and
urinary N excreted, Consolazio et al. (1963) show that the three types of fuel,
carbohydrate (CHO), fat (F), and protein (Pro), and the energy (H) released in
their oxidation are directly calculable from:

CHO = 2.909 02 + 4.115 CO 2 - 2.539 N

F = 1.689 02 - 1.689 CO 2 - 1.943 N

Pro = 6.25 N

H = 3.78 02 + 1.16 CO 2 - 2.98 N

It is also feasible to do an energy exchange analysis by counting fuel calories.
One can measure food intake, and any residues in urine and feces which are not
oxidized, and know a man's daily energy exchange. But the measurement does
not discriminate in usefully short time intervals since a man eats only about
three times a day, and he stores his fuel rather than burning it as consumed.
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Thus a 24-hour period is the shortest time we use for this type of data (see
figure 18-4). To further complicate matters, a man can store great quantities of
fuel as fat, and can live and work for days without eating at all. Body weight
reflects storage and expenditure of stores, but it reflects other things as well,
such as dehydration, growth, and atrophy.

The energetic equivalents of oxygen consumed and of carbon dioxide
excreted are standard numbers in physiology. Every liter of oxygen consumed
indicates that 5 kcal of energy has been released from stored fuel. The same
5 kcal is the caloric equivalent of 1 liter of CO 2 produced. These caloric
equivalents were first described in experiments in a direct calorimeter while 0 2
and CO 2 exchange were also monitored. There are small variations of the caloric
equivalents of 02 and CO 2 which reflect variations in the type of foodstuff being
used. The range is from 4.7 to 5.0 kcal, but for most purposes 5 kcal is
sufficiently accurate (Maxfield & Smith, 1967; Weir, 1949).

One way to visualize these basic work and energy relationships is shown in
figure 18-1.
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Daily Energy Exchange

Consider now the energetics of just staying alive, with no physical activity at

all. This is, to use an old and imprecise term, the basal metabolism, or better, the

cost of tissue maintenance. Figure 18-2 shows the oxygen cost and heat

production for tissue maintenance. The ranges shown for periods of 4, 8, and
24 hours show how size and biochemical individuality affect such data. The

three diagonal lines on the graph show how particular dietary mixtures would
alter the values.

5O0 I ' I _ ' I ' _ _'-_.

_ 400300 _24 hours

Z FAT DIET
MIXED DIET

CARBOHYDRATE DIET

8

Ot._" I

0 200 600 1000 1400 1800 2200

HEAT OUTPUT (kcal)

Figure 18-2. 0 2 cost and heat production of tissue maintenance, calculated for men of
astronaut size and age under basal conditions. (Redrawn from Fletcher, 1964; based on
standard values from Diem, 1962)

The total daily energy level is the cost of tissue maintenance plus the cost of

activities. Assuming standard activity, the smaller the person the smaller his daily

oxygen need, his food requirement, and his heat production. This is shown in

the figure 18-3, which gives total daily energy levels for normally active people

of various sizes. These daily levels are about twice as high as the daily cost of
tissue maintenance. Note that the values for men of astrOnaut size and age,

(3400 to 3800 keal/day), imply considerable daily activity, whereas astronauts
confined to simulated space cabin conditions (see figure 18-4) or in actual

orbital flight (see table 18-2) show much lower values.

To illustrate the range of activity, hence the range of energy exchange (i.e.,

food consumed and heat plus external work output), which adult men exhibit,

figure 18-4 shows that a day of "complete rest" involves the use of about

1500 kcal in 24 hours, while a "very active day" calls for about 6500 kcal in
24 hours. The four dassifications of work, from light through very heavy,
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represent values used in industry for 8hours a day, year round
employment. These figures come from a study by Edholm and Fletcher
(1955) of British Army recruits during a very active period of training.
Between these two extremes are similar data for many other military and
civilian activities. Notice that some of the data are based on counting the
calories in the food eaten, and the rest based on estimates of energy
exchange from oxygen consumption.
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Figure 18-3. Total daily 02 cost and heat production for normally active people, as
affected by body size, calculated by method proposed by UN Food and Agricultural
Organization (1957). (Redrawn from Fletcher, 1964)

One quite low level of daily energy exchange in figure 184 is that
labeled "Space Cabin Simulator" (Welch et al., 1961). The low rate was
largely due to the confinement of the subjects. Flight data shown in
table 18-2, from the American Gemini and the Russian Vostok orbital space
flights (Berry & Catterson, 1967), confirm the low estimates from the
simulator. In flight, weightlessness and confinement together can explain the
low metabolic rates.

In each of the three preceding figures there were three straight lines
showing energy levels versus oxygen cost for three different types of diet.

The oxygen used, and the carbon dioxide produced, vary slightly with the
fuel oxidized. These dietary effects are relatively small, and it is an unusual

diet which is purely one of the three types of food. The mixed diet is
common in North America, and for most purposes we do not try to adjust
energy estimates for a particular person's diet. There are more important
sources of variation, particularly the specific activities one undertakes during
the day.
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Figure 18-4. 02 cost and energy exchange levels for daily activities. Values identified

below three dietary lines are based on measurements of 02 consumption; those above are
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(Redrawn from Fletcher, 1964; based on data from Buskirk et al., 1956, Buskirk et al.,

1957; Consolazio et al., 1956; Edholm & Fletcher, 1955; Fletcher, 1958; Iampietro et al.,

1956; Kark et al., 1948; Karvonen & Turpeinen, 1954; Lawton, 1960; Luthman &

Lundgren, 1947; Ramzin, 194,8; Richardson & Campbell, 1927; Rjabko & Agapov, 194,7;
Welch et al., 1961)

Table 18-2

Energy Exchange Levels in Space Flight

Duration Daily Energy Level *

Flight (days) (kcal/24 hr)

Gemini 4 4 2410

5 8 2010

7 14 2219

Vostok 3 2400

4 2100

5 2100

*Based on analysis of LiOH canisters for carbon

dioxide.

(Data from Berry & Catterson, 1967)
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Work and Heat Dissipation

When a man begins muscular work, there is an immediate increase in energy
release from the high energy phosphate bonds of adenosine triphosphate, and the
breakdown of energy-rich phosphocreatine, followed by renewal from carbo-

hydrate (glucose and glycogen) fuel stores. Some of the muscle energy may be
applied to an external load, while the rest is expended in internal work, hence
appearing only as heat. When a man walks or runs on a level surface, all the
increased energy used appears as heat, that is, all the work is internal. This extra

heat is stored, causing a rise in the temperature of the muscle, then is carried off by
conduction to the skin and by convective cooling via the increased flow of blood
through the muscle. As the work continues, the body begins to dissipate more heat
to prevent an uncontrolled rise in general body temperature. This change in the rate
of heat dissipation can be measured in a calorimeter, as illustrated in figure 18-5.
Total heat loss, indicated in the figure, is the sum of respiratory heat loss, convec-

tive heat loss and radiative heat loss from the body surface, and evaporative heat
loss from sweating.

E

-20 - 10 0 10 20 30 40 SO 60 70

Figure 18-5. Example of direct calorimetric measurement with subject doing mild work.
Up to time O, the subject was resting in the supine position on a net hammock in the
calorimeter box; starting at time O, he worked with a crank ergometer, still lying down,
against an external load of .36 kcal/min, or about 25 watts. (Redrawn from Benzinger &
Kitzinger, 1963)

It is the skeletal muscles that produce the extra heat during increased physical
activity. Some organs, like the heart, become more active; some, like the brain, do

not change; and some, like the kidney, decrease their activity. None of these organs
is of significant metabolic size compared to skeletal muscle (see table 18-1). As
seen in figure 18-5, the increased heat production from muscular work is followed
somewhat later by an increase in heat picked up by the calorimeter.

Similar data have been obtained in experiments with men working in water
cooled suits. The subjects involved in the study illustrated in figure 18-6 were ther-
mally isolated in insulated, impermeable coveralls, with cooling controlled so that
they neither felt cold nor did they sweat (i.e., their weight loss was less than
100 gm/hr). The curves of figures 18-6and 18-7 show that metabolic heat

production (M) calculated from oxygen consumption (V-o 2) increased soon after
work began, and that heat loss (H) to the water cooled suit increased
somewhat later.
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Figure 18-6. Heat production curves (M), calculated from continuous measurement of 02
oonsumption and of heat loss (H) to a water cooled suit, including a small increment from
evaporative heat loss from the skin and respiratory tract. Averaged data for 6 experiments,
4 subjects. [Discrepancy between M and H, espedally in the second hour when there was
evidently a physiological steady state, was due in part to the heat storage which occurs
naturally in the first part of the day (the first half of the circadian cycle), and in part to
measurement error.] (Redrawn from Webb & Annis, 1968)

From the experiments discussed above, it became evident that oxygen
consumption and heat dissipation increased exponentially to their final values,
and that each function had a characteristic time constant. Webb et al. (1970)
gave numerical values to these metabolic time constants, in addition to time

constants for some other physiological variables that change with work
(table 18-3).

To illustrate the point, the general shapes of the M and H curves, using their
characteristic time constants, are given in figure 18-8.

When the initial exponential transient has passed, and heat dissipation has been
adjusted to match heat production, a more or less steady state persists
throughout the rest of the work, as seen in figure 186. When work is over,
exponential decays in M and H characterize the return to resting levels.

Figure 18-9 shows heat dissipation during a single experiment lasting
16 hours, during which the subject did muscular work (walked on a treadmill at
4.8 km/hr or 3 mph for two 1-hour periods), and during the rest of the day
carried out quiet activities like reading. The kind of near-calorimetric data
depicted in the figure verify the general work, heat, and oxygen cost data
discussed in this chapter. Calorimetric heat balances accurate to 1 percent have
been made since this chapter was written. The technique is described by Webb et
al., (1972) and a fundamental circadian rhythm of metabolism reported by
Webb (1971).
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uphill for 3 mi. was added to H curve. Averaged data for 6 experiments, 4 subjects.

(Redrawn from Webb & Annis, 1968)

Table 18-3

Time Constants for Exponential Changes
Following Onset of Work

Physiological Measure Time Constant (rain)

Heart rate 0.4

M (from VO2) 0.5

Mean skin temperature 1.0 (Estimated)

Rectal temperature 10.0

Heat loss 10.0

These recent experiments with controlled water cooling in thermally
i_lated men, along with tile comparable measurements in water cooled
space suits shown in figures 18-25 and 18-26 at the end of the chapter, are
essentially calorimetric. If continued, they should provide excellent design
data for human cooling systems, and modernize our information about
human energy exchange. Meanwhile, our best source is the extensive
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literature on the oxygen co_s of specific activities, which translate into heat
and work data by the methods already described.
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Figure 18-8. Pure shapes of exponential changes of two variables, V02 and H,
based on their individual time constants, a.s given in table 18-3.
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measured by collecting expired air and analyzing for 02 and C02. (Redrawn from
Wehh et al., 1970)
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Oxygen Costs of Specific Activities

To design life support equipment it is essential to be able to estimate
heat production for the activities involved. There is a sizable body of data
available for a large number of specific human activities, all based on
oxygen cost, hence heat production. Tables 18-4 and 18-5 give this sort of
data. The tabulated values have been adjusted for a man 175 cm (69 inches)
tall who weighs 76 kg (167 Ib), which are the mean values for the original
seven Mercury astronauts. The means for the 43 current astronauts
are 177 cm (69-1/2 inches) in height and 74 kg (163-1/2 Ib) in weight.

Important subject-to-subject differences exist even in men of the same
size. These commonly give rise to variations as high as 60 percent when
different men are performing the same task, as high as 30 percent when
adjustments for body size are made, and as high as 10 to 15 percent when
repeated measurements are taken on the same man.

The efficiency with which external work is accomplished also varies
widely. It is lowest in the work of respiration (less than 5 percent), is 10 to
20 percent for common tasks, and highest in bicycling and walking on the
inclined treadmill (up to 35 percent and occasionally 40 percent in trained
men). Several apparent discrepancies in the tabulated values however, are
indicative of the imprecision of such data. This sort of variation is to be
expected. For example, "shoveling sand" occurs twice; once under
"Moderate activity-standing," and again under "Heavy activity-standing,"
with an appropriately higher level of energy cost. Both measurements shown
have been reported in the literature, and both are probably valid for the
subjects and activities measured. These disparities may be due to the wide
range of subject-to-subject differences mentioned above, to differences in the

rate of work, or to some variation in experimental technique.

The oxygen cost of moving at different speeds over a firm level surface
is shown graphically in figure 18-10. If a man walks or runs uphill, and if

he is carrying extra weight, oxygen costs increase significantly. Figure 18-11
shows data of this kind for treadmill work. The chart, which permits
estimation of oxygen consumption, is based on extensive experiments in few
subjects. The upper segment is based on two middle-distance runners, the
lower segment, on 10 healthy male volunteer walkers. The hatched area

indicates a range of values of the so-called "maximum aerobic capacity,"
which is approximately equal to the highest oxygen consumption that can
be maintained continuously. Its value depends primarily on the body build
and degree of training of the subject. Considerable variation must be
expected, both between subjects and from experiment to experiment. Since
only well-trained men are capable of sustained climbing, few men will be
capable of reproducing the most severe combinations depicted.

Certain environmental stresses cause increases in oxygen cost. Three such
conditions are vibration (figure 18-12), acceleration (figure 18-13), and heat
(figure 18-14).
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Table 18-4

Oxygen Cost of Everyday Activities

Activity

Asle£_J

Sleeping, men over 40

Sleeping, men aged 30 -- 40

Sleeping, men aged 20 -- 30

Sleeping, men aged 15 -- 20

Resting

Lying fully relaxed

Lying moderately relaxed

Lying awake, after meals

Sitting at rest

Very light activity --seated

Writing

Riding in automobile

Typing

Polishing

Very light activity--standing

Relaxed

Drafting

Taking lecture notes

Peeling potatoes

Light activity--seated

Playing musical instruments

Repairing boots and shoes

At lecture

Assembling weapons

Light activity--standing

Entering ledgers

Washing clothes

Ironing

Scrubbing

Light activity--moving

Slow movement about room

Vehicle repairs

Slow walking

Wash ing

Oxygen

Consumption

(liters/min)

0.22

0.24

0.24

0.25

0.24

0.26

0.28

0.34

0.36

0.40

0.46

0.48

0.36

0.38

0.40

0.42

0.58

0.60

0.60

0.72

0.52

0.74

0.88

0.94

0.50

0.68

0.76

0.84

Equivalent

Heat Production

(kcal/min)

1.1

1.2

1.2

1.3

1.2

1.3

1.4

1.7

1.8

2.0

2.3

2.4

1.8

1.9

2.0

2.1

2.9

3.0

3.0

3.6

2.6

3.7

4.4

4.7

2.5

3.4

3.8

4.2
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Table 18 -4 (Continued)

Oxygen Cost of Everyday Activities

Activities

Moderate activity-lying

Creeping, crawling, prone resting maneuvers

Crawling

Swimming breaststroke at 1 mph

Swimming crawl at 1 mph

Moderate activity--sitting

Rowing for pleasure

Cycling at 6 - 11 mph

Cycling rapidly

Trotting on horseback

Moderate activity--standing

Gardening

Chopping wood

Baseball pitching

Shoveling sand

Moderate activity-moving

Golf

Table tennis

Tennis

Army drill

Heavy activity--lying

Leg exercises, average

Swimming breaststroke at 1.6 mph

Swimming backstroke at 1.0 mph

Lying on back, head raising

Heavy activity--sitting

Cycling rapidly, own pace

Cycling at 10 mph, heavy bicycle

Cycling in race (100 mi in 4 hr 22 rain)

Oxygen

Consumption

Trotting on horseback

Heavy activity--standing

Chopping wood

Shoveling sand

Sawing wood by hand

Digging

(liters/min)

1.14

1.22

1.36

1.40

1.00

1.14

1.38

1.42

1.16

1.24

1.30

1.36

1.08

1.16

1.26

1.42

1.50

1.64

1.66

1.76

1.66

1.78

1.96

1.96

1.50

1.54

1.60

1.78

Equivalent

Heat Production

(kcal/min)

5.7

6.1

6.8

7.0

5.0

5.7

6.9

7.1

5.8

6.2

6.5

6.8

5.4

5.8

6.3

7.1

7.5

8.2

8.3

8.8

8.3

8.9

9.8

9.8

7.5

7.7

8.0

8.9
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Table 18-4 (Continued)

Oxygen Cost of Everyday Activities

861

Activities

Heavy activity--moving

Skating at 9 mph

Playing soccer

Skiing at 3 mph on level

Climbing stairs at 116 steps/rain

Very heavy activity-sitting

Cycling at 13.2 mph

Rowing with two oars at 3.5 mph

Galloping on horseback

Sculling (97 strokes/min)

Very heavy activity-moving

Oxygen

Consumption

(liters/min)

1.56

1.66

1.80

1.96

Fencing

Playing squash

Playing basketball

Climbing stairs

Extreme activity

Wrestling

Marching at double

Endurance marching

Harvard Step Test

2.00

2.20

2.28

2.52

2.10

2.10

2.28

2.40

2.60

2.66

2.96

3.22

Equivalent

Heat Production

(kcal/min)

7.8

8.3

9.0

9.8

10.0

11.0

11.4

12.6

10.5

10.5

11.4

12.0

13.0

13.3

14.8

16.1
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Table 18-5

Oxygen Cost of Special Activities

Activities

Engineering tasks

Medium assembly work

Welding
Sheet metal work

Machining

Punching

Machine fitting

Heavy asseml:dy work--noncontinuous

Driving vehicles and piloting aircraft

Driving a car in light traffic

Night flying-DC-3

Piloting DC-3 in level flight

Piloting helicopters

Instrument landing-DC-4

Piloting light aircraft in rough air
Taxiing DC-3

Piloting bomber aircraft in combat

Oxygen
Consumption

(Iiters/min )

0.58
0.60

0.62

0.66

0.70

0.90

1.02

0.26

0.32

0.34

0.36

0.50

0.54
0.58

0.58

Driving car in heavy traffic

Driving truck

Driving motorcycle

Moving over rough terrain on foot

Flat, firm road

Grass path
Stubble field

Deeply plowed field

Steep 45 ° slope
Plowed field

Soft snow, with 44 Ib load

Load carrying

Walking on level with 58 Ib load,
trai ned men

Walking on level with 67 Ib load,
trai ned men

Walking on level with 75 Ib load,
trained men

Walking up 36% grade with 43 Ib

load, sedentary men

0.64

0.66

0.70

2.5 mph 0.56 -- 0.98

2.5 0.64 -- 1.02

2.5 0.80 -- 1.22

2.0 0.98 -- 1.38

1.5 0.98 -- 1.38

3.3 1.56

2.5 4.2

2.1 mph 0.38
2.7 0.58

3.4 0.92

4,1 1.66

2.1 mph 0.46
2.7 0.58

3.4 1.02

4.1 1.58

2.1 mph 0.50
2.7 0.68

3.4 1.64

4.1 1.72

0.5 mph 1.34
1.0 2.46

1.5 3.20

Equ ivalen t
Heat Production

(kcal/min )

2.9

3.0

3.1
3.3

3.5
4.5

5.1

1.3

1.6

1.7

1.8

2.5

2.7

2.9

2.9

3.2

3.3

3.5

2.8 --4.9

3.2 --5.1

4.0 -- 6.1

4.9 -- 6.9

4.9 -- 6.9

7.8

21.0

1.9
2.9

4.6

8.3

2.3

2.9

5.1
8.4

2.5

3A

5.2

8.6

6.7

12.3

16.0
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Table 18-5 (Continued)

Oxygen Cost of Special Activities

863

Oxygen Equivalent

Activities Consumption Heat Production
(liters/min) (kcal/min)

Swimming on surface

Breaststroke 1 mph
2

3

Crawl 1 mph
2

3

Butterfly 1 mph
2

3

Wal king under water

Walking in tank minimal rate

Walking on muddy bottom minimal rate

Walking in tank maximal rate

Walking on muddy bottom maximal rate

Movement in snow

Skiing in loose snow 2.6 mph

Sled pulling--hard snow 2.2

Snowshoeing (bearpaw) 2.5

Skiing on level 3.0

Sled pulling--low drag, reed. snow 2.0

Snowshoeing--trail type 2.5

Walking, 12--18 in. snow, 2.5
breakable crust

Skiing on loose snow 5.2

Snowshoeing--trail type 3.5

Skiing on loose snow 8.1

Measured work at different altitudes

Bicycle ergometer

Workload Altitude

430 kg-m/min 720 mm Hg
430 620

430 520

Mountain climbing

880- 1037 kg-m/min 610 mm Hg
566- 786 425

393- 580 370

1.40

5.80

19.40

1.80

3.60

9.60

2.40

5.80

15.00

0.58

1.10

1.44

1.68

1.62

1.72

1.74

1.80
1.94

2.06

2.54

2.92

2.96
4.12

7.0

29.0

97.0

9.0

18.0

48.0

12.0

29.0

75.0

2.9

5.5

7.2

8.4

1.02

0.98

1.08

1.84 - 2.20

1.54 -- 1.90
1.28 - 2.10

8.1

8.6

8.7

9.0

9.7

10.3

12.7

14.6

14.8

20.6

5.1

4.9

5,4

9.2 -- 11.0

7.7- 9.5

6.4 -- 10.5

Data for tables 18--4 and 18--5 were drawn from both published and unpublished sources.
The principal references consulted were: Altman at al. (1958), Billings et el. (1962), Buskirk
et al. (1956), Cathcart et el. (1923), Christensen (1953), Christensen end Hogberg (1950),
Garry et el. (1955), Glasow and M011er (1951), Karpovich (1953), Lit-tell and Joy (1969),
Mayer (1959), Morehouse end Cherry (1945), Morehouseand Miller (1959), Passmoreet el.
(1952), Passmore and Durnin (1955), Pollack et el. (1944), Pugh (1958), Ramzin (1948),
Rose (1944), Turner (1955), and U.S. Navy (1956).
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Figure 18-14. Increase in 02 consumption as body temperature rises during heat
exposure, at rest and during the light activity of operating a flight simulator. (Adapted
from Jones & Taylor, 1956)

Work Capacity

Although most regular activities are designed to use less than a man's
maximum effort, an effort which can be sustained for only a short time,

nevertheless in an emergency a man may use his greatest power, and designs
of respiratory and cooling equipment must allow for highest peak rates.

Figure 18-15 shows how a man's peak rates depend on the duration of
the effort. The harder the effort, the shorter the time for which it can be

sustained. For 30 to 60 seconds, men can work against an external load
developing a power of around 500 W (about two-thirds of a horsepower),
while at the same time, assuming 20percent efficiency, he will produce
excess heat at the rate of 2000 g_ and burn fuel at the rate of

2500 W (36 kcal/min). Brief periods of maximal exertion, those lasting less
than 2 minutes, are done at levels of oxygen demand which cannot be met
by the man's capacity to consume oxygen, hence this kind of work is

called anaerobic and produces oxygen debt (see figures 18-21 to 18-23). The
data shown in figure 18-15 are special in that: (1)the types of work
(running, rowing, cycling, and cranking) were chosen to yield highest power,
and at efficiencies above 20percent, and (2)the "healthy men" were

young, physically active and fit, and accustomed to doing the work, while
the champion athletes were unusual physical specimens highly trained and
highly motivated to work at maximum effort.
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Figure l8-15. Maximum efforts of healthy fit men and ehampion a_hletcs. (After
Fletcher, 1964; from Abbott and Bigland, 1953; Asmussen, 1950; Astrand, 1952;
Bannister & Cunningham, 1954; Benedict & Catheart, 1913; Benedict & Mursehhauser,

1915; Henderson & Haggard, 1925; Nielsen & Hanson, 1937; Robinson, 1938; Wilkie,
1957)

The maximum effort of durations longer than 2 or 3 minutes is limited

by a given individual's greatest ability to consume oxygen-his aerobic

power. Healthy fit men can consume 50 ml/kg of body weight each minute.

Less fit men consume 30or 40ml/kg-min. Extremely fit athletes can

onsume 60 or 70 ml/kg-min, the record figure being.85 ml/kg-min (Saltin &
strand, 1967. This maximal oxygen consumption (Vo2-max) is often used

to evaluate the effect of physical conditioning programs.

If one looks at '¢o2-max in men of various ages, it can be seen that

this measure reaches its greatest values in the late teens and twenties, then

declines slowly as the decades go by. Figures 18-16, 18-17, and 18-18 show

mean data of this kind from several studies. These children and men were

all healthy, not obese, and reasonably fit. Notice in figure 18-18 that the

data are different for different populations. Several comparative studies have

been reported, one of which is shown in table 18-6, from Cumming (1967)

Determining a man s Vo2-max is an important measurement in work

physiology. The pure form of the procedure is illustrated in figure 18-19.

Note that as work increases, oxygen cost increases until further work loads

cause no further increase in VO2: 250 W brought the oxygen uptake up to

the subject's maximum and 300W did not further increase the oxygen
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uptake. The increased work load was possible thanks to anaerobic processes
(maximal aerobic power = 3.5 liters/min).

60 •

O • ATHLETES

/_. • TRAINED STUDENTS

so

_ 40

D 30

_ 20

THIN LINES = +2 x O

i '
o L__L ___.L__ _L _ _ J L__ _-- --J

0 t 0 20 30 40 50 60 70

AGE Iyears)

Figure 18-16. Mean values for maximal 02 uptake during exercise on treadmills or

licyde ergorneters in 350 Swedish boys and girls and men and women from 4 to

65 years of age. Included due values for 3 athletes and 86 trained students of physical
education. (Redrawn from Astrand & Rodahl, 1970; used by permission of Pergamon Press,

Oxford)
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Figure 18-17. Maximal 0 2 consumption for German men and women in relation to age,

including data from athletes of both sexes. (Redrawn from Astrand & Rodahl, 1970; used

by permission of Johann Ambro_us Barth, publisher)
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Figure 18-18. Maximal 02 consumption for American and women in relation to age, from

several studies. (Redrawn from Astrand & Rodahl, 1970, by permission of McGraw-Hill

Book Company)

Table 18-6

Maximal Oxygen Uptake of Men 20 to 40 Years of Age (Mean Values)

Oxygen Uptake

Subjects (ml/kg -- min)

Average Caucasian males

Stockholm 52

Boston 53

Dallas 45

Norway 44

Winnipeg 44

Army recruits

U.S.A. 48

South Africa 48

Primitive populations

Bantu mining recruits 41

Bantu miners 48

Kalahari bushmen 47

U.S.A. Negro sharecroppers 50

Lapps 53

Arctic Indians 49

Eskimos 41

Athletes

Sweden-physical education students 59

Sweden --athletes 67

Sweden-cross-country skiers 80

Norway--athletes 71

Landy (runner) 77

Winnipeg-water-polo players 53

Winnipeg--track 72

(Cumming, 1970)
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The effect of physical conditioning programs on untrained but otherwise

healthy men is to increase their Vo2-max by 10 to 20 percent, as shown in
figure 18-20. Notice also that a trained person can endure a prolonged
period of work at a greater proportion of his maximum capacity than can

an untrained person.

A
C

t*

v

tit

V

I--

o"

5-

4-

3--

2-

14

! I
0 1

OWER

\

PERCENTAGE OF MAXIMAL

AEROBIC POWER WHICH

MAY BE TAXED DURING

PROLONGED WORK

1 t 1
2 3 4

PERIOD OF TRAINING (months)

I 1
5 6

lrlgure 18-20. Effect of training on maximal 02 uptake. With training, subject is also

able to use a goreater percentage of his maximal 02 uptake during prolonged work.
(Redrawn from Astrand & Rodahl,1970, by permission of McGraw-Hill Book Company)
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It seems reasonable to suppose that quite sedentary, hence unfit, people
could show greater than 20 percent changes in Vo2-max following a physical
conditioning program. An example is given by Rodahl and Issekutz (1962), who
observed a 25 percent change in women who trained by skipping rope daily for
4 weeks. Saltin et al. (1968) reported a 33 percent increase in three sedentary
young men who trained vigorously for 55 days, while two other men who were
previously active showed little change in Vo2-max from the same program.

Anaerobic Work

If _ro2-max data are compared with the maximum power data from

figure 18-19, converting watts of external work into V02 (assuming 25 percent

efficiency), then the high rates of heat production in efforts lasting less than
1 minute show heat production above 20 kcal/min at an apparent oxygen cost of
more than 4 liters per minute. These call for oxygen at rates greater than a
healthy man's ability to consume oxygen. He is working anaerobically. For brief
maximal efforts lasting only up to 1 or 2 minutes, his muscles get energy by
splitting energy rich phosphates and glycogen, as contrasted with the aerobic
oxidation of carbohydrates and fat used in the muscle work which can be
sustained for 10 minutes or more.

At the beginning of hard work, circulation and oxygen supply increase
exponentially, hence some of the work is anaerobic and an oxygen deficit
occurs. After the work, oxygen consumption decays exponentially, and the
excess oxygen is used to oxidize the end products of anaerobic glycolysis, e.g.,
lactic acid. Figure 18-21 shows acquisition of oxygen deficit early in hard work
and its repayment (oxygen debt) after the work is finished.
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Figure 18-21. Stylized presentation of 02 uptake during strenuous but submaximal work
for 3-1/2 min., followed by the 02 uptake during recovery. Note that the work hasan 02
cost of 43 ml/kg-min, but that this level of 02 consumption is reached exponentially (of.
table 18-3 and figure 18-8), so that there is an 02 deficit before the final value is reached,
paid hack during recovery period. (Hermansen, 1969; used with permission)
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The highest values for oxygen debt are found when a maximum

(exhausting) effort is made over a 2 or 3 minute period. Figure 18-22 shows

oxygen debt as a function of work load, and figure 18-23 shows the course

of oxygen consumption, oxygen debt, and hctic acid accumulation during a

maximal effort lasting 3 minutes.

I-

uJ

$0

6D

4.0

20

Bicycle exercise]subject T.T. /"

J

/

I I I I
25 50 75 loo%

MAX. 0 2 UPTAKE ('/.}

Figure 18-22. 02 debt increasing as the work becomes more severe, expressed as
percentage of subject's maximal 02 uptake. (Hermansen, 1969, used with permission)
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Figure 18-23. Cumulative increases in 02 debt and lactic acid in the Mood, shown
during a maximal work effort lasting 3nfinutes. (Hermansen, 1969; used with
permission)
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Working in Space Suits

While ordinary clothing is no great burden, there is sizable extra effort
involved in moving about and working in a pressurized space suit. Roth

(1966) prepared a thorough analysis of this problem, as well as the
mechanics of gait, the effects of variations in terrain, and the probable
effect of walking in one-sixth gravity. Table 18-7 gives figures for the
primary problem, the added metabolic cost (oxygen cost) of normal

activities in space suits.

Table 18-7

Metabolic Cost of Space Suits

(Worn in 1 g in 1 Atm Pressure)

Activity

Walking on treadmill at 1.6 km/hr (0.8 mph)

Light clothing

Space suit unpressurized

Space suit pressurized at 180 mm Hg (3.5 psi)

Space suit pressurized at 258 mm Hg (5.0 psi)

Sitting in spacecraft mockup operating switches every 5 sec

Space suit unpressurized

Space suit pressurized at 180 mm Hg (3.5 psi)

Heat Production

kcal/min watts

2.2 152

3.6 252

6.4 445

7.7 592

t .8 123

2.5 173

(Adapted from LaChance, 1964)

Data on the energy cost of moving at various speeds in Earth gravity
and a simulated lunar gravity of 1/6 g are summarized in figure 18-24. This

figure shows clearly that a pressurized space suit makes walking a strenuous
exercise, and that walking speeds above 2 to 3 km/hr (1.2 to 1.9 mph) are
probably too difficult to maintain for long. However, by the various
techniques used for simulating the 1/6 g lunar gravity, it appears that
progression across the moon's surface at 5 km/hr (3 mph) should be possible
at reasonable cost. Further details may be found in Wortz et al. (1969) and

Robertson and Wortz (1970).

Actual experience with lunar progression in Apollo 11 and 12 confirmed
that the astronaut can move about without high metabolic cost. Various

hopping and bouncing movements were devised to replace the usual earthly

stride. During one 20-minute period late in Apollo ll, Astronaut Neil
Armstrong showed a heart rate of 140 to 150 as he hurried to complete a
collection of surface samples, but generally the heart rates of the four men
who worked on the moon in these missions were 90to llObeats/min,

which indicates relatively low effort.

487-858 0 - 73 - 56
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Figure 18-24. Energy expenditure for walking in space suits at various speeds, based

on 02 consumption measurements in laboratory and in _mulators which partially

produce effects of lunar gravity (1/6g). (Data from Hewes, 1967; Kincaide, 1966;

Rohertson & Wortz, 1968)

Energy exchange data are available from the Apollo 11 mission. They are
based on three different observations-heart rate, oxygen depletion from a
portable reservoir, and temperature data from the water cooled garment
worn under the space suit. These data are shown in figures 18-25 and 18-26.

Berry (1970) suggests that the energy data from analysis of the water
cooled garment are the most reliable of the three measurements. The

technique is close to direct calorimetry, and the data are similar to those
shown in figures 18-6, 18-7, and 18-9 earlier in this chapter.
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Figure 18-25. Cumulative totals of heat produced in walking and working on the moon for
Apollo 11 commander, showing three simultaneous estimates from analyzing temperature
data from water cooled suit, from depletion of 0 2 from storage cylinder, and from known
heart rate response of this man as a function of 0 2 consumption. (Redrawn from Berry,
1970)
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Figure18-26. Data similar to those in figure 18-25, for the lunar module pilot,
during his time on the lunar surface. (Redrawn from Berry, 1970)
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Man lives and functions in a physical environment that includes thermal,
electromagnetic, and mechanical energies as well as chemical agents which affect
the function of his body. In certain life situations and occupations, the physical
environment may produce significant subjective responses, or strain. The
energies and agents responsible for these effects are referred to as environmental
stresses. Many environmental stresses, such as altitude, temperature, accelera-
tion, vibration, noise, hypoxia, and radiation have been well studied in the

laboratory and are the classic subject matter of environmental physiology. In
most instances, a single environmental stress is studied as a controlled dependent
variable in a specialized laboratory facility. Yet in normal circumstances, one
rarely experiences exposure to a single environmental stress, but rather to an
intricate interplay of several stresses. An astronaut is especially likely to
experience complex environmental interactions. During reentry, he may be
exposed to vibration which may alter his visual acuity; his visual performance
might also be affected by simultaneous exposure to acceleration, noise, heat, and
hyperoxic breathing gas mixtures, as well as prior exposure to the decondition-

ing effects of prolonged confinement, inactivity, and weightlessness.

Relatively few laboratory studies have described the tolerance levels,

physiological effects, or performance degradation during simultaneous or
sequential exposures to two environmental stresses, and fewer still have involved
three or more simultaneous stresses. The available literature on combined

environmental stress is summarized and discussed in this chapter. Although a

Reviewed by John P. Meehan, M.D., University of California School of Medicine.
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moderatelylargebibliographyon combined stress can be accumulated, few
studies have actually been addressed to the question of combined stress
interactions (Broadbent, 1963; Dean & McGiothlen, 1964). Most studies of
combined environmental stress are accidents of experimental design or are con-
cerned with ancillary problems.

A number of obvious factors have limited the study of combined environ-
mental stress in spite of the obvious operational importance of such work. First,
experimental design is excee_tingly complex. The possible number of combina-

tions and permutations of even a small set of environmental stresses is very large.
Economy dictates that one select for study in the laboratory only stress
combinations of particular scientific interest and relevance to a given mission,

occupation, or life style. Second, this type of research requires complex experi-
mental facilities not generally available. Finally, to assure valid conclusions, large
numbers of subjects are required.

This chapter is limited to laboratory or exceptionally well-defined field
studies. A number of studies of "combined stress" are available that report
subject responses in an operational or field situation. The inflight data for

astronauts is a case in point. These data describe the physiological responses of
men exposed to a combination of weightlessness, confinement, noise, hyperoxia,
radiation, and various acceleration forces. Unfortunately, in the operational
setting, appropriate experimental design and controls are usually not possible, so
that a response (decrease in red cell mass, for example) must be taken as a
response to the environment as a whole. It is rarely possible to know which
stress, or which combination of stresses, is responsible for the observed response.
Operational or field studies may be useful to measure accurately the environ-
ment and so define the conditions to be simulated and studied in the laboratory.
Such studies may also point up stress combinations of operational concern and
thereby complement laboratory work. However, the majority of operational or
field studies of environmental stress must be excluded from a consideration of

combined stress interactions. Stress interaction, at present, can only be
examined in specific laboratory situations where the necessary experimental
design can be applied and tight control of conditions assured.

Combined Stress Interactions

The underlying hypothesis of combined stress research is that environmental
factors interact in a systematic fashion which can be measured and/or predicted.

Characterization of Interaction

Environmental stress combinations may be characterized by four descrip-
tors: (1) order of occurrence, (2) duration of exposure, (3) severity of ex-
posure, and (4) type of interaction.

Order of Occurrence. Definitions of the pattern or temporal order of
exposure to combined stresses are straightforward. Stresses are simultaneous
when two or more stresses are applied concurrently; they are sequential when
applied in order, one after another. Note that differing sequences may give



Combined Environmental Stresses 883

different effects, and that the rate and duration of intermittency will sometimes
alter effects. Stresses are complex when the pattern of application is not clearly
simultaneous or sequential; this includes combinations that are both simulta-
neous and sequential, time varying, intermittent patterns, and other complex

profiles.

Duration of Exposure. Arbitrary definitions and categorizations of combined
stress durations cannot be made because of the complexities of the individual
stresses as well as their interactions. The following functional definitions arc

suggested. Stresses may be referred to as transient when a steady-state subject
response is never achieved or where physiological compensatory mechanisms are
inadequate. The term sustained applies when a steady state is achieved and
compensation is adequate. This refers to exposures of generally less than 24
hours. It must be understood that certain physiological responses to environ-

mental stress, and probably to interactions involving these stresses, may take
much longer periods to achieve a steady state; for example, acclimatization to
heat and altitude. The terra chronic denotes exposures lasting longer than 24

hours and includes continuing day-to-day exposures, such as occupational
stresses.

Severity of Exposure. The determination of the severity or intensity of
combined stress exposure is complicated by differing and often incompatible
units of measurement of subject response. Such measurements must begin with

the identification of an appropriate index (or indices) of body response, or
strain. Subjective assessment can also be used as a quantitative measure of stress

response. In this case, the subject is asked to describe how severe the environ-
ment was, using descriptors such as noticeable, mild, moderate, severe, very
severe, and intolerable. Although simple in concept, such data are often of great

utility and considerable validity. Stevens (1951) has shown that reliable and
valid scales, particularly ratio scales, can be derived as a result of subjective
assessment. The Cooper pilot opinion rating scale of aircraft handling and ride
quality is an excellent example of the value of the subjective rating scale
(Cooper, 1957). Modifications of this technique may be an important tool with
which to rank the relative severity of combined stress environments. The use of

criteria based upon diminished ability to perform a particular task which is
relevant to the mission under study is also a particularly sensitive and useful

index of response.

Type of Interaction. Environmental stresses may, hypothetically, interact in
three general ways. When stresses act by addition, the physiological effect of a
combination of environmental stresses is equal to the linear sum of the single
effects of the stresses when presented separately. When synergism is involved,
the effect of the combination is greater than the simple sum of the effects of

each stress alone. Antagonism provides a total effect which is less than the linear
sum of the single effects. Dean and McGlothlen (1964) describe in detail the
complexities of the analysis of such interactions, including the use of analysis of
variance models.

The criteria used to define a stress effect or endpoint must always be

specified. A combination of stressors that is synergistic by one criterion might be
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antagonisticbyanother.Forexample,+Gz accelerationandGy.rotationmight
besynergisticoradditivewithregardto heartratebutantagonisticwithregard
to peripherallightloss.Antagonisticinteractionsshouldbeconsideredforthe
developmentof newprotectivedevices.

Thedefinitionsof the words interactive and additive are tied to experimental
design and analysis. For example, using three stresses, altitude (A), noise (N),
and heat (H), assume the likely use of an experimental design based on Analysis
of Variance (ANOVAR).

ADDITION

EA, N,H = E A + E N + E H

SYNERGISM

E A,N,H, >E A + E N + E H

ANTAGONISM < EA, N, H

EA, N,H

Where:

E A, N, H

EA

EN

EH

= Total effect of altitude, heat, noise

: effect altitude alone

= effect noise alone

= effect of heat alone

Such a hypothetical ANOVAR model (after Dean & McGlothlen, 1964) implies
that a set of scores by a single subject will be made up of the grand mean, the
three main effects of the individual stresses, four interaction terms, and an error
term. Groups of subjects and time or order are additional sources of variance and

add additional terms to the equation. The hypothesis of additivity is checked by

testing the interaction terms of the ANOVAR model for statistical significance.
ANOVAR assumes additivity, and, if this assumption is met, the interaction
effects will be zero, that is, there will be no interaction. Thus, in an ANOVAR
model, when addition of effects is present, there is no interaction. Presence of
statistically significant interaction terms contradicts the addition of effects

hypothesis, and the remaining possibilities of synergism or antagonism are tested
by examining the effect of the single stresses not in combination.

Tolerance to Combined Stress

In exposure to most environmental stresses, tolerance is defined by certain
unique subjective or objective criteria which determine the endpoint of the
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exposure; for example, central light loss during +G z acceleration or rapidly rising
body temperature in heat. In general, a review of the available literature
(discussed later) suggests that tolerance to a particular stress combination is
determined essentially by that stress which, if taken alone, would be the most
severe. Rather than define a new tolerance endpoint, it has usually been found
easier to ask, "How does a second stress alter the tolerance to a primary stress?"

This approach provides a useful construct for organizing the available literature
into sets of combined environmental stresses; primarily acceleration, or primarily

heat, etc. It is usually possible to ascertain in a combined stress study which
stress was the most severe and which stress was the one of primary interest to
the authors. The literature review presented in this chapter is organized in this
manner.

Interactions of Environmental Stresses with Host Factors

Environmental physiology describes the interaction of physical environments
with the subject or host in terms of the response or modification of the host. It
is ordinarily understood that the initial condition of the host is that of complete
normality: a healthy young adult (male) with average physical characteristics,
unacclimatized and physically fit, rested, relaxed, lightly clothed, unrestrained,
without protective equipment, drugs or other countermeasures, and without task
assignments. In real life situations, this is rarely the case, and in space missions,
few, if any, of these conditions may obtain. However, any deviation from this
"normal" state will modify the host and potentially alter, and perhaps
determine, the effects of environmental stress. It is important to separate clearly
what factors are considered to reside in the host. For example, exercise, though
often considered to be an environmental stress, is in fact a subject state or host
factor. Exercise is part of a continuum of activity ranging from strict inactivity,
as in plaster cast immobilization, to maximal rhythmic exertion. Other factors
often considered environmental stresses, but which should be considered host

factors, are changes in blood or body fluid volume, change in sleep pattern, and
changes in mental set, as in anxiety. The distinction between host and environ-
mental factors are necessary for a correct definition of the subject matter of
combined environmental stress.

The subject or host can be represented as the summation of all the
physiological and psychological factors which are relevant to the environmental
conditions under consideration. The descriptors in figure 19-1 are a set of factors
which must be defined to characterize the host. Some of these are relatively

fixed, such as height, weight, and age. Others, such as physiological, psycho-
logical, and social factors, may vary over wide ranges and profoundly alter the

response of the human organism to its environment.

Of special importance for space flight problems is "task loading," which
includes all of those demands for sensory, higher mental, and motor per-
formance required for a particular mission. The requirement to perform a
complex maneuver in a high performance vehicle while responding to multiple
communication channels and simultaneously monitoring several visual displays,

for example, may alter the response to environmental stress. Task loading is
arbitrarily included for the purposes of this discussion under reciprocative
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factors. It represents a segment of the continuous interaction between a subject
and his environment.

\\\. \
\

\ \

\\ \
\\ \

\
\ \REClPROCATIVE

FACTORS \ \
\

Task Loading_ \

Clothing _\

Seating-Restraint_

Incentives

ENVIRONMENTAL
FACTORS

Electromagnetic

Thermal

Atmospheric

Biodynamic

Chemical-Toxic

Temporo-Spatial

Miscellaneous

HOST

FACTORS

Figure 19-1. Three dimerrsional representation of the variables which must be controlled or
otherwise defined and specified when conducting environmental research. (Modified from
Rohles, 1965)

Complexity of the Problem

A study of combined environmental stresses is complex in all its aspects.

Definition of each of the environments of concern is sometimes difficult; inde-

pendent and simultaneous measurements of each environment of the pertinent

combination may prove impossible under field conditions. The temperature,

humidity, noise, acceleration, and vibration loads to be encountered by the pilot

of a particular aircraft on a specific mission are usually not available to either the

research scientist or systems designer. The problem of combined environmental

stress can only be approached operationally, by studying the specific subsets or

combinations which are peculiar to specific mission phases.

A related problem is the limitation of simulator capability. The production

of combined stress environments in the laboratory requires the use of complex

simulators, available, in general, only in large governmental or industrial facili-

ties. Such facilities are complicated and expensive to operate and limit the scope

of potential work in this field. Presently operating combined stress facilities are
discussed later.
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Another related complexity in the area of combined stress research is the

problem of simulation versus representation. For example, a study of heat,
noise, and vibration devised to simulate a real vehicle-mission combination

would usually generate specific data which are not often representative of the
general problem of heat, noise, and vibration. Specificity reduces generalizabil-
ity. Combined stress studies are generally so large in scope, expensive to
conduct, and difficult to replicate that this aspect of the problem becomes very
complex. It is obvious that no general body of scientific information about
combined stress interactions will develop until relatively nonspecific "representa-
tional" simulations are examined.

Another difficult problem in this area is in the selection of measures. A

physiological measure appropriate to one environment may be relatively
meaningless in another. For example, peripheral light loss, useful in acceleration
research, has relatively little meaning in thermal stress. It can be fairly stated
that, until a major group of environmental stresses is examined in all possible

combinations using the same measures (preferably in the same subjects or
comparable populations), no significant progress will be made in combined stress
physiology. Only two or three such programs have ever been considered. A
closely related problem concerns human performance measures. Do environ-
mental stresses in combination affect the subject's performance more severely

than when applied singly? To answer this question, a battery of performance
tests is required which is specific, valid, and equally pertinent to a number of
stresses. A task which is sensitive and specific for vibration may be insensitive to
heat stress. The development of such a performance battery is difficult and
apparently has not yet been successfully achieved. Another important problem
with the use of performance measures is the variability between and among
subjects, which tends to make tests insensitive to small effects. Performance
measurements must be developed that relate directly and monotonically to stress
intensity, that are generalizable to multiple environments, and that are valid and
sensitive measures of operationally relevant tasks. Recent work suggests that
certain parameters of a linear human operator model, including the describing
function and the remnant term, may represent such measures (Jex & Allen,

1970).

The Use of Models

The use of mathematical and analog models has recently been adapted from

engineering practice to the study of physiological systems and offers a number
of advantages in handling the complexities involving combined stress studies.
Modeling activities allow for the explicit definition of simplifying assumptions of
the system in question, incorporate the best available information concerning
the system, and, when operated, point out data needed to further refine the
model, thereby suggesting new experiments. Good electrical analog models are
available for human thermal regulation and for cardiovascular responses to

positive acceleration. Attempts to combine such models should allow predictions
to be made and hypotheses phrased concerning the interaction of heat and

acceleration (particularly on the cardiovascular system). Human psychomotor
performance is now being modeled with similar techniques.
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Approachto the Study of Combined Environmental Stress

Units

Each environmental stress must be defined and quantified in appropriate
measurement units and its pattern and time profile described in detail. A
complex environment can sometimes be described by correlating secondary
factors with the primary stress, and an integrated unit of stress devised which
represents the complete environment. For example, in considering heat stress,
temperature can be weighted with humidity and airflow to give an "effective
temperature." Unfortunately, practical, comprehensive stress units have not
been standardized for most environments.

Simple Relationships

When the effect of an environmental stress is defined in terms of the evoked

physiologic response or strain, various degrees of severity of another stress can
be evaluated by their effect on the primary stress-strain pattern. These effects
can be represented in two general ways.

1. Change in the amplitude of response of the index of strain. For example,
an increase in effective temperature of 90°F will be associated with a certain
increase of heart rate. Increments of +Gz stress will alter this heart rate response,
and the interaction of heat and acceleration can be presented in terms of
increments of heart rate above control values. This can also be represented by
percent change above control heart rate rise.

2. Alteration of the rate of change of a physiological variable, but not the
final amplitude. A temporal relationship can also be shown by demonstrating
alteration in time to reach a definitive or arbitrary endpoint; the time-to-
peripheral light loss during +G z stress is shortened as effective temperature
increases.

Scaling

Study of the interaction of environments is complicated by the inability to
relate the different units and scales used to quantify the various environments.
Effects of environmental stress can, however, be added or related to each other

quantitatively by appropriate sealing or normalization procedures. Each stress
carl be represented in terms of the degree of strain or physiologic response it
produces in a subject. The scaling of a particular set of environmental stresses is
a unique characterization of these individual stresses, and demands the detailed
quantification of each environment being considered, and careful definition of

the index of strain to be used. Because physiological systems are independent
and nonlinear, strain values will hold only for the particular interactions which
have been defined.

Choice of Indices of Strain

There are two prime considerations determining the choice of suitable
indices of strain for evaluatilrg environmental interactions. First, the
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physiologicalor performancemeasuretobcusedmustbeaffectedmeasurably
byeachof theenvironmentsunderstudy.Secondly, the measurement methods
must be technically compatible with the constraints imposed by particular
conditions in which the study will be carried out. In applied studies, indices
would be chosen to provide operationally pertinent information regarding
tolerance limits and performance decrements. The indices to be used must be
individualized for each environmental interaction and for the test conditions in

which the study will be done. Consideration must be given to defining common
physiological pathways in the mecbanism of action of each stress. This concept
is illustrated in figure 19-2. For example, the interaction of heat and vibration
can be evaluated by using peripheral vascular responses as well as by changes in
respiration, since each environment affects both of these indices. Under space
flight conditions, peripheral vascular responses may not be determinable but
ventilation changes could be measured accurately. On the other hand, sweat rate
would not be a suitable index since it is probably not affected by short-term
vibration.

Combined Stress Data

The data on physiological and performance responses of man and animals to
combinations of environmental stress which are available in the literature are

presented in tables 19-1 through 19-9. In search for an organizing principle, it
was felt that in most instances the authors expressed a clear interest in one of
the stresses or that one of the stresses was clearly prepotent. For example,
Martin and Henry (1951) asked how heat exposure affects +G z acceleration
tolerance, as defined by peripheral light loss. These authors' primary interest in
acceleration stress is revealed in their choice of tolerance measures. If interested

primarily in heat, they might have used rate of rise of rectal temperature as their
criterion; if interested in combined stress effects, they would have chosen both
peripheral light loss and rectal temperature responses, and discussed their results
with regard to both criteria. For this reason, the tables are organized by
reference to the "primary" stress, for example, COMBINED STRESS,
PRIMARILY ACCELERATION.

In a subject as complex as this, no literature survey is complete. There is no
generally recognized descriptor for combined or multiple environmental stresses.
The authors, therefore, urge that, in the future, investigators use the keywords
"multiple environmental stres_s" or "combined stress" in the title or in the list
of index or keywords of any relevant paper. At present, it is impossible to
retrieve, by hand or computer, studies dealing with combinations of environ-
mental stres_s. For example, heat and acceleration combinations are found by
screening references dealing with cacb stre_ singly, a large retrieval.

Facilities for Study of Combined Stress

Facilities available in the United States for combined environment simula-

tion have recently been surveyed and reviewed by Tierney (1969). In his article,
primary attention is given to engineering tests of systems and hardware. In the
last tO years, Tierney was able to find about 100 papers published on combined

497-858 O 73 57
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environment testing from numerous facilities throughout the United States.
Only a limited number of man-rated or potentially man-rated combined stress
facilities are available. All arc in government laboratories or in the research
divisions of major aircraft companies. A number of single stress human facilities
are available to which additional environments have been or could be added. For

example, small shakers (vibration devices) have been added to human centrifuges
at the National Aeronautics and Space Administration Ames Research Center,
the Naval Air Development Center, Johnsville, Penn_lvania, and Deutsches

Forschungs und Versuchsanstalt ftir Luft und Raumfabrt, Bad Godesbcrg,
Federal Republic of West Germany. However, in none of these cases was the
original centrifuge arm designed for the added vibration capability, and the
shaker forces and displacements on these devices are very limited and well below
most human tolerance levels. Many human thermal stress facilities include
control of humidity and air motion in addition to temperature and are not
included in this enumeration of combined strcs_ facilities. Table 19-10 is a

summary of the major combined environmental stre_ test facilities presently

operating in this country.

It must be notcd regarding the table that the authors did not conduct a

survey, and there may be other facilities with combined stress capabilities
unknown to them. To the best of the authors' knowledge, however, only two

facilities presently operating were established for the sole purpose of studying
combined environmental stress: the Combincd Stress Test Facility, Boeing

Corporation, Seattle, Washington, and the Dynamic Environment Simulator,
Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio.
These arc the only two facilities including moving-base (acceleration and/or

vibration) capabilities.
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CHAPTER 20

AEROSPACE VEHICLE WATER-WASTE MANAGEMENT

by

Joseph N. Pecoraro

National Aeronautics and Space Administration

The collection and disposal of human wastes, such as urine and feces, in a
spacecraft environment, must be performed in an aesthetic and reliable manner
to prevent degradation of crew performance. This is a difficult task because the
equipment must be designed for use by a human operator in a weightless state,
and biological contamination must be prevented. The design of this equipment is
further complicated by the usual requirement for minimum size, weight, and
power. An artificial force must be created to direct the feces and urine to the
appropriate collection receptacles, thus preventing possible spacecraft
contamination. One method of providing the force required for waste collection

consists of drawing air from the cabin into the collection device so that flatus
and fecal odors will not escape into the spacecraft.

The waste management system controls, transfers, and processes materials
such as feces, emesis, food residues, used expendables, and other wastes. Control
and transfer of urine, condensate, and water from personal hygiene and its

reclamation is considered a waste management function.

Aerospace vehicle waste management systems do not exist as separate
entities; they are a combination of various techniques designed into hardware for
the collection of urine, feces, and waste preservation and disposal and/or

recovery of materials such as water, air, etc. For any system, the chosen
technique must be physiologically and psychologically acceptable to the crew
and provide maximum equipment effectiveness.

Research and development of waste management systems for aerospace
vehicles began in 1958 (Ingrain, 1958; Des Jardins et al., 1960). This work
demonstrated the performance of various techniques for collecting, transporting,
storing, and disposal of wastes on missions up to 120 days. The Project Mercury,

Reviewed by Robert A. Barnbenek, Arngto Corporation, Chicago, minois, and J. D. Zeff, Gen-
eral American Transportation Corporation, Niles, minoi_
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Gemini, and Apollo astronauts were provided with relatively simple equipment,
which was adequate for these relatively short missions. Since 1966, emphasis has
been placed upon the development of equipment for longer missions, which may
require the collection and recovery of usable products from human wastes.

Requirements

Aerospace waste includes all of the items that must be separated from the
crew to prevent biological contamination. The items generally classified as
wastes are: urine, feces, wipes, wash water, food containers, and debris. The
composition and quantity of these wastes are not constant; they are a function
of variables such as the individual, his diet, and the mission. Fortunately, the
exact composition is less important than the quantity-at least from a design
standpoint. The typical composition and nominal quantity of these wastes is
presented in table 20-1.

Table 20-1

Nominal Crewman Metabolic Balance 1

(lb/man-day)

|nput Output

Sol ids

Food 1.36 Urine solids 0.13

Oxygen 0.44 Feces solids 0.07

Hydrogen 0.08 Sweat solids 2 0.04

Carbon 0.60

Other 0.24

Liquids (water)

Drink 3 4.09 Urine 3.31

Food preparation 1.58 Content 4.02

Cold 3 0.79 Sweat 2.02

Hot 3 0.79 Insensible 4 2.00

"rutal input 6.77 Total recoverable 7.33

Feces 0.20

Gases Total output 7.53

Oxygen 1.84 Carbon dioxide 2.20

1Assumes metabolic rate = 11,200 BTU/man-day and RO = 0.87

21% of sweat (Roth, 1964)

3From potable water supply

4Composed of lung, latent loss (10% of total metabolic rate) plus

skin diffusion.
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Wastes must be collected and transported to storage and/or recovery process

equipment in such a manner that they do not contaminate the crew and the
internal environment of the vehicle. In most cases wastes must also be treated

during collection to avoid the production of noxious gases and microorganisms
in the collector, transport lines, and storage vessels. If the wastes are to be stored
onboard for an extended period of time, they should be sterilized to avoid
contamination if the storage vessel fails.

Since at times the aerospace vehicle may be in a weightless state, certain

techniques for collection of wastes will have to employed. These include the
application of pressure, drag, and/or manual forces. This applies to such waste as
urine, feces, vomitus, and debris. Furthermore, for human waste collection, foot
restraints and a body restraining belt appear to be needed to enable zero gravity

operation.

Collection and Transport

Solid wastes, such as wipes, used food containers and refuse, are easily
collected and transported by hand to a storage/disposal unit. The most difficult

problem is collecting liquid wastes in a weightless state. This task is especially
complicated by the fact that gas is usually collected with the liquids, and it must
be separated to avoid gas loss and oversizing liquid storage containers.

Specifically, the collection and transport subsystem must provide the

following functions:

1. Collect, treat, and store all solid and liquid wastes and collect and transfer
raw urine to the water and waste disposal subsystem.

2. Eliminate odors, aerosols, and existing gases.

3. Sterilize waste matter to:

a. Inhibit or eliminate microorganism production.

b. Prevent production of such gases as CO2, CH4, H2, H2S, in the
wastes.

c. Prevent crew contamination if wastes escape into the living areas.

The variety of wastes and the differences in physical characteristics (volume,
density, composition, etc.) and microorganism activity requires that the
subsystem be flexible enough to handle wet wastes such as feces, urine, unused
food, and wet cloths, as well as food containers, urine sludge (from the water
reclamation subsystem), fingernail clippings, hair, vomitus, and miscellaneous
debris. The nature of waste products requires that psychological and

physiological factors be considered. Urine is rapidly colonized by
microorganisms that degrade urea and uric acid components to toxic ammonia
gas. Immediate treatment of the urine is required to eliminate the production of
ammonia and to insure potability when urine is processed through the water

reclamation subsystem. Other waste materials must be collected to reduce
particulate matter in the atmosphere. Solid waste matter must be sterilized or
treated to inhibit the growth of microorganisms so that health hazards do not



918 BioastronauticsDataBook

developandgasesarenot generatedanddispersedinto theatmosphereor
withinstoragecontainers.

Urineand Liquid Waste

The objective of the urine and liquid waste collection and transport

sub,stem is to provide a means for collecting and transporting these wastes
to the water management subsystem where treating and processing are
performed. The major liquid waste includes condensate water from
equipment and crew and personal hygiene of body wash.

Urine. The urine collection unit must be capable of being operated
either by itself or simultaneously with defecation. Acceptable seal-type
urinals which provide for dumping overboard have been developed (Des
Jardins et al., 1960; Miner et al., 1961). A nonsealing urinal can be used

without gas loss overboard by employing a centrifugal fan to draw cabin gas
into the urinal. A urine-gas separator is necessary to collect the urine and
protect the fan. Tests have demonstrated that the gas flow rate required
should be at least 1 cfm and the fan must be capable of developing a
minimum pressure differential of 5 inches of water.

The Project Mercury and Gemini astronauts used seal-on urinals and

bladder pressure to transfer urine to plastic bags, and saved it for postflight
analysis. Since these were relatively short duration missions, there was no
major concern about personal or vehicle contamination. The Project Apollo
Command Module was provided with a urinal that resembles an aircraft
relief tube, with an overboard vacuum used to assist in collection and

transfer. Since the gas flow rate required to operate a relief tube is on the
order of 1 cfm, the mass of gas lost overboard was substantially less than
the mass penalty of a reliable urine-gas separator. Vehicles designed for

mission durations longer than several weeks must minimize overboard gas
loss, and therefore, can advantageously utilize a pneumatic-type urinal with
a urine-gas separator.

Two types of urine-gas separators have been developed, passive
separators that utilize surface tension and viscous flow to retain liquids and
active separators that utilize centrifugal forces. The passive separator uses a
sponge-type hydrophilic material so that the inlet mixture must flow a

tortuous path, which causes the urine to collide with the sponge material.
After the separation process is complete, the sponge can be (1) squeezed to
transfer the urine to a storage vessel or overboard or (2) evacuated to
vaporize and/or sublimate water from the urine leaving the residue in the
sponge. Typical of the problems associated with passive separators are:

1. Droplets smaller than 50/.t in diameter will tend to pass through the
sponge with the gas. The separator should therefore, be provided with either an
agglomerating device at the inlet or a final filter at the outlet.

2. Urine, a source of many gases, requires an odor filter downstream of the
separator to remove gases generated by urine on the sponge surfaces.
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3. Urine residue will tend to accumulate in the sponge. The sponge must
therefore, be oversized or replaceable to compensate for this loss in capacity.

Wick-type separators are not recommended for application with mixtures
containing heavy solutes that can precipitate and restrict capillary action. The
passive or sponge-type separators do not require electric power, but they do lose

interstitial gas when urine is transferred to storage or overboard.

The active or centrifugal-type separator can be designed to lose a minimum

of gas with separated urine, but they require an electric motor, gas turbine, or
manual drive. In these devices, separation is achieved by inducing rotational flow
in a urine-gas mixture. Rotating vanes, screens, and sponges can be used for this
purpose. Another approach is to impinge the mixture against the inner wall of a
rotating bowl so that urine is forced against the wall. Viscous and centrifugal
forces will then cause the urine to rotate with the bowl, so that a stationary

impact tube can be used to pump urine out of the bowl. The gas is drawn or
forced out of the bowl by pressure differences, preferably through a rotating
entrainment separator or "final" filter. If the urine outlet is provided with a
back pressure regulator, the separator automatically stops "pumping" when the
urine-gas interface reaches the tube inlet. The urine remaining in the bowl will
stay at the wall when the separator is shut off, if the wall is a hydrophilic
material.

Centrifugal separators are most attractive for application where urine must

be forced into a pressurized storage vessel. Theoretically, the urine or bowl
velocity required is then X/2 g Ap/p. In practice, however, a higher velocity is
required because probe drag creates a velocity profile between the wall and the
urine-gas interface. The shaft power required to operate a centrifugal-type
urine-gas separator is determined primarily by probe drag. An extremely small
diameter probe will minimize peak power demand, but requires long periods of
operation to empty the bowl. For minimum expenditure of energy, the probe
should be sized to minimize depth of submergence, i.e., pumping rate should
equal urination rate. A 0.125 inch diameter probe is sufficient for this purpose
when pumping urine into a tank at 5 psig. Provisions should be made for

sterilization on a regularly scheduled basis as well as water flushing after each
micturition.

Liquid Waste. Liquid-gas separation is required for many different functions
within the environmental control subsystem. Condensate collection is required

for separation of carbon dioxide concentrator water from the carbon dioxide in
the concentrator. A porous plate condenser/separator has been found to fulfill

the requirements of the carbon dioxide concentrator. A three-passage
configuration (stacked unit) is used, the first and second passages being gas and
condensate, respectively (separated by a porous plate). The condensate passage is
initially filled with water and maintained at a negative pressure with respect to
the gas flow passages. A centrifugal pump is employed to transfer condensate to
the water management system. The third passage contains a flowing coolant to
maintain the whole unit at a uniform temperature sufficient to condense water
vapor on the gas side of the porous plate. The nature of the fluids being processed,
the water and carbon dioxide flow rates, and equivalent weight considerations
usually dictate the selection of the porous plate condenser/separator.
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The use of cabin air/water separators with face wick heat exchangers is one
of the more attractive techniques to condense and separate water vapor from the
cabin air. These separators are essentially conventional heat exchangers with the
addition of face wicking in the air outlet face. Use of a hydrophobic coating on
the air side fins minimizes gas pressure drop. Water droplets transported to the
heat exchanger oudet face will come into contact with strips of wicking, enter

the wick, and be transported to a hydrophilic transfer disk. Capillary forces, in
conjunction with a pressure differential across the disk, transfer liquid to the
collection system.

Wash Water

In the Gemini and Apollo flights, cleaning of exposed body surfaces was
accomplished by use of lintless wet and dry pads dispensed with each meal. The
pads were made from rayon, terry-pile cloth, and measured 3.5 x 4.0 x 3/32
inches. The wet pads are treated with 5 ml of cleaning solution composed of one

part Hyamine 1620, a quaternary ammonium antiseptic, to 60,000 parts distilled
water. Larger pads were provided for body cleaning.

On long duration missions, whole body cleaning will be required, using a
shower or bath. Such cleaning must remove the residual materials adhering to
the skin from sources external to the body, as well as natural body products.
Upon completion, the body must be dried to avoid losing water to the internal
environment. Some early tests under weightless conditions (in USAF

RC-135 zero "G" aircraft) demonstrated the wetting characteristics of water on
skin to be satisfactory: sprayed water wets and adheres to the skin. In fact,
water actually builds up on the skin and clings in sheets, if the droplets are not

large. The use of airflow for the collection of water in a shower stall does not
satisfactorily remove water from the body; only a suction system or sponge can
be used for this purpose. It is estimated that a weightless shower would require
the collection and processing of 1.5 liters of water.

Feces and Debris

The objective of the feces and debris collection and transport subsystem is to
provide a means for collecting and transporting these wastes to the solid waste

management subsystem where treating and processing are performed. Collection
and transfer must be accomplished under zero gravity conditions, while the

escape of solid waste to the cabin is positively prevented. The principal solid
wastes include body wasfes, unused food, and food containers.

Feces Collection. There are basically two techniques for collecting feces in a

weightless state; namely, manual collection with a glove or bag, and pneumatic
collection with the use of forced cabin gas for detachment and transfer. The
glove method, as developed for Project Gemini, is a simple, low-weight technique
but is psychologically objectionable and does not provide a means for preventing
flatus from entering the cabin atmosphere. The technique, however, is desirable
for use as an emergency fecal collector or where a pneumatic collector cannot be
provided. On missions of durations longer than several days, fecal collection
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equipment is required to maintain the physiological and psychological
well-being of the crew.

Feces can be detached from the anus in a weightless state by gas
impingement, and then carried into a collection bag or processing device by the
same gas flow (e.g. Des Jardins et al., 1960; Charanian et al., 1965. & Rollo et
al., 1967. The gas flow rate required is a function of equipment design;
experience has shown that it should be in the range of 2 to 10 cfm. The gas is

drawn through the device by a centrifugal blower and passed through a filter
with activated carbon before being returned to the cabin. Recent laboratory
tests have shown that:

1. Separation of feces from perineal surface was best accomplished by short
duration impulse from a 30 to 40 psig air stream aimed at the fecal mass; water
or air-water streams are not as effective as air alone.

2. Only small amounts of air are needed to effect separation, e.g. 0.1 to
0.2 std. 3 ft. at 30 to 40 psig, flowing at 6 cfm for 2 seconds.

Many types of fecal collection bags have been devised. None of these bags
has all the characteristics desired; namely,

High permeability for gases

Impermeable to liquids

High tear strength

Low weight.

The two materials proven to be most successful so far are porous cellulose and a
polyethylene; both are fabricated from 10 mil material and treated to prevent
passage of liquids with pressure differentials less than 4 inches of water.
Recently, these materials have been laminated with cloth to provide the tear
strength desired.

Experiments have demonstrated that man can reliably defecate into a 4 inch

diameter opening--provided this opening is indexed with respect to the anal
perimeter. This is the minimum size recommended for a fecal collection bag or
the opening in a fecal storage container.

Pneumatic collection provides for more natural defecation. In addition, it
also entrains any flatus excreted. To minimize odors, the fecal collection gas
should be passed through a bed of activated charcoal. If a catalytic oxidation
unit is used for contamination control, the fecal collection gas should be
directed to this unit for removal of any H2, CH4, and H2S. Also pneumatic
collection provides a suitable means for collecting vomitus.

Overboard Dump. Wastes can be disposed of overboard in gaseous or liquid
form. Dumping of solids is not permitted to avoid imparting the wastes on the
ground and/or the aerospace vehicle. Urine, of course, can be dumped as a liquid
directly from a urinal or from a urine-gas separator if it is permissible to

contaminate the external environment with microorganisms. Solids, however,
should be incinerated or thermally decomposed.

487-858 0 - 73 - 59
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A detailed investigation of waste incineration/decomposition is described in
Dodson and Wallman (1964). This study concluded that incineration requires

(1) an ignition temperature of 1000°F, (2) an energy input of at least
1 kilowatt-hours per man-day, and (3) an oxygen input of up to 0.2 pounds per

man-day. Under these conditions the ash remaining is less than 10 grams per
man-day and can be easily blown overboard by venting.

If oxygen is not available for incineration, the wastes can be gasified by
thermal decomposition. However, this technique requires approximately
4000 BTU/Ib of wastes at a temperature level of 1200°F. In addition, the
overboard vent line must be maintained at this temperature to avoid

condensation and plugging.

Incineration and thermal decomposition have not appeared to be practical

for aerospace vehicles in the absence of a nuclear heat source. However, when
these heat sources are available, it will most likely be advantageous to recover

usable products from wastes.

Waste Processing

Since any unit capable of handling fecal matter should also dispose of the
other wastes, this discussion will be primarily concerned with human waste
treatment methods. Currently considered methods are: (l) biodegradation,

(2) vacuum/thermal drying, and (3) incineration.

The biological treatment of wastes requires a blending device for feces since
bacteria rapidly degrade only soluble and finely dispersed matter. The biological
treatment process also requires waste storage facilities so that wastes of
reasonably uniform composition and concentration can be treated. Thus, a
minimum of two tanks are required for alternate use as storage and feed units. A

pump is required to feed the waste to the activated sludge system at some fixed
rate. The activated sludge system requires a minimum of one tank with

components for gas-liquid contact, gas-liquid separation, and liquid-solid
separation. Instrumentation must be provided for control and monitoring of the
process. Other components are required for absorbing gases when storage tanks
are vented and for heat rejection. This process is being used commercially in

sewage treatment plants on a large scale. There has been some minor adaptation
of this process for zero-gravity spacecraft use.

The basis for the vacuum drying method is that drying fecal matter to
50 percent of its water content by weight will stop microorganismic activity and

allow safe storage. Two methods have been developed for drying waste matter to
a bacteriostatic condition. They are:

1. Systems in which the collection and treatment (drying) functions are
separated, with manual transfer required from the collection unit to the
treatment unit, and thence to storage when drying is complete.

2. Systems in which the collection, treatment, and storage functions are
integrated.
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In the vacuum drying method, the fecal bags used for collection do not

include chemicals for treatment, as is the case for Apollo mission fecal bags. The
bags are placed directly into individual vacuum dryers. The number of vacuum
drying containers is determined by crew size and waste processing time. If power
is available, drying can be reduced by heating the wastes to 240°F and
evacuating the evaporated matter to space. Fecal water is lost in this process.

Upon completion of drying, the permeable bags can be removed from the
drying chambers, placed in a "Saran" bag with 1 gm of silica gel to maintain
dryness, and put into a sealed storage container sized for the number of
man-days required. If fecal water is to be saved, drying is accomplished by
heating only. The recovered waste water is then sent to the water recovery
subsystem.

Several techniques featuring integration of the collection, treatment, and

storage processes are available. Two are currently being advanced to the state
that will be considered prequalification for system test. A subsystem known as
the "Super John" based on an earlier version of the "Dry John" has been
designed and fabricated and has been extensively tested. The concepts include
(1) fecal collection, and a means of direct sterilization of the seat area; and
(2) dynamic phase separation by means of a rotating slinger which shreds and
then spreads the feces and toilet tissue in a thin layer over the inner surface of
the collection vessel where sterilization then takes place. Initial sterilization
takes place at approximately 250°F for 30minutes; then, processing is
accomplished by means of thermal decomposition. Initial test results indicate

approximately 3 hours at 800°F plus are required to reduce the original volume
by 85 percent. At the end of this time the resultant ash closely resembles
charcoal. Tests are being planned to study this ash in order to determine the

feasibility of reuse of this material as a back-up regenerative filter source.

Another subsystem referred to as "Hydro John" involves similar hardware
except for substitution of calrod heaters with a slurry collection area. In
addition to using air, the system uses wash water for cleaning. The water also
provides for development of the slurry. The water is collected for thermal
decomposition of the solid waste and is returned to the waste management
system after its recovery from the waste water reclamation subsystem.

It is recognized that on long-term space missions, there must be systems

onboard for disposing of wet waste materials, such as feces. The feasibility of
adapting the principle of high pressure wet oxidation to perform these combined
operations is under consideration (Jagow & Saunders, undated).

The incineration and/or wet oxidation techniques are operated by adding
waste materials, including feces, papers, and plastic food containers, to the

incinerator. The waste materials can be dried and sterilized by using electrical
resistance heaters and then burned with pure oxygen or oxygen diluted with
nitrogen. The residue remaining is a dry, gray powder which could be easily
removed.
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Water Reclamation Subsystems

The water management subsystem interfaces with all of the waste
management systems. Its objective is to purify waste water and to store
and deliver potable water for use on demand. Water is collected for
processing from the cabin heat exchanger, atmospheric condensate, and
from the waste control subsystem in the form of urine, flush water, and
used wash water.

The water management subsystem is constrained by biocontamination
control requirements as follows: (1) the water produced must be

essentially sterile and free of organic and inorganic toxic material;
(2) stored water must remain sterile; (3)it must be possible to service
equipment routinely without contaminating the stored water; (4)service
operations, such as changing filters and removing sludge, should not
contaminate the crewman or the atmosphere; (5) in the event of
contamination of the water supply, there must be a means of complete
and rapid system sterilization.

The major engineering criteria used in evaluating a water management
subsystem are reliability, weight, power expendability requirements,
recover)" efficiency, and ease of integration with the thermal/humidity
control and solid waste subsystems. There are many water recover)'
methods in various stages of development. This discussion will be limited
to those which appear to be candidate subsystems for space application.
Others can be assumed to be either too heavy, require too much power,

or are of unproven feasibility.

Vapor Distillation Pyrolysis. In the vapor distillation and pyrolysis
process waste water is catalytically oxidized in the vapor phase prior to

condensation. A schematic diagram of a typical system which was used
during a 90 day manned test conducted for the National Aeronautics and
Space Administration by the McDonnell-Douglas Aircraft Corporation is
shown in figure20-1. Waste water is admitted into a zero gravity
evaporator. The evaporator has a membrane at one end through which
only vapor passes, which achieves liquid/gas separation. Residue is removed

periodically from the evaporator to be further treated or stored. From
the evaporator, the vapor passes into a regenerative heat exchanger where
it is heated to about 1360°F. This vapor, along with some air and/or

oxygen that is bled in, passes into the pyrolysis chamber where ammonia
and volatile organics are oxidized. A platinum g'auzc catalyst and a
resistive heating element are used to bring the vapor to a temperature of
1500°F. Vapor leaving the pyrolysis chamber passes to a heat exchanger.
The relatively cool vapor then enters the condenser where cooling fluid
condenses the vapor. Condensable and noncondensable gases, mainly

nitrogen, are forced out of the condenser periodically by a piston
activated by compressed air or nitrogen. Nonconden_ble gases are
separated from the existing liquid by a static liquid/gas separator,
preferably a nonwettable membrane.
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Figure 20-1. Vapor distillation pyrolysis waste water recovery system.
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Vapor Compression. Vapor compression, or compression distillation, is a
process in which the latent heat of vaporization of the liquid feed is conserved.
Heat transfer from the condensing vapor is accomplished by compressing the
vapor so that it condenses at a high pressure and thus, a higher temperature. As a
result, a temperature difference is created between the evaporator and condenser
which makes the process possible. Even though the maximum vapor temperature
can be as high as IO0°F, the extent of breakdown of urea and other organics is
low. Condensate from this process must therefore be further treated to render it

potable. Filtration through activated charcoal and ion-exchange resins, and a
bacteria filter sufficiently purify the condensate to make it potable.

A schematic diagram of one type of a vapor compression system is shown in

figure 20-2. Urine containing a chemical disinfectant is fed to the rotating evapora-
tor where heat from the condcnser vaporizes the liquid at about 0.35 psia. The

rotating evaporator-condenser is a cylinder: the inside is the evaporating surface
and the outside, the condensing surface. The compressor motor, enclosed in the
evapor-condenser shell, gives up heat which is utilized as makeup heat for vaporiza-
tion. This replaces the heat given up by the condensing vapor to the surroundings.

Vapor from the evaporating surface is compressed to about 0.70 psia and delivered
to the condenser side of the drum. When condensed, a cam-activated pump forces
the condensate water back to ambient pressure and out of the condensing chamber.
A vacuum pump removes noncondensable gases from the condenser chamber to
prevent a buildup in pressure. These gases are passed through an activated charcoal
filter to the atmosphere. The urine residue collecting in the evaporator is removed
periodically and stored.

VAPO_ COMPR_-SS_ON L_NIT

V_pO.ATOR

"H ¢l iLJ L_

_AT_ SVPPL_

Figure 20-2. Vapor compression system for urine processing.
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Waste Recovery Subsystem

One of the first solid waste receivers to be extensively tested was the "Dry

John." This device was used by a four-man crew in a sixty day chamber test.

Figure 20-3 is a schematic of hardware developed for NASA. The unit consisted

of a seat, a mechanical vacuum valve, a receiving chamber, a motorized slinger

rotor, exhaust lines, and bacteria and odor control (charcoal) filters.
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Figure 20-3. "Dry John" solid waste processing unit.

The Dry John test reduced the water content of feces and vomitus to less

than 30 percent water. At this point, there appears to bc no further bacterial

action, no odor, and no danger of infection. No attempt was made to salvage the
water removed from the waste matter.

In actual use of the Dry John device, positive control of fecal material was

obtained by a control-air flow drawn through the seat by suction created by the

control-air fan. The air was directed towards the anal opening, where it turns and

sweeps vertically down past the mechanical vacuum valve. In use, the fecal

matter was carried down by the airstream to make contact with the spinning

slinger. The slinger shredded the fecal matter and centrifuged it, in a thin layer,

against the drying chamber's inner surface. The control-air flow passed the

slinger, and the slinger motor, into the exhaust line, through the vacuum valve,

blower, bacteria filter, charcoal filter, and back to the cabin.
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The toilet tissue used by the crew was dropped into the drying
chamber. The tissue was centrifuged and mixed with the fecal matter. After
use, the mechanical vacuum valve below the seat was closed and the slinger

motor turned off, tile vacuum valve leading to the cabin air blower closed,
the cabin air blower shut off and the vacuum valve leading to the simulated

space vacuum source was opened. This caused the pressure in the drying
chamber to drop to nearly vacuum and to evaporate the water in the waste
matter. Evaporation was relatively fast, because the wet fecal matter had
spread in a thin layer over a large area. Heat was drawn into the dryer by
conduction through the walls to prevent freezing before all the water was
removed. The relatively large drying chamber surface area and the thin
waste layer resulted in good heat transfer.

Bacterial and charcoal filters were provided on the vacuum line since the
vacuum pump discharged to the atmosphere. Approximately 4 hours were
required to dry a man's daily fecal matter. The single unit had the capacity
to handle the wastes of the four-man test crew.

When a second crewman used the Dry John, he did not have to wait
until the wastes of the previous user had completely dried, tie used it
immediately by shutting the high vacuum valve, starting the cabin air

blower, opening the cabin air vacuum valve, starting the slinger motor and
opening the mechanical vacuum valve under the seat.

A vomitus collection adapter was provided for the Dry John. This
device inserts into the seat opening so that the control airflow ducts are
blocked off. This causes air to be drawn through holes in the adapter for

zero-g collection. The vomitus is spread along the drying chamber wall and
is dried in the same manner as fecal material.

Debris

The crews of any aerospace vehicle will generate particulate matter from
their bodies and their clothing. Equipment also releases particulates. In a
weightless state this debris will float in the cabin until it is entrained by
the ventilation gas or is separated and captured by a surface (such as a
crewman's lungs). Of course, the ventilation gas and filters will remove most
of the debris; however, some spaces in the cabin will tend to accumulate
floating debris due to a lack of sufficient ventilation. Therefore, on long
duration missions (of one or more weeks) a vacuum cleaner should be
provided to collect this material--which may include viable microorganisms
and the media necessary for growth.

If the vehicle is provided with a pneumatic collection system for urine
and/or feces, the fan used for this purpose can also be used to draw gas into a
small debris collection bag. This bag can be made from the same material as the
fecal collection bag. A gas flow rate of 5 ft3/min is adequate for this

purpose.
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A personal grooming device-vacuum cleaner is provided on a branch of
the control air circuit of the waste management unit. This collects hair, nail

clippings, shaving clippings, etc. Collection bags are provided to dry and
store the wastes. There are three key problem areas associated with the Dry

John integrated waste management system at the present time. They are:

1. The vacuum seals in the fecal receiver are critical in minimizing the
loss of cabin atmosphere.

2. Lubrication of the fecal slinger motor may be required after long

exposure to hard vacuum.

3. The adsorbent beds in the fecal collector must be properly sized for
odor control.

Disposal and Processing

Collected wastes must be either stored in an aesthetic and sanitary
manner or dumped overboard to protect the crew from microorganisms and
noxious gases. The best technique for a specific vehicle depends upon the
mission duration and the onboard equipment to support a waste disposal

subsystem.

Storage Onboard. Wastes can be stored satisfactorily by merely scaling them
in a container. However, if the wastes contain microorganisms, water and
nutrients, biological activity call occur and produce undesirable gases. Tire
pressure developed is a function of the container ullage, water and nutricnt
available, types of microorganisms active, gas available, and storage tcmperature.

n 3 sUnder ideal conditio s, each gram of waste material could produce 10 ft of gas.

For safe storage of wastes such as urine, feces, vomitus, unused food, and debris
processing prior to storage is needed to prevent or minimize biological activity.
Processing methods include: (1) killing the microorganisms, (2) freezing the
wastes, and/or (3) removing the water.

The urine and liquid waste collection subsystem should be disinfccted
periodically to prevent biological growth and production of noxious gases in this
area. Several disinfectants are satisfactory for this purpose; for example,
Wescodyne, a mixture containing iodine complexed with surface active
agents. In most cases, the quantity of disinfectant required is less than
0.1 percent. If a disinfectant is provided for tire urine collection subsystem
it will also serve to stabilize the urine for onboard storage or water
reclamation.

Di_nfectants or germicides have also been used to prepare feces and
debris for onboard storage ill plastic bags. Tests tlave becn performed to demon-
"ate that a 15 ml mixture of germicide, water and humectant is capable of induc-

',d sterility in feces; however, only 10 ml of this mixture is required to con-
',_ction. In practice, the germicidal mixture is usually supplied in a

"_ collection bag; it is then distributed by breaking tile small bag
¢,_r ten minutes to uniformly distribute the germicide.
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The most positive and reliable method for killing microorganisms is heating

the wastes to a temperature above 250°F, and holding at this temperature for at

lcast ten minutes. This technique is attractive when waste heat is available; if

electric power n,ust be used, this method usually imposes a higher weight

penalty than other storage techniques. Also, heat sterilization has the

disadvantages of (1) producing internal pre_ures higher than 30 psia, and

(2) generating obnoxious odors.

Biological activity can be retarded by freezing wastes. For maximum effect,

a storage temperature of O°F is recommended. Conveutional refrigeration

techniques can be utilized to cool and maintain wastes at this temperature-but

at the expen_ of electric power. Another approach is to freeze-dry the wastes in

an insulated storage container, using the latent heat of water sublimation to

remove the heat transferred through the insulation (Zeff et at., 1961; Rollo &

Popoff 1965). This technique is very attractive for missions without water

recovery because the wastes are also dried, which serves to backup the freezing

teehnique. The disadvantages of this technique are that (1) a vacuum storage

ves_el is required and (2) an appreciable quantity of cabin gas is lost overboard

unless a waste loading lock is provided.

The simplest and most versatile method for storing all types of waste is

vacuum drying-to remove the water necessary for biological mobility and

growth. This technique does not "kill" the microorganisms, but it does

inactivate them s, fficiently to permit storage in a plastic bag for periods of

120 days or more. The drying pressure recommended is 0.3 psia or less, so that

cabin heat can be utilized for vaporization of water and other low molecular

weight constituents.
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